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It is shown theoretically and experimentally that, by varying the beam-particle velocity distribution in a 
multiflow beam-plasma system, it is possible to control the distribution of trapped particles and hence the 
profile of the resulting wave. Two beams were injected into the plasma. One was used for the selective 
amplification of the wave (due to the post-critical value of its velocity) and the other was used to produce 
the necessary distribution function for the trapped particles and the initial perturbation. Particle trapping 
by the wave field and the subsequent evolution of the particle-wave system are examined. It is shown that 
sharp peaks or valleys in the potential are produced, depending on the relationship between the mean 
particle velocity and the initial phase velocity of the perturbation. 

PACS numbers: 52.40.Mj 

1. INTRODUCTION onance particles were described by Bernstein et a1.' 

Collisionless plasma has some remarkable proper- 
ties. It can support the propagation of nonlinear waves 
of arbitrary profile, and the waves can be amplified 
with the aid of particle beams. The ability to produce 
waves with a required profile is of considerable 
interest both in physics and technology (it will be suf- 
ficient to mention the needs of accelerator technology 
and of electronics). However, the properties of col- 
lisionless plasma have not so  f a r  been fully exploited 
for these purposes because the control of evolutionary 
processes leading to the establishment of quasistation- 
ary  nonlinear waves has not been adequately investi- 
gated.') In this paper, we show both theoretically and ex- 
perimentally that a multiflow plasma system can be 
used to produce quasistationary nonlinear waves whose 
profile can be varied within very broad limits. 

Nonlinear waves in collisionless plasma can be con- 
ventionally divided into two classes, depending on the 
nature of the interaction processes responsible for their 
appearance, namely, wave-wave and wave-particle 
processes. The former processes rely on the inter- 
action between waves through nonresonance particles, 
whereas processes of the second type rely on the inter- 
action between waves and resonance particles. The 
properties of nonlinear waves belonging to the first  of 
these two classes were first  investigated by Akhiezer 
and Lyubarski?' (see also Refs. 2 and 3). 

The wave-wave type nonlinear interaction is also 
basically responsible for solitary waves in bounded 
plasma when the initial disturbance is large enough, 
o r  in a bounded beam-plasma system when a periodic 
signal is applied to the The interaction be- 
tween waves and resonance particles leads to a change 
in its profile and its phase velocity. As far back a s  
1949, Bohm and Gross7 found the correction to the dis- 
persion relation due to trapped particles. The effect 
of the resonance-particle distribution on the disper- 
sion of waves was first  demonstrated experimentally 
by Fedorchenko et a1.' 

Nonlinear waves due to a special distribution of res- 

and have since been referred to a s  BGK waves. It has 
been showne that, by specifying a particular distribu- 
tion function for the trapped electrons and ions, it is  
possible to ensure that the stationary wave assumes the 
required profile. It has not s o  far  been possible to 
produce BGK waves of a required profile because 
evolutionary processes have not a s  yet been adequately 
investigated. 

Baka?'os'l has developed a self-consistent theory of 
slowly evolving BGK waves," which can be used as a 
basis for establishing the necessary initial homogeneous 
particle distribution function which will ensure that the 
BGK wave will have a prescribed profile. 

Two limitations were established a s  a result: (a) the 
profile of the slowly evolving wave is symmetric rela- 
tive to the extremal points when resonance particles of 
only one type a r e  present, and (b) the number of ex- 
tremal points on the wave profile remains constant 
throughout the slow evolution process. Moreover, the 
wave profile is  more sensitive. to changes in the dis- 
tribution of trapped particles for small wave ampli- 
tudes, so  that the initial stage of the evolution of the 
wave is more favorable for changes in its shape. 

In beam-plasma systems in which beam instability 
develops, the initial stage cannot be described within 
the framework of the theory of slowly evolving waves, 
but the results of this theory a r e  still useful for the 
qualitative examination of the process. There is also 
a ser ies  of numerical experiments in which the forma- 
tion of the BGK waves was investigated as a result of 
the development of beam instability (see, for example, 
the paper by Astrelin et a1.12 and the bibliography 
therein). The results of these experiments can be 
used to throw some light on the evolution of the dis- 
tribution function of the resonance particles. 

