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It is shown that the intensity of the electric field of an infinite charged filament increases to infinity with 
increasing distance from it, as a result of self-gravitation, and forms an inhomogeneous singularity. An 
object of this kind with H,#O and Hz* cannot exist in general relativity theory. The scalar field of a 
filament is considered and it is shown that in contrast to the electromagnetic field such a field is capable 
of upsetting the oscillatory approach to bare singularities and replacing it by a power-law approach for 
which a formula is given. The effect of such fields on other bare singularities of the Kasner type is also 
investigated. 

PACS numbers: 12.20. - m, 12.90. + b 

1. INTRODUCTION 

This  paper is devoted to a study of the influence of 
electromagnetic and scalar f ields  on b a r e  s ingular i t ies  
of the Kasner  type and pr imar i ly  on the s imples t  among 
them, described by a Kasner  spa t ia l  m e t r i c  [ ~ q .  (10) at 
c = 01. This  m e t r i c  descr ibes  the gravitational field 
around an infinitely long and thin f i lament  with m a s s '  
( see  a l so  Ref. 2). A situation is investigated wherein 
this filament is a source  of an electromagnet ic  o r  a 
s c a l a r  field. Thus ,  in  the next section we consider  the 
c lass ica l  electrostatic problem of finding the electric 
field intensity around an infinite charged filament. I t s  
solution within the f ramework  of genera l  relativity 
theory differs  substantially f r o m  the r e s u l t  obtained in 
the Newtonian approximation. With increasing dis tance 
to  the source,  the field intensity f i r s t  decreases ,  but 
later the gravitational interact ion of t h e  electric field 
with the  filament and with itself c a u s e s  the  field to in- 
crease and to tend to infinity at a finite dis tance f r o m  
the source.  T h i s  dis tance is the l imi t  f o r  the given 
model, and a position at a g r e a t e r  dis tance f r o m  the 
filament is impossible. This  phenomenon cannot be  
avoided without resor t ing  to a source  with a negative 
and infinite "nonrenormalized" l inear  m a s s  density, a 
situation having hardly any physical meaning. 

In Sec. 3 we consider  the effect exer ted  on the spat ial  

Kasner  mat r ix  by an electric or magnetic field that 
depends on one variable .  It  tu rns  out that  no object that  
might be  descr ibed  as a n  infinitely long and thin charged 
filament with finite positive l inear  m a s s  density, s u r -  
rounded by a magnetic field with nonzero components 
H, and H , ,  can ex is t  within the framework of general  
relativity. 

In Sec. 5 we consider  the scalar field around a l inear  
source .  F o r  a zero-mass  field, a m e t r i c  is obtained at 
a r b i t r a r y  dis tance f r o m  thye filament, s i m i l a r  to that  
obtained by V. A. Belinskii and I. M. Khalatnikov f o r  
s ingular i t ies  attainable on spacel ike hypersur faces  i n  
the p resence  of a scalar z e r o - m a s s  field. For a scalar 
field with m a s s ,  asymptot ic  express ions  can  b e  obtained 
f o r  the m e t r i c  n e a r  the  s ingular i ty ,  where  it coincides 
with the  solution f o r  the z e r o - m a s s  field, and f a r  f r o m  
the  axis ,  where  the field at tenuates  exponentially and 
does  not influence the met r ic .  It is proved that  a phen- 
omenon analogous t o  the  increase  of the electric field 
intensity on account of self-gravitation does not exist 
f o r  a scalar field. It is shown in the s a m e  section that  
i n  the p resence  of a scalar field n e a r  a b a r e  singularity 
the m e t r i c  cannot have a n  osci l la tory c h a r s c t e r  s i m i l a r  
t o  the osci l la tory reg ime of V. A. Belinskii,  E .  M. 
Lifshitz, and I. M. Khalatnikov (BLKh). This  oscilla- 
to ry  f o r m  c a n  b e  possessed  by the m e t r i c  n e a r  b a r e  
s ingular i t ies  of genera l  type i n  the absence of nongrav- 
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itational fields. This is seen from the fact that we can 
generalize the Kasner spatial metric in the manner used 
by BLKh to generalize the usual temporal Kasner met- 
ric. The solution obtained differs x in practice from 
the BLKh solution only by the substitution t = x ,  des- 
cribes the bare singularity, and contains the necessary 
number of physical arbitrary functions for the descrip- 
tion of a gravitational field in vacuum. ') If a scalar 
field is present, however, the metric has a power-law 
asymptotic form near bare singularities. The in- 
fluence of an electromagnetic field on this oscillatory 
solution is the subject of Sec. 4. It is proved there that 
the presence of such a field can not upset this solution. 

