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The influence of magnetodipole interaction on the shape and width of a resonance line, and also on the 
average magnetization curve of a supeqmamagnet (a system of minute singledomain ferromagnetic 
particles) is considered. Using a classical analog of the van Vleck quantum method of moments, 
expressions are obtained for the b t  four moments of the absorption line of a superparamagnet in which 
the particles are randomly arranged; these expressions are valid in a wide temperature interval. It is 
established that in a region where the ferromagnetic-particle concentration is very low, c -lo-', the lines 
have a quasi-lomtz shape and with increasing concentration (at c-0.1), a Gaussian shape is 
approached; for both shapes, expressions are obtained for the width of the resonance line as a function of 
the temperature, volume, and concentration of the particles. The results for the magnetodipole linewidth 
are compared with previously derived expressions for the linewidth due to the internal relaxation of the 
magnetization in the particle. It is shown that the average magnetization curve of a superparamagnet, 
calculated with allowance for the magnetodipole interaction, lies below the Langevin curve in the entire 
temperature interval. 

PACS numbers: 75.20. - g, 75.60.Jp, 75.60.Ej 

INTRODUCTION mation for the density matrix is always sufficient, 
since the magnetic energy of the nuclei and of the elec- 

The width of the magnetic-resonance line in an ideal trons in an external magnetic field is much lower than 
superparamagnet, i.e., in an ensemble of noninteract- the thermal energy. On the other hand, a distinguish- 
ing ferromagnetic single-domain particles, was inves- ing feature of ferromagnetic particles is that they have 
tigated by t ark her and Shliomisl (resonance in the an- a considerable magnetic moment, and the Zeeman en- 
isotropy field in the absence of an external stationary ergy can be comparable with the thermal energy. 
magnetic field) a s  well a s  in Refs. 2 and 3 (resonance 
in an external stationary magnetic field). In such a 
system, the finite magnetic-resonance line width is due 
to internal mechanisms in each paramagnetic particle 
(spin-lattice interaction, etc.), which can be described 
phenomenologically a t  T = O  by the damping term in the 
Landau-Lifshitz e q ~ a t i o n . ~  With increasing intensity of 
the thermal fluctuations and with decreasing particle 
dimensions, broadening of the absorption lines takes 
place; the line shape does not change in this case and 
is always Lorentzian. 

The purpose of the present work is to investigate the 
influence of the magnetodipole interaction between par- 
ticles on the shape and width of the radio-frequency 
field absorption line; this interaction increases with 
increasing concentration of the ferromagnetic particles 
in the nonmagnetic matrix, and neglect of this interac- 
tion is no longer valid a t  certain concentrations. 

A similar problem for quantum paramagnetic systems 
was solved by van V l e ~ k . ~  In view of the difficulties 
that arise when attempts a re  made to obtain an analytic 
expression for the absorption line, van Vleck proposed 

To describe this situation, we develop in this paper a 
classical analog of van Vleck's quantum method of mo- 
ments, valid in a wide range of temperatures. In the 
first  section we write down an equation for the proba- 
bility function W of the orientation of the magnetic mo- 
ments. Since the magnetic moments of the ferromag- 
netic particles a re  large, they can regarded a s  classi- 
cal spins described by the Liouville equation. We as-  
sume that the superparamagnet is in a sufficiently 
strong magnetic field and therefore the magnetodipole 
interaction between the ferromagnetic particles is weak 
compared with the Zeeman energy. In this approxima- 
tion, we obtain general expressions for the f i rs t  four 
moments of the absorption line a s  functions of the 
temperature, particle dimension, and particle volume 
concentration. We obtain also the average value of the 
projection of the magnetic moment of the superpara- 
magnetic system on the direction of the stationary 
magnetic field. In the second section we assess  these 
expressions numerically and analytically for different 
limiting cases. We consider also the joint action of the 
internal and magnetodipole relaxations. 

a method that consists of calculating the f i rs t  few mo- 
ments of the absorption line and reconstructing approx- 1. METHOD OF MOMENTS FOR A 
imately, from these moments, the shape and width of S U P ~ ~ p ~ ~ A M A ~ N ~ ~  
the resonance line; this procedure was subsequently 
named the "van Vleck method of moments." The main Assume a system of N ferromagnetic particles in a 
idea of this method will be used in the present paper. single-domain state. The dynamic behavior of the 
However, in the study of nuclear and electron reso- magnetization of each ferromagnetic particle is then 
nances in paramagnets, the high-temperature approxi- described by the Landau-Lifshitz e q ~ a t i o n , ~  which in 
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a spherical coordinate system can be easily reduced to 
the Hamiltonian forms: 

Here x i s  the Hamiltonian of the system expressed in 
terms of the generalized coordinates q ,  =Ai C O S ~ ,  and 
momenta Pi =cpi/yi;Ai i s  the magnetic moment of the 
i-th ferromagnetic particles. 0, and cp, a r e  the polar 
and azimuthal angles of the magnetic moment, and y ,  
is the gyromagnetic ratio. 