We have used the foregoing ideas a s  a basis for our 
study of the evolution of waves in a bounded plasma 
column, located in a strong magnetic field, into which 
two electron beams a r e  injected. The density of the 
first  (main) beam, n,, is comparable with the plasma 

54 Sov. Phys. JETP 49(1), January 1979 0038-5646/79/01 10054-08$02.40 O 1979 American Institute of Physics 54 



density, and the beam is  used mainly to amplify the 
waves. The density of the second (controlling) beam, 
n,, i s  much less than the plasma density, and the beam 
i s  used to control the wave profile. Apart from the 
choice of the initial distribution in the controlling beam, 
we must also specify the velocity of the main beam. 
The point is  that, usually, the dispersion properties 
of the beam-plasma system ensure the amplification of 
a broad wave spectrum. This results  in a distortion 
of the evolutionary process in which we a r e  interested 
and, to avoid it, we must produce selective amplifica- 
tion of the waves formed by the controlling beam. A 
suitable method for  doing this i s  to use  beams with 
post-critical velocity in a bounded plasma. This 
method has been investigated both the~re t ica l ly '~ ' "  
and e ~ p e r i m e n t a l l y . l ~ - ' ~  The presence of this type of 
beam ensures the amplification of only those waves 
whose amplitude exceeds a certain cri t ical  value. 
Low-amplitude noise is, therefore, not amplified by 
the post-critical beam, and does not produce additional 
interference in the system. 

Providing the above conditions a r e  satisfied, i t  i s  
possible to produce nonlinear waves whose profile can 
be  controlled within broad limits with practically no 
effect on the average plasma parameters.  

2. THEORETICAL ANALYSIS 

We shall show that a two-beam plasma system with 
slightly post-critical main beam can be  used to pro- 
duce quasi-stationary BGK waves with a controllable 
profile. 

Let us begin by considering the conditions for  the 
amplification of finite-amplitude waves in such a sys-  
tem. Consider a bounded plasma column in a strong 
magnetic field (LO,,>> w,, where w, and LO, a r e  the 
electron-cyclotron and electron-plasma frequencies) 
into which two beams a r e  injected, namely, the main 
beam and the controlling beam with densities n, =no  
and n,<<no, respectively. The dispersion of the waves 
in which we a r e  interested i s  determined both by the 
beam and by the plasma. Because of magnetization, 
the motion of the electrons i s  one-dimensional, and the 
dispersion relation for  the potential waves isi6 

where k l l  and k ,  a r e  the longitudinal and t ransverse  
components of the wave vector, respectively, u, i s  the 
velocity of the main beam, and 

Equation (1) has the following solution when o, = d*: 

From this, it is c lear  that when 

O ~ = ~ ~ ~ U , ' / O ~ ' < ~  

we have an unstable branch of the oscillations (Fig. l a )  
such that 

for kil<kcrit=[80~/u,'-kizl"3. 

FIG. 1. Dispersion curves for the beam-plasma system when 
the densities a re  equal: (a) curve 1-Re(w /wp), 1'-lm(w/wp), 
2-constantintensitywave; a2 = klv/wp)2 = 7.0. (b) Curves l a  
and lb-Re(w/wp), 2-constant intensity wave; u2 = 8 .O, Im 
(w/w,) = 0. 

When 02 2 8, the unstable branch vanishes [it is clear  
f rom (3) that kdt - 0 a s  u2- 81 and, consequently, 
finite-amplitude waves a r e  stable in the system. The 
dispersion curves corresponding to u2 = 8 a r e  shown 
in Fig. lb.  

We a r e  interested in the conditions necessary for the 
amplification of the wave when o2 3 8.   his condition 
was obtained by Baka?lo for  n, <<no and was subsequently 
confirmed experimentally.13 The  amplified wave is  an 
electron plasma wave with a dispersion relation de- 
termined by the plasma electrons, distortion by the 
beam being negligible. 

On the other hand, when nl  =no, this approximation i s  
no longer valid. The  instability of a finite-amplitude 
wave i s  then found to appear, just as in the case  of a 
weak beam, because there is a change in the velocity 
of the part icles interacting with the wave. Part icles 
with velocities lower than the cri t ical  velocity appear 
when the wave amplitude i s  large enough, and this 
leads to the development of instability. The change in 
the velocity of part icles moving in the field of the po- 
tential wave can easily be  estimated f rom the conserva- 
tion of the part icle energy if we neglect the change in 
the wave amplitude during one particle-oscillation 
period: 

? I L ( I . - L .  )'/a-eqo sin k;=M7=consr, 
ph (4) 

where 5 =x-uph t  i s  the position coordinate in the f r ame  
in which the wave with phase velocity uPh and amplitude 
cpo is a t  rest .  The  change in the beam velocity can now 
be  estimated from (4): 

Av=?e~./m (i',-r ) .  
ph (5) 

This expression describes the change in the velocity 
of transmitted particles for  which u l  -vph>>Au. In the 
case  in which we a r e  interested [see (3)], we have 
v, -uphz u1/2 and the last  inequality i s  satisfied for  
amplitudes that a r e  not very large. 

