
Accordingly, we must replace S,(k, 51) in (13) by 
Sn-,(k, a), and use w, in place of waSB(q). The w;spec- 
trum is not symmetrical about q=  0 (the point 2p,). In 
place of the resonance points *qn/2 we have the points 
-k, and q, - k,, so that 

0-,, -0, -&,. 

Outside the term repulsion region q =q, we can put 

I q 1  >>ti1, so that the transitions a re  between the a and 
B terms. In place of (14) we get at wr,-,>>l 

Formulas (14) and (A.6) give relations that agree qual- 
itatively. At a temperature T >  we must consider the - 
case WT,-,< 1, i-e., 

iiKn(n-2)'(u/uP) T. 

In accord with the discussion at the end of Sec. 3 we 
obtain in place of (A.6) 

where 

(A. 7) 

Q is the reciprocal-lattice vector. In (A.7) we must take 

into account all values of n, and the optimal is n = 3. 
We obtain the following estimate: 

yv210-'urQ~ (1-10) cm-' (A. 8) 

independently of the temperature. Activation of the in- 
tramolecular oscillations can result in an increase of 
(A.8) with increasing temperature. 
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Optical-orientation anisotropy produced in semiconductors by 
quadrupole splitting of the spin levels of the lattice nuclei 
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A. E Ioffe Physicotechnical Institute, USSR Academy of Sciences 
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The onset of crystal anisotropy of the magnetic depolarization of recombination radiation under optical- 
orientation conditions is considered theoretically. The influence of the anisotropy of the nuclear field on 
the behavior of the average spin of the excited electrons is analyzed on the basis of general considerations. 
The concrete model chosen to describe this anisotropy is quadrupole splitting of the nuclear spin levels. 
Calculations for an external magnetic field much stronger than the local field produced at the nucleus by 
the neighboring nuclei agree with the experimental data in the corresponding region of magnetic-field 
values. 

PACS numbers: 71.70.Jp 

It was recently observed that the crystal anisotropy 
exerts a substantial influence on the optical orientation 
of electrons in semiconductors of the gallium-arsenide 
type.'- The shape of the plot of the magnetic depolari- 
zation of the recombination radiation (the Hanle curve) 
turned out to be strongly dependent on the orientation of 
the external magnetic field relative to the crystal axes. 
The crystal anisotropy manifests itself particularly 
strongly in the hysteresis observed by Novikov and 
~ l & s h e r ' . ~  when the exciting-light beam is directed 

along the [OOl] axis and the magnetic field is located in 
the (001) plane of the crystal. In this geometry, the 
hysteresis exists in a narrow region of angles near a 
field direction along the [110] axis. 

The anisotropy of the Hanle curve was interpreted as  
a manifestation of the quadrupole splitting of the spin 
levels of the lattice nuclei, which influences the dynam- 
ic  polarization of the nuclei by oriented electrons. It is 
known that dynamic polarization of the nuclei leads to 
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the appearance of an effective mangetic field, which in 
turn influences the degree of orientation of the electrons 
and by the same token the polarization of the recombin- 
ation radiation.'#" This interpretation is directly con- 
firmed by optical detection of nuclear magnetic reso- 
n a n ~ e , ~ '  which has shown that the arsenic nuclei in the 
solid solution Ga,Al,As undergo a strong quadrupole 
interaction whose symmetry axis is directed along one 
of the (111) axes of the crystal. It was ~ugges ted"~  
that a possible cause of the quadrupole splitting of the 
levels is a local cubic-symmetry distortion due to par- 
tial replacement of the gallium atoms in the GaAs lat- 
tice by aluminum. 