In Sec. 6 i s  considered the influence of an electromag- 
netic field and a scalar field on more complicated sing- 
ularities of the Kasner type with complex o r  equal ex- 
ponents (Ref. 4, p. 492 of original, p. 388 of transla- 
tion). It is shown that the presence of an electromag- 
netic field upsets a metric with complex exponents. On 
the other hand a metric with equal exponents, which 
describes a gravitational wave of zero frequency in vac- 
uum or  around a linear source,' admits of only elec- 
tromagnetic waves of zero frequency, i. e . ,  a static 
field with ) E 1 = I H I and EIH. The presence of a scalar 
field admits of both types of singularity. 

2. FIELD OF A CHARGED FILAMENT WITH MASS 

We obtain the electromagnetic and gravitational fields 
around an infinitesimally thin and long charged rod with 
mass. We seek a metric in the form 

dSz=aa(p) dtz-dd-b2 ( p )  d$-c2 (p)dz2, (1) 

where p, cp, and z are  cylindrical coordinates. Max- 
well's equations 

i a -  Fih;h= -- (7-gp'" =-hi' 
1'7 a 9  (3) 

yield in this case 

The remaining components I;,, vanish identically. We 
can now substitute (4) in the formula for the energy- 
momentum tensor of the electromagnetic field 

and formulate the Einstein equations. Introducing the 
quantities 

and a new variable 5 defined by d( =-(abc)-'dp, and set- 
ting the speed of light and the gravitational constant 
equal to unity, we get 

at t=-Bt~=-yt~=h~e~~ ,  (6) 

at$t+$trr+aEyt=-h'e'a. 

From the first  equation we get 

da 
ata = const + h2eZa, E = J (const f h2eza) '" ' 

Depending on the sign of the constant, we have three dif- 
ferent solutions. 

1) If const >0, then 

Introducing 
A' 

Z n p-led, p = - p2tP,-lB 

4p: 

and changing the scales of the axes t, cp, and z ,  we re- 
duce the solution (9) to the form 

At c = 0, i. e . , in the absence of an electromagnetic 
field, this solution goes over the spatial Kasner metric 
that describes the gravitational field around an infin- 
itely narrow and long linear source. ' The metric has 
here a singularity a t  x =  0, which cannot be removed i f  
there a r e  no zeros among the numbers (p,, A,  p3). The 
coordinate x i s  radial, and this singularity corresponds 
to a source. 

On the other hand if c # 0, then on top of the singularity 
x=O we have alsp a t  x91 =c-' a power-law singularity 
with exponents (pi, &, &) = (-1/2,1/2,1/2). Assuming 
that x =  0 corresponds to the axis of the charged source, 
as was the case in the absence of a charge, we see  that 
the electric field intensity f i rs t  decreases with in- 
creasing distance from the source, and then increases 
and tends to infinity as X - C - " ~ ~ .  This is the conse- 
quence of the gravitational influence of the electric field 
on itself. Thus, the radial component x, and with i t  
also the distance to the source axis, has an upper 
bound: 