To  obtain the cri ter ion and growth r a t e  for  the in- 
stability of finite-amplitude waves, we must replace 
v, in (2) with 5 ,  =u, - aAu, i.e., the velocity of the 
beam less the reduction in the velocity of the particles 
during the interaction with the wave. The quantity cu 
is a numerical parameter  of the order of unity, which 
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represents the fact that the beam ceases to  be mono- 
chromatic as a result of the interaction with the wave. 
We may assume that (Y = 1 for the estimates to which 
we shall confine our attention here. The final result 
is, therefore, the following nonlinear dispersion rela- 
tion for finite amplitude waves: 

It follows from this equation that the wave belonging 
to branch 1 (see Fig. lb)  is  stable for an infinitely 
small amplitude, but becomes unstable as soon a s  

This inequality is  the condition for the amplification of 
a finite-amplitude wave in the beam-plasma system on 

. the assumption that the beam and plasma densities 
a r e  equal. 

Next, we consider the possible control of the wave 
profile through the use of resonance particles. Reso- 
nance particles a r e  defined a s  particles whose total 
energy Win the system in which the waves a r e  at rest  
does not exceed l.lepo. The equation describing the 
profile of a stationary wave in this system is 

The expression for the charge density p(q) includes 
contributions of both resonance and nonresonance 
particles, so  that p(p) can be written in the form 

4nep(cp) =kl12cp+4nep, ( k ,  c p ) ,  (9 ) 
where pl(k, p )  is the charge density due to the trapped 
particles. Given the wave profile p ( 0 ,  we obtain the 
following expression for pl(k, cp) from (8) and (9): 

4nep1(k,  cp) =-cp" (8 -k:,'cp(E), (10) 
which determines the distribution function f1(5, v) for 
the trapped partic1es:O 

 PI ( u )  1. (i. u ) - f I  (IV) = $ T d u - -  [ -W-u] - ' l .  
'W" (11) 

mu2 
W = - - ecp, cp,,, - min c p ( E ) ,  We-ecp,,,. 

2 

We note that the choice of the profile q(<)  is not 
entirely arbitrary because the distribution function u 
must be nonnegative and the function itself must be 
symmetric relative to the external points when trapped 
particles carrying charges of a particular sign a r e  
present.lO'" 

We a r e  interested in BGK profiles in the form of 
narrow peaks and valleys in the potential because the 
excitation of such waves is of considerable practical 
importance and has been the main target of experimen- 
tal studies. It is  not difficult to indicate the trapped- 
electron distribution necessary for such waves without 
going into a detailed analysis of (10) and (11). Since 
pl(v)> 0, an addition to the number of trapped electrons 

FIG. 2. Distribution of trapped electrons on the phase plane, 
their charge densities, and the wave profiles corresponding to 
the distributions. 

will result in a reduction in the second derivative pn(5). 
It follows that if the trapped electrons a r e  localized 
near the potential maximum, i.e., in the neighborhood 
of the bottom of the potential well for the electrons, 
the result is  the appearance of sharp potential peaks. 
Figure 2a shows the distribution of the trapped elec- 
trons (shaded region on the phase plane) and their 
charge density, together with the profile of the wave 
corresponding to this case. 

If, on the other hand, the trapped electrons a r e  local- 
ized near the minima of p(5), this will flatten the po- 
tential in the region of the maxima and will result in 
the appearance of a wave profile in the form of sharp 
potential valleys. The wave profile, the particle 
distribution, and the charge distribution in this case 
a r e  shown in Fig. 2b. 

The foregoing discussion leads to the following 
scheme for the excitation of a wave with a controllable 
profile. A priming wave with amplitude exceeding the 
critical value given by (7) is  produced in a system with 
a slightly post-critical main beam, and this Leads to 
the selective amplification of this wave in the system. 
The controlling beam, whose initial distribution func- 
tion can be varied to ensure the required trapped- 
particle distribution, is  injected in order to control 
the profile of this wave (see Fig. 2). 