We calculate in this paper the dynamic polarization of 
the lattice nuclei by oriented electrons in the presence 
of quadrupole splitting of the spin levels of the nuclei, 
and consider also the shape of the Hanle curve under 
these conditions. In Sec. 1 we analyze the influence of 
the nuclear-field anisotropy on the shape of the Hanle 
curve on the basis of general symmetry considerations. 
In Secs. 2 and 3 we consider the influence of quadru- 
pole interaction on the dynamic polarization of the nu- 
clei. In Sec. 4 we present the results of numerical 
calculation of the shape of the Hanle curve, with account 
taken of the quadrupole interaction and of the "electron 
field." The results of the calculations in the corre- 
sponding region of magnetic-field values agree with the 
experimental data.lm4 

1. ANISOTROPY OF THE NUCLEAR FIELD AND 
THE HANLE EFFECT 

The polarization of nuclei under conditions of optical 
orientation depends, generally speaking, on the orien- 
tation of the average spin of the electrons and of the 
external magnetic field relative to the crystal axes. 
From symmetry considerations we can write down the 
following general expression for the nuclear spin acting 
on the electron spin: 

where a,, is a tensor that depends on the magnitude and 
direction of the external magnetic field H and satisfies 
the necessary symmetry requirements. 

We assume hereafter also that this tensor is invariant 
to time reversal, an assumption valid for the model 
considered below. Then all the a,, components a r e  
even functions of the magnetic field. For  a cubic 
crystal, in the coordinate frame of the principal crys- 
tallographic axes, the tensor a,, satisfies relations of 
the type 

a,(H=, H,, H z )  =a,(H., Hz, H , ) ,  
a,(H., Hn, Hz)=%(H,,  H., H z ) ,  

a,(H., H,, Hz) =a,(H,, Hz,  H A ,  &(Hz, Hv, Hz)=a=z(H=, Hz, H u ) .  (2) 

The diagonal components a re  even here to the change of 
sign of any field projection, while for the off-diagonal 
components we have 

a,..(H=, H,, H, )  =-a=,(-Hz,  H,, H E )  =-a=.(H., Hu, -Hz) 
=axz (Hz,  -Hv, If*). (3) 

etc. 

We consider the influence of the effective magnetic 
field of the polarized nuclei on the Hanle effect in the 
case when the excited beam is directed along the [001] 
axis and the external magnetic field lies in the (001) 
plane. In this case we have for  the nuclear field 

H . , = n ~ z + a = , S , ,  H,,=a,S.+Q,, HN.=~.,S.. (4) 

At H, the components a,,, a,,, a,, and a,, a r e  equal to 
zero by virtue of relations (3). 

The stationary value of the average spin S of the elec- 
trons under optical orientation conditions is given by 

where po is the Bohr magneton, g i s  the g-factor of the 
electron, So is the average electron spin produced by 
the light in the absence of a magnetic field (in our case 
So is directed along the z axis, So, = So), and r is the 
characteristic time of orientation loss and is deter- 
mined by the recombination and spin relaxation. Be- 
sides the external magnetic field H, Eq. (5) takes into 
account also the nuclear field H,, which depends in 
turn on S in accordance with (4). 

From the system (4) and (5) we obtain expressions 
for S, and S, in terms of S,: 

and an equation for s,: 

In formulas (6) and (7) we have introduced the notation 

where &P=E(pgr)-' is the characteristic magnetic field 
corresponding to the half-width of the usual Hanle 
curve, h is a unit vector in the direction of the external 
field H, 

The experimentally determined degree of circular 
polarization of the luminescence is proportional to S,, 
and i t s  dependence on the magnetic field is determined 
by Eq. (7). The coefficients a,, depend on the direction 
of the external magnetic field. Generally speaking, 
these coefficients, meaning also a,  E ,  7 ,  and 6, can 
depend also on H. In weak-weak magnetic fields this 
dependence can be attributed to the local field of nuclear 
spins, and in strong fields to the H-dependence of the 
spin-lattice relaxation of the nuclei and electrons or  of 
the rate of dynamic polarization of the nuclei by the 
electrons. One can expect, however, the existence of 
a sufficiently large field interval in which this depend- 
ence is practically nonexistent. In this interval, the 
dependence of s,cn H (i.e., on w) can be obtained di- 
rectly from (7), by solving (7) with respect to w: 
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FIG. 1. Shape of Hanle curve at various values of the param- 
eters: &=6=0, a) cr=lO, y2=0.2; b) &=lo, -y2=0; C) a=l, 

= 0. The dotted curves show the usual Hanle curve cr = y 
= c = 6 = 0, o = H/%is the magnetic field measured in units of 
the half-width of the Hanle curve. 