It is impossible to continue the coordinate x beyond the 
singularity, despite the conservation of the signature of 
the metric, since the singularity a t  x =  x,, i s  a true 
one, as seen from the fact that the invariants of the 
curvature tensor as well as the electric field intensity 
diverge a t  this point. At p1 >O and a t  small x the metric 
is asymptotically equal to the metric in the absence of 
charge. At pl<O the situation changes. In the absence 
of charge, Eq. (10) describes the gravitational field 
around a filament of unity mass and of length p =Pl/2 
<O. At c#O the asymptotic form changes a s  x-0. AS 
a result, the linear mass density of the charged fil- 
ament is equal to p = ( p ,  ( / 2  >0, a physically clearer 
physical result. 

The Gauss theorem written with allowance for the fact 
that the field depends only on x 
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yields an expression for the charge a = p l c  per unit fil- 
ament length. 

The gravitational and electric fields around a filament 
with negative mass density can be obtained by identify- 
ing in the metric (10) the singularity x = c - ' / ~ ~  with the 
source. In this case the distance to the filament can 
assume arbitrarily large values. However, when we 
calculate the mass of the filament and the field in a 
cylinder of unit length and radius xo we find that at 
small xo this mass diverges like - x i 1  and tends to neg- 
ative infinite mass per unit length of source, while at 
large xo i t  tends to the limit p = - I P, 1 /2 <0. This case 
is therefore of no physical interest. 

2) We turn now to Eq. (8). If const= 0, then at X = 0 
we have a Galilean metric expressed in a cylindrical 
coordinate frame, and a t  A # O  we have a new solution 

Introducing x =  AcA-'eAt, we rewrite the metric in the 
form 

This metric also has two non-removable singularities, 
x = 0 and x = x,, = ACA-'eAC, and is similar in character 
to (19). Unlike the latter, i t  corresponds to the case 
when the electric field i s  in vacuum and becomes con- 
centrated by i ts  own gravitational field. The absence of 
a source on the axis does not prevent the field from 
reaching a maximum intensity a t  x =  x,,. This metric 
admits also of an interpretation wherein the singularity 
x =  x,, is associated with an axial source having a neg- 
ative mass density, an interpretation that seems to have 
no connection with reality. In contrast to such an 
interpretation of (lo),  the metric (13) corresponds to a 
case when the total mass of the singularity and of the 
field surrounding i t  is equal to zero. 

3) If we assume const = -k2 < 0 in (8), we obtain a third 
solution: 

dS2=k2a-z COS-' ( k t )  dt2--h2 cosZ (kE) (e2(A+B"dE2+e2Aid cp '+ e 2Bt d z 2 ) ,  

AB=-k2, F,,=k%-' cos-' ( k t ) ,  q=h/2. (14) 

This metric has singularities a t  cos ( k t )  = 0. We must 
therefore consider a region of 5 bounded by two singu- 
larities. This solution describes the gravitational and 
electric fields around a filament with negative negative 
mass density. However, the charge density here is 
larger than in the cases of metrics (10) and (l3),  in 
which x changes from x,, to infinity. Therefore the 
total mass of the filament of the field, contained in a 
cylinder of radius t o ,  becomes equal to zero at sin kt, 
=0, and when 5, increases it becomes positive and the 
aforementioned concentration of the electric field by i ts  
own field with production of a singularity takes place. 
This solution is likewise of no physical interest. 

3. ELECTRIC AND MAGNETIC FIELDS THAT , - 

DEPEND ON ONE SPATIAL VARIABLE 

We consider now the case when besides the electric 
field there exists also a magnetic field that depends 
only on one coordinate. For the metric (1) we have 
from (2) and (3) 

Using the old notation, we write down the Einstein eq- 
uations for this case in the form 

We consider f i rs t  the case X = kg = 0. We then have the 
metric 

We use here the same notation a s  in (lo), and C ;  

= g(4pg)-1p2'P2"'. In contrast to the metric (lo),  there 
is no singularity at finite x.  This solution practically 
coincides with the metric of one transition (alternation 
of epochs) under the influence of the perturbation in 
the vibrational approach to the singularity reached on 
the timelike hypersurface for the pseudohomogeneous 
Bianchi models VIII and IX. The difference between 
this regime and the BLKh oscillatory solution is that 
the replacement t = x is made that the signature i s  
changed. For the case of homogeneous models, the 
BLKh oscillatory regime goes over into a spatial os- 
cillatory regime in pseudohomogeneous models. 