The properties of a system of N interacting ferro- 
magnetic particles a re  described by the kinetic Liou- 
ville equation 

aw " aaaw --{a~- at (-&-K-z$). I-, 

Using the expression for the Poisson brackets (1.2), 
we easily obtain in the classical case permutation rela- 
tions for the projections of the magnetic moment 
d ; ( a  = x ,  y, z) ,  which a r e  the analog of the quantum 
commutation relations: 

{dai, doJ} =-yid;61j~~op (1.3) 

Here 6 , ,  is the Kronecker symbol, C U B ,  is a unit anti- 
symmetrical tensor. 

Below, however, we shall need also more general 
permutation relations 

which a re  obtained by expanding the arbitrary function 
f(Af,) in powers of the argument Ai using the proper- 
ties of the Poisson brackets. 

The Liouvilleequation (1.2) is satisfied by the equi- 
librium Gibbs function 

W,=Z-' exp(-i%/kT), (1.5) 

where 

We consider now an ensemble of N identical ferro- 
magnetic particles of spherical form with volume V, 
magnetization M ,  and magnetic isotropy. Let the fer- 
romagnetic particles with magnetic moment A = M V  be 
situated in a solid nonmagnetic medium, in which they 
a re  randomly distributed; a stationary magnetic field 
H, is applied along the z axis. The Hamiltonian of the 
system, with allowance for the magnetodipole interac- 
tion %, is of the form 

We assume that the energy of the interaction of the 
magnetic moments with the external stationary field H ,  
greatly exceeds the energy of the dipole-dipole interac- 
tion, i.e., Rd is a small perturbation. 

Calculating the average value of the function 

over the equilibrium Gibbs function (1.5) and averaging 
the obtained expression over the particles that a re  
randomly distributed in space, we have 

where c=NV/V, is the volume concentration of the fer- 
romagnetic particles; V, is the volume of the super- 
paramagnetic system, that includes the particles in the 
matrix. The symbol ( . . . ) will denote averaging over 
the equilibrium function with total Hamiltonian + %, 
and the symbol ( . . .), denotes averaging over the equi- 
librium function with Zeeman Hamiltonian without 
allowance for the dipole-dipole interaction; the last 
mean values a r e  defined by the expressions 

where L(o) is the Langevin function with argument a 
=H$/IV/kT. 

At high temperatures, the deviation of the average 
magnetization from the Langevin function is 

and a t  low temperatures 

A plot of the function (1.7) in the e i~ t i re  temperature 
region is shown in Fig. 1 by the dashed curve for the 
value M&/H, = 0.1. The solid line in the same figure 
shows the Langevin function L(a). Because of the dis- 
order caused by the dipole-dipole interaction, the 
dashed curve lies lower than the Langevin curve in the 
entire temperature region. 

We consider now the magnetic resonance in such a 
system; let a weak radio frequency field hcoswt be 
applied along the x axis. Then the Hamilton of the in- 
teraction with the external field is 

I 

1, = - d& cos at, d =  = d2. (1.11) 
1-1 

FIG. 1. Temperature dependence of the average magnetization 
of a superparamagnetic system (mJ. Solid-without allowance 
for the magetodipole interaction (Langevin function), dashed- 
with allowance for the magetodipole interaction (expression 
(1.7)). 
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The imaginary part of the linear susceptibility is 1 bn+'G,( t )  
(Q'.+')- (- i)"- 

given by the Kubo formula7 G,(O) dPU+' I ,,, * Q = ~ - @ @ *  (l.22a) 
II 

%"(a)- J G ( ~ )  a h  otdt,  (1.12) and for the even moments 
0 1 crSG,(t) 

(Qa")-= (- i)*-- 
where the relaxation function G(t) is given by G2(0)  dP I , ,  ' (1.22b) 

G ( t )  = ( { a r p [ t ( l ) t I A = ,  A = } ) .  (1.13) Substituting (1.21) in (1.22a) and (1.22b) we obtain ex- 

Here im is the Liouville operator pressions for the f i rs t  and second moments 

<P)= ( { { a / , A = } , d = } ) _ ~ < ~ , { * i , ~ s ) ) ,  " a s  a 
L(s)= (----- (1.14) ( { A , ,  A = }  > kT < A z )  