We consider now the dependence of the shape of the 
Hanle curve s,(w) on the direction of the magnetic field 
relative to the crystallographic axes. If the field H is 
directed along the [loo] axis (h, = h, = 0), then i t  follows 
f rom the symmetry properties (2) and (3) that a,, = a,, 
=a,,=O, so tha t  in (9) we have a=E=6=y=O.  Thus, 
formula (9) yields in this case the usual Hanle curve s, 
= (1 +ma)''. The reason is that the nuclear field is di- 
rected along the average spin of the electron and there- 
fore does not come into play. 

Let now the field H be directed along the [110] axis 
(h,= hy=2-'I2). Then a,= a, and a,= a,,, so  that E 

= 6 = 0. In this case the function s,(w) is complicated 
(see Fig. 1). The most interesting circumstance is the 
possible ambiguous dependence of the degree of polari- 
zation on the magnetic field (hysteresis). At a > 1 the 
inhomogeneity exists already in a zero magnetic field,') 
when Eq. (9) leads, besides the solution s,= 1, to a 
solution s,= a"I2. Hysteresis appears also a t  suffi- 
ciently large absolute values of the negative a (see 
Fig. 2). 

In the three stationary states in the hysteresis region 
the magnitude and direction of the nuclear field a re  
substantially different. In particular, in the case a > 1 
(Fig. la)  the nuclear-field component A=H, - a,$ per- 
pendicular to the average electron spin has a positive 
projection on the direction of the external field H and 
therefore enhances the action of the latter. On the line 
3, the projection of the vector A on the direction of H 
is negative and exceeds H. 

At an arbitrary direction ,of H in the (001) plane, other 
than the symmetrical direction, the Hanle effect is de- 
scribed by the general expression (9). Since the signs 
of the coefficients E and 6 in this expression depend on 
the sign of So the shape of the Hanle curve turns out to 
b e  sensitive to  reversal of the sign of the circular 
polarization of the exciting light. From expressions (8) 
and from the symmetry properties (2) and (3) i t  follows 
that the reversal of the sign of the circular polarization 
is equivalent to a reflection of the direction of the mag- 
netic field relative to the [I101 or  [loo] axis. 

FIG. 2. Ranges of the parameters cu and y 2, corresponding 
to different shapes of the Hanle curves. Regions a and b 
correspond to Hanle curves with hysteresis (Figs. la and lb, 
respectively), and region c corresponds to curves without 
hysteresis (Fig. lc). 

2. EFFECT OF QUADRUPOLE INTERACTION ON 
THE DYNAMIC POLARIZATION OF NUCLEI BY 
ELECTRONS 

We consider a nucleus with spin $, with a quadrupole 
moment, and situated in an inhomogeneous electric 
field, and assume that the quadrupole interaction has 
a symmetry axis. We designate the unit vector along 
this axis by n. Assume, in addition, that a weak mag- 
netic field H is present, such that the Zeeman splitting 
is much less than the quadrupole splitting. In this 
case the energy levels of the nuclei and the correspon- 
ding wave functions a re  given by6 

$+TI. cos X+ p-,I* sin X, *----(PC,, sin ~+p- . /*  cos X. (10) 
Here A is the energy of the quadrupole splitting, AS1 
=($)P,H, p, is the magnetic moment of the nucleus, 9 
is the angle between the direction of the magnetic field 
H and the vector n, cp, a r e  the wave functions describ- 
ing a state with a spin projection m on the n direction, 
and tan(%)() = 2 tan$. 

Using formulas (10) for the wave functions, we can 
obtain the following expression for the average nuclear 
spin in terms of the level populations. 

where h is a unit vector along H, p is the difference be- 
tween the populations of the levels +$ and -$, and q is 
the difference between the populations of the levels + 
and -. It is seen that the vector I lies in the plane de- 
fined by the vectors n and h. 