Thus, under the influence of the terms with A, # 0 in 
the right-hand sides of (16), a transition takes place a t  
X = X, = 0 from one Kasner regime to another with dif- 
ferent Kasner exponents. The terms with X , # O  lead a t  
X = A, = 0 to an analogous transition. On the other hand 
the terms containing X differ in sign from the perturba- 
tions in the pseudohomogeneous models. Therefore, 
while they do lead to a transition to another Kasner 
regime, the metric has the singularity (10) in the 
course of this transition. If the signs of the terms with 
X2 in the right-hand sides of (16) were different, then 
a t  X # 0, A, +0, and A, # 0 the sought metric would differ 
from the BLKh solution only by the substitution t t x .  
Consequently, a t  X # 0, A, # 0, X, + 0 the solution of (16) is 
a regime oscillatory in the variable x ,  in which power- 
law singularities with exponents (p,, p,,  p,) = (-1/2,1/ 
2, 1/2), which a re  not connected by the relations Pi 
+ P2 + pB = P:+P:+P:= 1, a re  present in each transi- 
tion from one Kasner regime to another (change of 
epochs) under the action of the perturbation X2eZa. We 
therefore break up the x axis into segments by an in- 
finite sequence of such singularities, which condenses 
to the point x =  0. We need consider only one such 
interval of x. 

The metric in this interval describes the electromag- 
netic and gravitational fields around the source with in- 
finite negative mass density, corresponding to the sing- 
ularity that bounds this interval from the side of small 
x .  On going away from this interval, the summary 
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linear density of the masses of the source and of the 
electromagnetic field increases, becomes positive, fol- 
lowed by a concentration of the electromagnetic field by 
the gravitational one, such that the electric field inten- 
sity increases to infinity. This corresponds to the 
singularity that bounds the interval on the side of large 
x. In the gap between the two singularities the metric 
experiences one o r  several transitions with interchange 
of the Kasner exponents. However, the need for in- 
troducing a negative infinite mass density of the source 
makes this solution unacceptable from the point of view 
of physical meaning. 

4. INFLUENCE OF ELECTROMAGNETIC FIELD ON 
THE SPATIAL OSCILLATORY REGIME NEAR BARE 
SlNGULARlTlES 

In the absence of a field, the metric near bare sing- 
ularities of general type is oscillatory and differs from 
the BLKh sdution in the replacement t = x and in a . 
suitable change of signature. The question of the in- 
fluence of the electromagnetic on the metric will be 
considered first  for the case of pseudohomogeneous 
models, in which the metric takes the form 

( 2 )  ( 2 )  
m = - d z 2 + [ a 2 ( z )  e:" er'-b2 (z) e, ee -c'(z) ef' e:'] I@@, (17) 

where e'"' stands for the three reference vectors of the 
given space, (a) = (O,2,3). We change to the reference 
vector components of the tensors used by us (Ref. 4, 
p. 488 of original, p. 386 of translation). From (3) we 
get 

The reference components F,a,,b, depend here only on 
x.  All the symbols in the equations connected with the 
analysis for the case of pseudohomogeneous spaces a re  
the same as in Ref. 4. 