It is important to note that, whilst the above analysis 
demonstrates the nature of the trapped-electron distri- 
bution that will result in the required profile of the 
quasistationary potential wave, it does not concern 
itself with the evolution of the wave o r  the distribution 
function of the resonance particles during the initial 
stage of development of the beam instability. So long 
a s  the wave amplitude is small, and the trapped parti- 
cles do not succeed in executing many oscillations in 
the wave field, the evolutionary process is not adiabatic 
during this stage, and the results of the theory of 
slowly evolving waves10*" can only be used as  an indica- 
tion of how the initial distribution function should be 
chosen for the controlling beam in order to ensure that 
the required results will be  achieved. 

The evolution of the distribution function of the 
trapped particles in the system under investigation a r e  
discussed further in Sec. 4 together with the experi- 
mental results. 
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Finally, we note that the selective amplification of 
a large-amplitude wave by a beam with initial velocity 
exceeding the cri t ical  value does not completely exclude 
the possibility that noise waves resulting from the 
interaction between the beam particles and the large- 
amplitude waves will take place. However, the char-  
acteristic t ime for  the interaction between the beam 
particles and the wave i s  inversely proportional to the 
square root of the wave amplitude, and i s  much 
smaller  than the characteristic time for  the interaction 
between the particles and the noise waves, SO that the 
coherence of the interaction between the beam particles 
and the noise waves is  violated during the initial 
stage, and the growth of the noise waves i s  unimpor- 
tant. Other waves can a lso  be  excited during the stage 
corresponding to the saturation of the large-amplitude 
wave to which the beam has transferred most of its 
energy. For example, the development of modulation 
instability involving the trapped particles may have 
this effect, but this process is  slow and i s  not ex- 
perimentally well defined (see Sec. 3 and Ref. 17). 

3. EXPERIMENTS 

The experiments were  performed with a two-beam 
system in which the density of the main beam and of 
the plasma in the strong magnetic field were  equal 
(w,>>w,,). The frequency of the waves was much 
smaller  than the electron plasma frequency of the 
system. The velocity u ,  of the main electron beam 
was chosen to be close to the cri t ical  velocity vCri, 
for which the beam-plasma system was stable. The 
current  in the second, controlling, electron beam was 
much smaller  than the current  in the main beam. 

The system is  illustrated schematically in Fig. 3. 
Hollow electron beams (diameters 1 and 0.25 cm, r e -  
spectively) a r e  allowed to pass through a metal tube, 
9 cm in diameter, placed in a uniform magnetic field 
of 800 Oe. The electrons a r e  injected by the guns 2 
and 3. The electron emitter  is  a tungsten wire, 0.05 
cm thick. The energy of the external (main) beam i s  
in the range 200-300 V, which corresponds to the ve- 
locities in the range 0.85 X lo9 - 1.04 X lo9 cm/sec. 
The current  in the main beam i s  held a t  10 mA. The 
mean energy of the controlling beam varies from 40 to 
300 V, with the current  held a t  not more  than 10% of 
the current  in the main beam. The plasma i s  produced 
by ionization of the residual gas by the electron beam 
a t  a working pressure  of 2 x 10-"orr in the chamber. 

When the velocity of the main beam is  equal to o r  
greater  than 8.5 X lo8 cm/sec, the system is  stable 
against natural electron-plasma oscillations, but, a s  
the beam velocity i s  reduced, the beam-plasma insta- 
bility is  found to develop in the system. It follows 
that v,it = 8.5 X 10' cm/sec under the above experi- 
mental conditions. 

The velocity of the perturbation in the subcritical 
s tate is  equal to half the velocity of the main beam, 
which indicates that the beam and plasma densities 
a r e  equal [see (3)]. Independent determination of the 
shift of the resonance frequency of the hollow cavity 
resonator due to the presence of the beam and plasma 

FIG. 3. Schematic illustration of the experimental system: 
1-solenoid; 2 ,  3-electron guns; 4-feeding electrode; 5- 
bunching channel; 6-mobile probe; 7-collector of the electro- 
static analyzer; 8-collector. 

was performed by a method analogous to that used by 
Fedorchenko et a1.18 and confirmed that the two den- 
si t ies  were,  in fact, equal. Once we knew the pa- 
rameters  of the beam and i ts  geometry, we could easily 
est imate that, in this case,  n ,  =n,=5 X lo8 ~ m ' ~ .  The 
geometry of the electron beam was investigated along 
the length of the system with the aid of a mobile 
fluorescing screen.  It was found that the c ros s  section 
of the electron beam in the interaction region in the 
above magnetic field corresponded to the s i ze  of the 
cathode and that, since the Larmor  radius of the plasma 
electrons was smal l  (-0.01 cm), the regions occupied 
by the plasma electrons and by the main beam 
coincided. 