<Pa)- - ( { { a ~ ' , { ~ d t 9 d v } } ~ d = } )  = s ( { * d J * A u } ' )  . (1.23b) 
( I d , ,  d = } )  kT (4rJ  Just a s  in Ref. 5, we assume that the energy of the 

dipole-dipole interaction is  small compared with the 
Zeeman energy, i.e., 

H,wMVl?, (1.15) 

where P i s  the average distance between the ferromag- 
netic particles. Satisfaction of this condition makes it 
passible5 to simplify the Hamiltonian (1.6) and retain in 
&", only the principal part &Pi which makes the main 
contribution to the line broadening in the vicinity of the 
resonant frequency w, =yH,. To separate &4, in our 
case i t  is necessary to satisfy the condition {&",,Z'$= 0, 
which corresponds to averaging over the fast  variable 
in the Landau-Lifshitz equations (1.1). As a result we 
have, instead of the initial Hamiltonian &", of the 
dipole-dipole interaction, just a s  in Ref. 5, 

where 

and 8,, is the polar angle of the vector r,,. Using the 
permutation relations (1.3), we easily see that {&",,*J 
= 0. 

According to (1.14), the expression for the Liouville 
operator of the Zeeman Hamiltonian is 

Expanding exp[z(Z',)t] in a series, differentiating term 
by term with respect to arp,, and combining the obtained 
series into functions of cosw,t and sinw,t, we obtain 

exp[t ( S o )  t ] A = d z  ws oot+Au sin ant. (1.19) 

Substituting in (1.13) &"= xo + 8; and using (1.19), 
we obtain from (1.12) the final expression for the sus- 
ceptibility 

II 

xn(m) = j (Gi(t)cos md + GI @)sin aot)sin otdt.  (1.20) 
a 

The functions G,(t) and G,(t) a re  the abbreviated classi- 
cal relaxation functions 

The moments of the susceptibility curve ~ " ( w ,  + S Z )  
near the resonant frequency w, a re  determined by the 
following expressionss: for the odd moments 

We have used here the permutation properties under the 
mean-value symbol, i.e., 

A.  {B, c ) d r  -- J' {A ,  B) . c a r ,  
r r 

where A, B, and C a r e  arbitrary dynamic variables, 
a s  well a s  the expressions 

o 
{ A , ,  WJ = $4ruw0,  { A u ,  d , }  = y4rz, {We, %.if) 0, 

which a re  obtained from the permutation relations for 
the Poisson brackets (1.3) and (1.4); the last expression 
follows also from the condition that the Poisson brack- 
ets of Z', and &"A vanish. 

The most substantial difference between the expres- 
sion for the second moment (1.23) (as well a s  the ex- 
pression for  the fourth moment, which will be obtained 
later on) from the corresponding van Vleck expression5 
is that now we carry out classical averaging over the 
equilibrium function W,(t) a t  an arbitrary temperature 
T, instead of the quantum averaging in the high-tem- 
perature limit. As a result of the smallness of the en- 
ergy of the dipole-dipole interaction it suffices here, 
just a s  in the quantum case, to average over the equi- 
librium function W,, which contains only the Hamilton- 
ian &", of the Zeeman energy. Calculating the Poisson 
brackets 

and substituting them in expression (1.23a) and (1.23b) 
we obtain after averaging the Gibbs function W, 

(Q)= - ~MVLN-' b,, (1.25a) 
J+k 

where j, k,p# means that j, k, p a r e  not equal to each 
other, and the mean values ( . . .), are  defined by for- 
mulas (1.8). In the derivation of (1.25), account was 
taken of the fact that the ferromagnetic particles a re  
identical and therefore the corresponding average pro- 
jections of the moments with different indices a r e  equal 
to one another and can be taken outside the summation 
sign: 
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We have used also the equation 
(m,')Q-(i-<m,2)o)/2=<mn~O/u. (1.27) 

Similarly, for the third and fourth moment we obtain 
the expressions 

Substituting (1.24) and using the permutation relations 
(1.3), we have 

j+9  + J?J,"A.~ + . 4 ~ 1 . " " 4 ~ ~  - ~ i l , " ~ ~ ' ) .  (1.29) 

Substituting these expression in (1.28a) and (1.28b), and 
calculating the average over the equilibrium function 
W,, we obtain the general expressions for the third and 
fourth moments: 

2. SHAPE AND WIDTH OF RESONANCE ABSORPTION 
LINE 

In the limiting case of high temperatures (a = H @ V /  
kT << I), substituting in (1.25) and (1.30) the high-tem- 
perature mean values 