We multiply (18) by e',). Noting that in view of the 
antisymmetry of F ' ~ ) ( ~ )  

F(**,~(! ,  5 - L F ( c l ( b I  [ e ( ~  e:cl aeTb~ 1 - i F ( i ) ( b , C  1.1 a 
a i  2 at0 axs 2 (bl(cle'd1. 

we get 
(19) 

The prime denotes hereafter differentiation with re-  
spect to x. The second term in (20) can be simplified. 
For  example, 

Similar expressions a re  obtained for ~(v4, , ) /8$ and 
~ ( v e ~ ~ , ) / a x  B. 

Equation (2) yields the following relations for the re- 
ference components of the electromagnetic-field tensor: 

In the case of interest to us, when 

(24) 
and the remaining ~lt!,,, vanish identically, relation 
(22) is always valid, and from (20) and (23) we get 

We consider the case of Bianchi type VIII o r  IX, when 
I A I = I P I = l v l = 1 .  The solutionof (25) is 

F,(,,  - A L s i n  
be ( ) F ( Z , ( ~ ,  = - ~4 cos (I:&), 

Calculating from this the reference components of the 
energy-momentum tensor, we substitute them in the 
Einstein equations. The off -diagonal components R,,,, ,, 
vanish identically. Equating to zero the off-diagonal 
components T,,,,,,, we get 

AB(1-i-hk) --AC(l+hv) = B C ( i - v p )  =AB(p-h)  (27) 
=AC(v-A) --BC(v+p) =O. 

It is easily seen that these equations a re  satisfied only 
if two out of the three quantities A,  B, and C are  equal 
to zero. This requirement together with relations (26) 
leads to a qualitative difference between the form of the 
electro-magnetic field tensor for Bianchi cases I and 
VII (IX) . 

We consider now the diagonal components of the Ein- 
stein equations. We introduce as before the quantities 
cu, p ,  and y and the variable 5 .  Then the equations will 
differ from (16) in that A, A, and A, a r e  replaced by A, 
B, and C, respectively, and in that terms a re  added to 
the right-hand side to account for the action of the spat- 
ial curvature and ensure in the absence of a field an 
oscillatory approach to the singularity. We see that the 
terms with ~ b d  c2 cannot upset this regime, since 
they act in the same direction a s  the terms due to spat- 
ial curvature. We need therefore consider only a 
transition in which the terms with A' become substan- 
tial. The Einstein equations for this term take the 
form 

Hence 

This equation is readily integrated. The question of 
interest to us, however, is whatever singularities a re  
present in the metric when the epoch is changed by a 
perturbation in the form of the right-hand side of (28), 
It is easy to see  that no such singularity can exist. 
When a increases the right-hand side of (29) becomes 
negative, contradicting the positiveness of the left- 
hand side. Therefore the range of variation of ff is 
bounded from above, thus excluding the singularity. 

Thus, an electromagnetic field may either not upset 
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the oscillatory regime (Bianchi type VIII, M) o r  can 
produce such a regime (type 11, VI, VII). We note the 
rather unnatural oscillatory behavior of the field in 
models VIII and M and even other Bianchi types (26). 
The field F,,,, is very strong and oscillates rapidly near 
the maxima of a, but is small and varies slowly near 
the minima of a /bc .  We note also that two out of the 
three quantities A, B ,  and C a re  zero-a requirement 
peculiar to types VIII and M. 

In the general case, the oscillatory regime is not up- 
set  also by the presence of an electromagnetic field. 
This follows from the fact that the terms resulting from 
the action of the spatial curvature contain a higher 
power eu than the terms due to the electromagnetic field. 
The singularities a t  which eu - - a r e  therefore excluded, 
inasmuch the different parts of the Einstein Equations 
can then have opposite signs. 

5. FILAMENT WITH MASS AS A SOURCE OF A 
SCALAR FIELD 

Consider a scalar field with an energy-momentum ten- 
sor  

and with a source in the form of an infinitely long and 
thin filament. Both the field and the metric, the latter 
chosen in the form (I), depend only on the coordinate 
p. The Einstein equations take the form 

The Greek indices a and run through the values 
(0,2,3) and the coordinate x1 =p.  In the case of a zero- 
mass field, nt = 0, the solution of (31) and (32) is 

For the field with mass (33) is the asymptotic expres- 
sion for the metric and field a t  small p. 