The initial perturbation in the system is  produced in 
one of two ways, namely, by bunching the controlling 
electron beam o r  by supplying a sinusoidal voltage to 
the priming electrode 4 which was in the form of a 
tungsten grid with 95% transmission and 3 cm diam- 
eter .  Beam bunching was produced by modulating the 
accelerating potential on the electron gun 3, which was 
operated under saturation conditions. The modulation 
was established by applying the output of a "10-MHz 
oscillator to a t ransformer connected to the gun 
cathode. The electron bunching occurs in the channel 
5 (channel length 50 cm). The shape and velocity of 
the oscillations were  investigated with the aid of a 
mobile probe 6 in the form of an antenna made from a 
tungsten wire (0.02 cm in diameter) loaded with a 
resistance equal to the wave impedance of the cable. 
The probe was capacitively coupled to thv  o:;cillations 

FIG. 4. Oscillations in the circuit of the mobile probe as func- 
tions of the mean velocity of the additional 77,; v ,  = 1.04 x l o 9  
cm/sec, f = 11.8 MHz, L = 60 cm. 
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FIG. 5. Evolution of potential pulses (velocities a re  in cm/ 
sec): (a)vl = 1.04x10~, E2= 5 .4~10"  f f11.8 MHz; (b)vl=1.04 
xlo9,  E 2 =  8 . 9 ~  10'; f = 11.8 MHz. 

under investigation, and the ra te  of variation of the 
potential was recorded for the above frequencies. After 
passing through a wide-band amplifier, the probe 
signal was integrated and fed to an oscillograph. The 
electrostatic analyzer 7 was then used to determine the 
energy characteristics of both the main and controlling 
beams. When the initial perturbation was produced by 
the bunched beam, the shape of the recorded oscilla- 
tions was found to be very dependent on the mean ve- 
locity G, of this beam (Fig. 4). It was nonsinusoidal 
and, for certain values of E,, took the form of unipolar 
pulses. We have investigated the conditions necessary 
fo r  the appearance of such waveforms and their 
evolution. 

Figures 5a and b illustrate the dynamics of the pro- 
duction of the positive and negative potential pulses 
along the wall of the system. When the velocity of the 
main beam is somewhat higher than the critical value 
(v,  = 1.04 x lo9 cm/sec) and the mean velocity of the 
bunched beam is 5, = 5.4 x lo8 cm/sec, a sequence of 
negative potential pulses is produced at  the end of the 
system (Fig. 5a). An increase in the mean velocity 
of the additional beam is eventually accompanied by a 
change in the sign of the observed pluses (Fig. 5b). 
Analysis of oscillograms of this kind can be used to 
construct the dependence of the amplitude and velocity 
of the waves on the distance L (Fig. 6). As the 
unipolar pulses evolve, there i s  an increase in their 

1,rel. units 

v, 10' crnlsec 
9.0 r 

FIG. 6. AmplitudeA and velocity v of BGK waves a s  functions 
of distanceL: ( l )F2  =5.4x108 cm/sec, (2 )Ez=8 .9~108cm/  
sec. 

amplitude and a reduction in their velocity. We note 
that a negative pulse is produced when the mean 
velocity of the bunched particles in the controlling beam 
a t  the beginning of the system is less than the phase 
velocity of the wave excited by it. If, on the other 
hand, the velocity at  the beginning of the system is of 
the order of the phase velocity of the perturbation, 
unipolar posltive potential pulses propagate through the 
plasma. This picture changes when the velocity of the 
main beam becomes much greater than the critical 
value (v, >>v ,,,, ). The initial perturbation is then 
found to decay gradually toward the end of the system. 

To establish the mechanism responsible for the ap- 
pearance of the above waves, we investigated the vari- 
able component of the el  ectron-beam current. This 
was done by receiving part of the electron current on 
the analyzer collector (Fig. 3 )  from which the variable 
component of the current developed across a resistance 
equal to the wave impedance of the cable was fed into 
a wide-band amplifier and then into an oscillograph. 
The position of this component relative to the poten- 
tial pulses along the system was determined. At each 
point in space, we first  recorded the potential pulses 
with the probe 6 and then placed the analyzer-collector 
7 a t  the same point. The shape of the recorded poten- 
tial pulses was not found to depend on the position of the 
collector 7 relative to the probe 6, since there was no 
reflected signal in the two-stream system because one 
of the s t reams was lost to the collector. 