We consider now the dynamic polarization of the nu- 
clei by oriented electrons. We assume a contact inter- 
action of the nuclear and electron spins. Then, calcu- 
lating in the usual manner the probabilities of the tran- 
sitions between the spin levels of the nucleus, we obtain 

W(+; F)=-- (8-3 sinz2~*16(Sn)cos 2~*8h[Sh- (Sn) (hn) 1 )  
2T,e 6 

Here TI, is the time of relaxation of the nuclear spin on 
the electrons in the absence of the quadrupole splitting. 
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Using formulas (2) and assuming the population dif- 
ferences p and q to be small, we obtain for these quan- 
tities the following system of equations: 

We have added to the right-hand sides of these equations 
terms that describe spin-lattice relaxation not due to 
the electrons (leakage). The time T, characterizes this 
relaxation. The relaxation terms that describe the 
leakage a re  expressed in the simplest form, which i s  
valid, for example for isotropic quadrupole relaxation.') 

We assume henceforth that TI, >> T, (large leakage). 
Under these conditions the stationary solutions of Eqs. 
(13) take the form 

p=SfSn, q=fh[-  (Sn) (hn) +ZSh], (14) 

where f = Tl/Tl, is the leakage factor. 

Formulas (11) and (14) yield the solution of the prob- 
lem of dynamic polarization of the nuclei when account 
is taken of the quadrupole splitting in the case of strong 
leakage. 

In a cubic crystal, the quadrupole splitting can be due 
to local symmetry violation due to impurities, defects, 
etc. In the solid solutions Al,Ga,-As ( x  -0.25), in 
which quadrupole-interaction effects were 
the gradients of the local electric fields a t  the As nuclei 
may be due to replacement of one or  several of the 
nearest gallium atoms by aluminum atoms. If only one 
of the four nearest neighbors is replaced by aluminum, 
then the quadrupole-interaction axis is one of the prin- 
cipal diagonals of the unit cube. Bearing this situation 
in mind, we consider a model with four types of nuclei, 
for each of which the quadrupole-interaction is one of 
the four threefold axes (111). Then the average spin of 
these nuclei is 

where n, is a unit vector along the i-th threefold axis, 
while pi and q, a re  expressed in terms of n, by formu- 
las (14). 

The expression for the nuclear field (which is pro- 
portional to the vector I) can be written in the form (I), 
with 

U,=~/,,H$' f (124- 3d=i+8Ah2--10b,)), 

a,,='l, ,~:" f (3dZ,+8~hhhY-4b,,-6b,,), (16) 

where 
' 

A= 2 hll 
I-, 

is a cubic invariant that depends on the direction of the 
magnetic field, d,, and b,, a r e  defined by the formulas 

& 

dGs= ktl (hni)zn,on,B, b,~= Chi2 (hn,) niahs. (17') 
I - . ,  I = ,  

and Hi1) is the nuclear field corresponding to the case 

when all  the considered nuclei a re  fully polarized in 
one direction. The expressions for the other compo- 
nents of the tensor a,, are  similar to (16). 

If the external magnetic field lies in the (001) plane, 
then 

&-'lzrA(3+4h,'h,2), &=8/z,A(h=h), bab='/0Ah.zh~(5-2h~'), 

and the invariant A is expressed in terms of the angle q 
between the direction h and the x axis a s  follows: 

The expressions for the parameters that determine in 
accord with formulas (9) the shape of the Hanle curve 
a re  

a=EiZA26(7-sin2 2q) sin' 2q, yZ=&.'A2 (1+3 sin2 2cp) sin' 2cp, (19)  
e=6='/rEiA sin 4cp, &,=if{' f,S,/54%. (20) 

We note that these expressions were obtained under 
the assumption that the field H, is due entirely to nuclei 
with large quadrupole splitting. It can be assumed that 
in a real situation there exist also a large number of 
nuclei for which the quadrupole splitting is small. (In 
the case of solid solutions these a r e  the nuclei As, 
which a r e  not nearest neighbors of Al, a s  well a s  nuclei 
of Ga and of A1 itself.) The contribution from these nu- 
clei to the field H, is described by the usual expression 
H; = H$)f,(S. h)h. Allowance for this field merely in- 
creases the parameter cr by the amount 

where 

The distortion of the shape of the Hanle curve by the 
nuclear field is connected in this model exclusively with 
the difference of the populations of the levels i(q, *O), 
since the nuclear field connected with the difference of 
the populations on the levels 4, and is always directed 
along S. In fact, according to (14) the sum Zp,n, -S 
makes no contribution to the coefficients (19). 