We introduce the quantity x = [(lnGg) 'I-'. Equations 
(31) and (32) yield 

Inasmuch as at  small p we get x=p>O from (33), i t  
follows that x >O a t  any p, thus excluding at finite p any 
singularity with x = 0 .  At large the metric tends asy- 
mptotically to the Kasner spatial matrix, and 40- - e -"~$ '~ .  Since all the exponents (p,, p2,p,) in the met- 
r ic (33) can be non-negative a t  small p,  the presence of 
a scalar field upsets the oscillatory regime, which i s  
then replaced by the power-law asymptotic form (33) 
generalized in the sense of E. M. Lifshitz and I. M. 
Khalatnikov: 

where e, m, n, qo, andp, a re  functions of xu = ( t ,  y ,  2 ) .  

6. BARE SINGULARITIES OF KASNER TYPE WITH 
EQUAL OR COMPLEX EXPONENTS IN  THE PRESENCE 
OF AN ELECTROMAGNETIC OR SCALAR FIELD 

Besides the spatial Kasner metric with real exponents 
[ E ~ .  (10) with c = 0] there exist also two exact vacuum 
solutions that depend on a single spatial variable. This 
is the Kasner metric with complex and equal exponents 
(Ref. 4, p. 492 of original, p. 388 of translation). 
Their physical meaning was explained in Ref. 5. Let 
us seen the form that these solutions assume in the 
presence of an electromagnetic and field and a scalar 
field. We shall f i rs t  generalize the metric with com- 
plex exponents, expressing i t  in the form 

d S ' = - d ~ ' + e ~ ~ ( ~ )  cos 241 ( 2 )  (dzr"-dxl') +2e2" sin 2$dz,dzz-eal"'dy'. (36) 

For  the electromagnetic field we have from (2) and (3) 

F=,.-e-l (AI ws 21p+hl sin 2 9 ) ,  
F,=e-'(A, sin 2$-bZ cos 2 9 ) ,  

hi=const, )c,=const. 

For  the metric (36) we have Rz: = R a ,  and from (37) 
we get 

Consequently, a metric of type (36) can exist only in 
the absence of an electro-magnetic field. In the pres- 
ence of a massless scalar field, the Kasner metric with 
complex exponents takes the form 

d S a - - ~ z V Z ~ P '  eos 2lp (&:-dx,") +2xEp' sin 2 9  &I&z-z2.~dya, 
$=pN In @ / a ) ,  2p1+p,=l, 2p'E-2p"2+p,"=i- lV$, (39) 

lcp-cp~ ln  Z ,  a=const. 

For  a field with mass, (39) is the asymptotic expres- 
sion for the metric a t  small x .  At large x the metric 
takes the form (39) at c p , = O .  Then q-e-rm~-"z.  The 
proof that there a r e  no singularities a t  finite x is the 
same a s  for the preceding metric. 

A generalization of the spatial Kasner metric with 
equal roots is 

It follows from (2) and (3) that 

Hence 

But since Ri: = Rfi, we must put A, = 0 solving the 
' 

Einstein equations with allowance for this fact, we get 
two possibilities 

dSZ=-dz2+ [ f ln ( x / a )  +0/,~'~'1~]z'1~d~~-2~"'d~,&,-z-'1'dyz, 
F,=hz'" (43) 

and 

dS2=-ds2+[*ln ( d a )  +W2 ln%]&,t-2dz,dzz-zZdya, 

F,=hx-'. (44) 

For  both metrics F,,Pk= eiklm~I$Im=O. Thus, a met- 
r ic of type (40) admits only a field in which ( E l  
= I H I ,  ELH, which can be regarded a s  the limiting case 
of electromagnetic waves, i .e. ,  a wave of zero f re-  
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quency. We note that in the absence of a field the met- 
r ic  (40) describes a gravitational wave of zero fre- 
quency near a linear source with a definite mass density 
(43) and in vacuum (44), as proved in Ref. 5. 