( m ~ 2 ) Q = < m ~ ) o = 1 / , ,  <m,'mzz)Q=i/,s, 

< m , > , = ~ m , J > , - ~ m ~ m , ) o = O ,  (2.1) 

we obtain for the second and fourth moments the ex- 
pressions 

These expressions correspond to the classical limit of 
the results of van Vleck5 on the dipole broadening of 
lines in crystals, provided the sbustitution M V = g k , S  
i s  made, where g is the Land6 factor, p, is the elec- 

tron o r  nuclear Bohr magneton, and S is the spin quan- 
tum number. The odd numbers in the high-tempera- 
ture approximation a r e  equal to zero. 

We turn now to the general expressions for the mo- 
ments (1.25a), (1.25b) and (1.30a), (1.30b). Let all the 
particles in the superparamagnet be distributed in ran- 
dom fashion. Then, after averaging expressions 
(1.25a), (1.25b) and (1.30a), (1.30b) over all  the possi- 
ble configurations of the ferromagnetic particles, we 
find that in the general case all the moments differ 
from zero. The expression for the f i rs t  moment i s  
the shift of the resonance line relative to the frequency 
w, =yH,, and depends both on the temperature and on 
the shape of the sample. If the superparamagnet is an 
ellipsoid of revolution about the z axis, then the tem- 
perature dependence of this shift is determined in the 
classical case by a Langevin function and is given by 
the following expression: 

(61)=6nyMcL('/,-n.), 

where n, is the demagnetizing factor along the z axis. 
This expression corresponds to the classical limit of 
the expression for the shift of the resonance line in 
paramagnetic crystals with cubic structure, obtained 
in the quantum analysis by McMillan and ~ p e c h o w s k i . ~  

With decreasing temperature, the third central mo- 
ment, ((52 - (a))?, contributes to the asymmetry of the 
resonance-line shape. As seen from (1.30a), owing to 
the presence of the term with the factor C,,,bi, , the 
shape of resonance line becomes asymmetrical with 
decreasing temperature even if the superparamagnet 
sample is spherical. 

We shall assume below that the superparamagnet is 
spherical and neglect the asymmetry of the resonance 
line, inasmuch a s  in accord with (1.20) the abbreviated 
relaxation function G,(t) for the odd moments enters in 
a term with a rapidly oscillating factor cosw,t sinwt 
and makes a smaller contribution than the second term 
in the expression for ~ " ( w ) .  After averaging (1.25b) 
and (1.30b) over all  the possible configuration of the 
ferromagnetic particles, we get 

Here 

1 xi;; = (vc-v) j bjk2h.drj2..  drrr 
k q - v  k 
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and for a Gaussian curve by 

FIG. 2. Temperature dependence of the resonance-line form 
coefficient q for two volume concetltrations c of the ferromag- 
netic particles. Curve 1-c = loe3, left-hand scale; curve 2- 
c =0.2, right-hand scale. 

We consider now the temperature dependence of the 
ratio q = (S23/(W2, which characterizes the shape of 
the resonance line. At volume concentrations c = NV/ 
V, << 1 we have approximately 

A plot of this expression for two values of c i s  shown 
in Fig. 2. It is seen that a t  very small volume concen- 
trations of the ferromagnetic particles (c - lo'=) the line 
is a quasi-Lorentz curve with q >> 3 in the entire tem- 
perature interval. 

With increasing volume concentration, the line shape 
changes from quasi-Lorentzian at high temperatures 
and small particle dimensions to Gaussian a t  low tem- 
peratures and large particle dimensions. At c -0.1, 
the line shape is close to Gaussian in the entire tem- 
perature interval, since q is close to 3 (0 = 3 for a 
Gaussian). 

The resonance line width AS2 normalized at T = O  is 
given for a quasi-Lorentzian curve by8 

0 nz 04 no 08 IJ 
hT/H,MV 

FIG. 3. Temperature dependence of the normalized width of 
the resonance line for a quasi-lorentzian line (curve 1) and a 
Gaussian (curve 2) line. 

Substituting in these formulas the expressions (2.3) for 
the moments, we obtain for the quasi-Lorentzian curve 

where 

and for the Gaussian curve 

The temperature dependences of curves (2.8) and (2.9) 
a re  shown in Fig. 3. It is seen that with increasing 
temperature the line width due to the magneto-dipole 
interaction decreases. The decrease of the influence 
of the magneto-dipole interaction is due to averaging 
of the latter when the magnetization vector executes 
random temperature oscillations; this decrease i s  
faster the smaller the concentration of the ferromag- 
netic particles. 