3. ANTICROSSING OF SPIN LEVELS OF NUCLEI 
The results of the preceding section a r e  generally 

speaking not valid when the magnetic field is directed 
along one of the [I101 axes. In fact, if the magnetic 
field is perpendicular to the quadrupole-interaction axis 
(3 =r/2), then the levels 4 coincide in the zeroth ap- 
proximation in the parameter g,,H/A [see formula (lo)]. 
However, when the weak interaction between these 
levels is taken into account, these levels do not coincide 
and the so-called level anticrossing takes place (Fig. 
3). The dependence of the level splitting on the angle 9 
is given by the usual expression 

6E= ( (6Eo)  '+4 1 V 1 2 ) ' " ,  6ES=3frP eos 6 ,  (23) 

where V i s  the matrix element of the interaction with 
the magnetic field between the states i$. This element 
is due to an admixture of ii states to the iQ states. 
This admixture can be due to the weak inhomogeneity of 
the quadrupole interaction o r  to the magnetic field itself 
in the higher-order approximations in the parameter 
poH/A.  Inthe former case V c c  Hand inthe latter V a  H3. 
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61 vanishes a t  9 = n/2. 

FIG. 3. Dependence of level energy on 9 in the anticrossing 
region. At sufficiently large angles 9 the wave functions of 
the stationary states are, with high accuracy, functions of 
'P+3/2 and 'PJIz, and are their superpositions in the anti- 
crossing region. 

In the region where 6E0 - V, a mixing of the states +; 
and -; takes place, and a t  6E0= 0 (8 =n/2) the correct 
wave functions a r e  the half-sum and half-difference of 
the states ii. In these stationary states the angular 
momentum of the nucleus is zero, s o  that optical orien- 
tation of the nuclei is impossible in these states. Thus, 
in a narrow region of angles near 8 =n/2 the degree of 
orientation of the nucleus acquires a singularity. If 
the magnetic field lies in the (001) plane, such singular- 
ities can appear whenever the direction of H is close to 
one of the twofold axes [110]. This excludes a con- 
tribution to the nuclear field from the states *; for nu- 
clei whose quadrupole interaction axes coincide with 
the axes [ l i l ]  and [ i l l ] .  At the same time the states 
*$ of the remaining nuclei with quadrupole axes [ I l l ]  
and [ l l r ]  will produce a nuclear field that influences 
the electron spin. We recall that in the absence of 
level crossing the combined field of the nuclei in the *$ 
is directed along the average spin of the electrons and 
therefore does not influence the Hanle effect. 

Let us examine in greater detail the dynamic polari- 
zation of the nucleus under conditions of level anti- 
crossing. The wave functions $, and of the station- 
ary states 4 a r e  

$I-(P% cos a+q-s sin a, 

*:=-(PI sin ~+cp-~, cos a, 

cos 2a= 
8Eo 

((6Eo)'+41VI""' ' 

The contribution 61 of these states to the angular mo- 
mentum is expressed in the following manner in terms 
of their population difference p: 

6I='lmp COB 2a, (25) 
where n, a s  before, is a unit vector along the quadru- 
pole-interaction axis. 

A conclusion similar to that made in Sec. 3 leads to 
the expression 5 = 3fS .n cos2a. F a r  from the anti- 
crossing region, a t  6E0 >>/ VI , this formula goes over 
into the first  formula of (14). We than have for 61 

From (26) and from expression (23) for 6E0 we see that 

The level anticrossing causes the coefficients ai, 
given by (16) to acquire additional resonant terms that 
exist a t  those external magnetic field directions a t  
which the field is perpendicular to one o r  two quadru- 
pole interaction axes: 

where b = 3fiC2/(2 I VI ). 