In the presence of a massless scalar field, the metric 
(40) takes the form 

dS=-&'*In (z/a)~'P~&,'-MP~&,&~-z'Pdy~, (45) 

For a massive scalar field, Eqs. (45) and (46) a re  the 
asymptotic expressions for the metric a t  small x .  At 
large xwe have (45) with ( p , , ~ , )  = (2/3, -1/3) or  (0 , l )  
and cp - e-.ux-l I 2  . That there a re  no singularities at fin- 
ite x is proved in the same manner a s  in the preceding 
case. 

In conclusion, the author would like to thank I. M. 
Khalatnkov for valuable discussions. 
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We discuss a possible process of appearance of an excess of baryons and antileptons during the early stage 
of expansion of a charge-symmetric hot universe in the framework of a unified gauge theory of strong, 
weak, and electromagnetic interactions. According to the estimates of the present paper, the baryon 
asymmetry A = NB/N, (the ratio of the mean baryon density to the density of quanta of the background 
radiation, which, up to a numerical factor, equals the ratio of the number of baryons to the initial 
entropy of the hot universe in the same comoving volume element) has the order of magnitude A -a36'6, 
(a = g2 is the coupling constant of the gauge field, 8 is a quantity of the order of the Cabibbo angle, 6, 
is the phase of the complex quark mixing). The numerical coefficient in this formula may contain an 
additional small parameter. The paper presents some arguments relative to the "multifoliated" (many- 
sheeted) model of the universe previously proposed by the author. 

PACS numbers: 98.80.Bp, 12.20.Hq 12.90. + b 

$1. INTRODUCTION. ESTIMATE OF THE EFFECT by means of perturbation theory methods. While hewas 
working on the present paper, the author also learned 

In 1966 the author has proposed a hypothesis for the about the paper of Dimopoulos and susskind4 devoted to 
appearance of an observable baryon asymmetry of the the same problem. 
Universe (and of a conjectured lepton asymmetry) during Below we obtain for the baryon asymmetry an esti- 
an early stage of the cosmologicd expansion out of a mate which is close to the one given by Dimopoulos and 
charge-symmetric initial state. Such a process is pos- ~ u s s k i n d , ~  but was obtained from a more detailed con- 
sible owing to effects of CP-violation under nonstation- sideration of the kinetics of mutual transformation of 
ary expansion conditions, if one assumes nonconser- particles and does not make use of the assumption that 
vation of the baryonic and leptonic charges. ' the mass of the leptoquark boson has the order of mag- 

In 1978 an analogous idea has been formulated in a nitude of the pian& mass M~ = loi9 GeV. Section 5 con- 
paper of Yoshimura. ' Yoshimura indicates that in tains some considerations related to the "multifoliated 
unified gauge theories of strong, weak, and electro- model of the Universe" ("many-sheeted model of the 
magnetic interactions (cf. Ref. 3 and subsequent papers Universe") proposed earlier by the author. 
quoted in Ref. 2) baryon number is not conserved, due The other sections contain the reasoning behind the 
to interactions in which the "leptoquark" intermediate estimate of the baryon and lepton asymmetry. Here we 
boson participates, and this together with the violation summarize briefly the main points of this reasoning. 
of CP-invariance leads unavoidably to an excess of bar- 
yonic charge (baryon number) during the early stages of Deviations from particle-antiparticle symmetry mani- 
the expansion of the hot Universe. Yoshimura indicates fest themselves only on account of the nonstationarity 
the possibility of a quantitative calculation of this effect caused by the expansion of the Universe. We denote the 
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