For the line width due to the internal relaxation, the 
opposite relation was namely, an increase 
of the line width with increasing temperature like 

Ao=a (L-'-a-'), (2.10) 

where a=25w, is the line width at T = O  and 5 is the re- 
laxation parameter in the Landau-Lifshitz equation. 

It is difficult to solve the problem with allowance for 
both the internal relaxation and the magnetodipole in- 
teraction, since the method of moments is not applica- 
ble to a pure Lorentzian, to which the internal relaxa- 
tion leads. We confine ourselves therefore to a com- 
parison of the results (2.8) and (2.10), which were in- 
dependently obtained. 

The easiest to investigate is the case of low tempera- 
tures, when approximate expressions can be written 
for (2.8) and (2.10) 

Assuming that the total line width i s  approximately 
described by the expression AS2 + Aw, we see that it 
has a minimum a t  a temperature To given by the rela- 

FIG. 4. Temperature dependence of the normalized summary 
width of the resonance line (solid curve) for c = lom3; dash- 
dot-asymptote of solid curve. 
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tion 

a/b~ao=HoMVlkT. .  (2.12) 

In order for expressions (2.11), from which this equa- 
tion was obtained, to be valid it is necessary to satisfy 
the condition a, >> 1. The minimum lies therefore in 
the region of low temperatures (or large values of V) 
only i f  b <<a. At other values of the parameters, a 
minimum also exists and can be obtained graphically. 
Thus, Fig. 4 shows a plot of the normalized line width 
(A52 + Aw)/(b + a) a t  b = 2a. It is seen that the minimum 
is located in this case a t  uo = 2. The temperature T o  
corresponding to the minimum line width separates the 
region where the magnetodipole relaxation mechanism 
predominates (T < To) from the region of predominance 
of the internal relaxation mechanisms (T > To). 
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The optical parameters, orientational deformation angles, and velocities of electroconvective flow in 
nematic liquid crystals were determined. Finite values of the velocities, independent of the electric field 
frequency, were obtained at the instability threshold. 

PACS numbers: 61.30.Gd. 66.10.Ed 

INTRODUCTION 

Electroconvective flow in nematic liquid crystals is 
due to the motion of an electric space charge under the 
action of an external static o r  alternating field. This 
flow is associated with an electrohydrodynamic insta- 
bility described in several papers.l*' The experimental 
situation is usually as follows. 

A nematic crystal is in a flat cell between glass 
plates coated with transparent and electrically conduct- 
ing films. The long axes of the nematic molecules a re  
oriented parallel to the glass plates along the rubbing 
axis x .  When a threshold voltage V,, is reached in the 
conduction regime,= a system of parallel vortex tubes, 
oriented along the y axis, i.e., a t  right-angles to the 
rubbing direction, appears in the nematic. The exis- 
tence of a velocity gradient results in a hydrodynamic 
displacement and corresponding deformation of the or- 
ientations of the long axes of the molecules. The max- 
imum angle of inclination Ho of the molecules is ob- 
served a t  the center of a vortex tube; the molecules re- 
main parallel to the cell walls in the regions of ascend- 
ing and descending fluxes (along the line of sight). Re- 
orientation of the long axes of the molecules results in 
a periodic variation of the refractive index along the x 
axis. This produces a refractive-index gradient which 

can focus light whose electric vector is parallel to the 
x axis? The focal lines observed in a polarizing micro- 
scope a re  known a s  the Williams domains.' 

EXPERIMENTAL RESULTS 

We determined experimentally the parameters of vor- 
tex tubes (domains). We observed experimentallys a 
difference between the focal lengths above the regions 
of ascending and descending fluxes (Fig. la). The 
asymmetry of the optical pattern was due to inequiva- 
lence of the convex and concave parts of the pattern of 
orientation lines, a s  viewed relative to the light beam 
vector. A beam passing a t  an angle to the local optic 
axis (coinciding, in our case, with the orientation line) 
became bent, which was not allowed for in the purely 
gradient "quasiisotropic" model? Our measurements 
revealed a considerable difference between the upper, 
average, and lower focal lengths f ,, f ,, and f ,, a s  well 
a s  alternation of the lengths between the lower focal 
lines 1 and A-1 for  samples of n-azoxyanisole (PAA) and 
n-methoxybenzylidene-n'-butylaniline (MBBA) in a wide 
range of voltages and frequencies. Thus, the optical 
pattern made i t  possible to determine unambiguously 
the ascending and descending (relative to the vertical 
light beam) parts of the flow of the liquid, as well as 
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