If the external field is close in direction to  [110], then 
we can put (p =n/4 in expressions (16)-(22), which vary 
slowly with change of angle (p. When the increment (27) 
is taken into account, we obtain the following expres- 
sions for the parameters a and y ,  which determine the 
shape of the Hanle curve near the direction (p =n/4: 

a=3g,(1+9R) [27g,(l+R)+E2], yz=g,2A%4[+(9R)Z]. (28) 
Here R = [1+ 2b2((p - 1~/4)~/3]-'. The parameters c and 
6 a re  equal to zero a t  the assumed accuracy. At b >> 1 
the coefficients a and y increase sharply in a small 
region of the angles I cp - n/4 1 - l/b. In this region, 
the parameter a increases by one order of magnitude. 
(We recall the hysteresis of the Hanle curve a t  a > 1.) 

The solid curve of Fig. l a  was constructed with the 
aid of formulas (9) and (28) a t  parameter values ($It1 
=0.025 and 5, = 20 for a field directed along [I101 (in 
this case a = 10 and y2=0.2). These parameter values 
correspond, for example, to the conditions %= 50 Oe, 
S0=0.05, Ha,f=9OO Oe, and Hg,f,=20000 Oe. If the 
level anticrossing is not taken into account, the same 
values of the parameters 5, and 5, correspond to a = 1 
and y2 50. The corresponding curve is shown in Fig. 
lc .  

E ~ p e r i m e n t s l * ~  have revealed hysteresis phenomena in 
a narrow region near cp =n/4. It can be assumed that 
these phenomena a re  connected with the considered 
anticrossing of the levels *$. We note that the anti- 
crossing effect is due to the same interaction V a s  the 
experimentally observed213 nuclear magnetic resonance 
on the transitions between the .levels i$. In the absence 
of this interaction, the transitions between the levels +$ 
and -$ are  forbidden. Anticrossing is in fact "reso- 
nance a t  zero frequency." 

4. EFFECT OF ELECTRON FIELD. DISCUSSION 
OF RESULTS 

It is knownL4 l1 that under optical orientation the polariza- 
tion of nuclei in semiconductors is greatly influenced by 
the effective fields produced by the electrons on the 
nuclei of the lattice (the electron field). Novikov and 
~ l e l s h e r  have shown that allowance for the electron 
field leads to good agreement between the theoretical 
shape of the Hanle curve and the experimental data" 
(see also Ref. 12). Since they did not take into account 
the influence of quadrupole effects, their calculation 
pertains in fact to a magnetic field directed along the 
(111) axis. (It was shown above that a t  this field direc- 
tion no quadrupole effects appear.) 

The electron field can be taken into account in our 
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FIG. 4. Hanle-curve shape calculated with allowance for the 
level anticrossing and for the electric field. Solid curve- 
external magnetic field directed along the [1101 axis, dotted- 
along the [I001 axis. The stable solutions correspond to 
branches 1 and 2. 

model by replacing H with H - H,S, where H J2  is the 
electron field a t  100% electron orientation. Even a 
weak electron field (compared with the external field) 
leads to substantial deformation of the Hanle curve. 
This is due to the following circumstance. In the ab- 
sence of the electron field, a s  seen from formulas (4), 
the S, component does not lead to the appearance of a 
nuclear field perpendicular to the pump direction. In 
the presence of an electron field this is not the case, 
and a self-consistent situation is possible wherein the 
electron field is directed practically along the z axis, 
and the nuclear-field component located in the xy plane 
almost cancels out the action of the external field on the 
electron spin. This component is of the order of a,S, - HJh,h,S,. Recognizing that h, z H d H  and h, = HS0/H 
we find that this  cancellation is possible at  H 
- (H&H,S,)"~, i.e., when the external magnetic field 
greatly exceeds the electron field. A similar result  
was obtained by Novikov and ~1e l she r . l '  

Figure 4 shows the Hanle curve for two directions of 
the external magnetic field (along the axes [loo] and 
[110]), calculated with account taken of the electron 
field and of the level anticrossing. We used in the 
calculation Eq. (5) and the expression obtained above 
for the nuclear field, with H replaced by H - H S .  The 
parameters el, e2, and So were assumed to be the same 
a s  for the curves of Fig. 1, and H,S,=l Oe. A com- 
parison of the curves calculated for H directed along 
the [I101 axis with allowance for  the electron.field 
(solid curve in Fig. 4) and without this field (Fig. 1) 
shows that the electron field has practically no effect 
on the shape of the Hanle curve in the region w 2 1. 
The curves of Fig. 4 a r e  close in form to the curves 
obtained in the experiments of Ref. 4, if i t  is assumed 
that the branches 1 and 2 a r e  realized in the experiment 
in the hysteresis region. An analysis of the stability of 
the solutions existing in this region, carried out with 
the aid of the time-dependent equations (13), confirms 
this assumption (the branch 3 turns out to be unstable). 
We recall that the results of the present paper pertain 
to the region HL <<H and therefore do not describe the 
experimentally observed abrupt change of the polariza- 
tion a t  H < H,. 

Figure 5 shows the Hanle curves for two magnetic- 

FIG. 5. Shape of Hanle curve in the vicinity of the [1101 
axis. The solid curve corresponds to the angle (P =40° and 
the dotted one to cp = 50". 

field directions making angles *5" with the [I101 direc- 
tion (cp = 40" and 50"). In the calculation we used the 
value b = 30, and the remaining parameters were the 
same a s  for Fig. 4. I t  is seen that the angular depen- 
dence of the polarization is asymmetrical relative to 
the [110] direction. Reversal  of the sign of So reflects 
the angular diagram relative to the [110] axis and rela- 
tive to the [loo] axis. A similar result  was obtained in 
experiment and was interpreted on the basis of the 
phenomenological analysis of Merkulov and F'lGsher.~ 
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discussions. 

"AS noted above, in weak fields of the order of the local 
field HL of the nuclear spins the coefficients a and y depend 
on H. A zero magnetic field must therefore be taken here to 
mean a field satisfying the condition Hz <<H<<& 

2'It is known that in m-V compounds at liquid-nitrogen tem- 
peratures and higher the nuclear spin-lattice relaxation is 
due to quadrupole interaction with phonon~.~ 

Iv. A. Novikov and V. G. Fle?sher, Pis'ma Zh. Eksp. Teor. 
Fiz. 26, 158 (1977) [JETP Lett. 26, 148 (1977)l. 

2 ~ .  P. Zakharchenya, V. A. Novikov, and V. G. Flehher, 
Pis'ma Zh. Eksp. Teor. Fiz. 26, 316 (1977) [JETP Lett. 
26, 203 (1977)l. 

3 ~ .  L. Berkovits andV. I. Safarov, Pis'ma Zh. Eksp. Teor. 
Fiz. 26, 377 (1977) [JETP Lyett. 26, 256 (1977)l. 

4 ~ .  A. Novikov and V. G. Fleisher, Zh. Eksp. Teor. Fiz. 
74, 1026 (1978) [Sov. Phys. JyETP 47, 539 (197811. 

5 ~ .  A. Merkulov and V. G. Fleisher, Pis'ma Zh. Eksp. Teor. 
Fiz. 27, 181 (1978) [JETP Lett. 27, 169 (1978)l. 

6 ~ .  I. Ekimov and V. I. Safarov, Pis'ma Zh. Eksp. Teor. 
Fiz. 25, 257, 453 (1972) [Sic! 1. 

7 ~ .  I. D'yakonov, V. I. Perel', V. L. Berkovits, and V. I. 
Safarov, Zh. Eksp. Teor. Fiz. 67, 1912 (1974) [SOV. Phys. 
JETP 40, 950 (197511. 

8 ~ .  Abragam, Principles of Nuclear Magnetism, Oxford, 
1961. 

9 ~ .  Mieher, Phys. Rev. 125, t53, 7 (1962). 
'@V. A. Novikov and V. G. Fleisher, Pis'ma Zh. Eksp. Fiz. 
1, 935 (1975) [Sov. Tech. Phys. Lett. 1, 404 (1975)l. 

"v. A. Novikav and V. G. Fleysher, Zh. Eksp. Teor. Fiz. 
71, 778 (1976) [Sov. Phys. JETP 44, 410 (1976)l. 

1 2 ~ .  Paget, G. Lamppel, B. Sapoval, and B. I. Safarov, Phys. 
Rev. B 15, 5780 (1977). 

Translated by J. G. Adashko 

165 Sov. Phys. JETP 49(1), January 1979 D'yakonov et a/. 165 