Figures 7a and b show oscillograms of the potential 
pulses and of the variable component of the current 
for different values of 5, at  the beginning and end of the 
plasma column. It is clear that, when the observed 
pulses a r e  not unipolar, the appearance of the variable 
component of the current is different. When the wave- 
form is entirely positive, each potential peak corre- 
sponds to a complicated current pulse, the position of 
which coincides with the potential maximum along the 
entire length of the plasma column. The negative po- 
tential corresponds to two current pulses located on 
either side of the potential minimum. This behavior 
of the variable component of the current indicates that 
it is due to the presence of particles with mean velocity 

FIG. 7. Oscillations in the circuit of the mobile probe (A) and 
the analyzer-collector (I) for different mean velocities of the 
additional beam. OscillogramA represents the variation in the 
electric field in the plasma, whilst oscillogram I represents 
the variation in the current: (a) E2 = 5 . 4 ~  lo8 cm/sec, @)T2 
= 8.9 x 10' cm/sec . 
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FIG. 8. Maximum energy of trapped particles as a function of 
distance L : 1-left-hand current peak; 2-right-hand current 
peak, both forF2 = 5 . 4 ~  10' cm/sec; 3-F2= 8 . 9 ~  l o 8  cm/sec. 

equal to the phase velocity of the potential perturbation, 
and that their position relative t o  this perturbation de- 
termines i t s  sign. 

The analyzer 7 (Fig. 3)  was used to determine the 
maximum energy of particles in the observed current  
pulses and its variation along the length of the system, 
both in the case of positive and negative formations. 
The results  a r e  shown in Fig. 8. It i s  noticeable that 
the maximum energies corresponding to  potential min- 
ima on the left and right of the current  peaks a r e  
different. 

The analyzer was also used to investigate the energy 
composition of the main beam a t  exit from the system. 
In the absence of the controlling beam, the energy 
spread of electrons in the main beam was small ,  in- 
dicating that the beam-plasma sys tem was stable. 
When the bunched controlling beam was injected, a 
wave was excited in the system and an energy spread 
among the main beam electrons was observed. At the 
same time, the maximum of the distribution shifted 
toward lower energies. The  total energy lost by the 
main beam was about 15%. The main beam was thus 
found to transfer  i t s  energy to the wave if the initial 
amplitude were  large enough and both particle bunching 
in the additional beam and the particles of the main 
beam participated in the generation of the potential 
waves. 

When the perturbation in the sys tem was produced by 
the second method (by supplying the sinusoidal poten- 
tial difference derived from an external source to 
the feeder electrode), the behavior of this perturba- 
tion was investigated a s  a function of i t s  initial ampli- 
tude and the velocity of the main and controlling beams 
(the latter was not modulated in this case  because the 

FIG. 9 .  Evolution of initial perturbation in the absence of the 
additional beam (vz= 0) for different velocities of the main 
beam: (a)vi= 1 . 0 4 ~ 1 0 ~  cm/sec, f = 13.8 MHz, d =  12 V: 
(l~) u ,  =8.3 x l ~ ~ c r n / s e c ,  f = 12.8 MHz, U =  3 V. 

FIG. 10. Evolution of initial perturbation in the presence and 
absence of the additional beam: (a) v ,  = 1.04 x l o 9  v 2 = 0.63 
<lo9; ( b ) ~ ~ = 8 . 3 ~ 1 0 ~ ,  v2=O: inbothcases, f=12.8MHz, 
U = 12 V (velocities in cm/sec). 

t ime taken by the particles of this beam to t raverse  the 
region of variation in the potential in the region of the 
priming electrode was much shor ter  than the oscilla- 
tion period). 

In the absence of the additional beam, and when the 
velocity of the main beam is in excess of the cri t ical  
value, the signal propagates without amplification a t  
constant velocity (6 X 10' cm/sec, Fig. 9a). When the 
velocity of the main beam i s  reduced to 8.3 X 10' 
cm/sec, the sys tem becomes unstable and the shape 
of the observed oscillations i s  very dependent on the 
amplitude of the initial perturbation. When the initial 
perturbation is  small  (Fig. 9b), unipolar pulses a r e  
not produced, the initial signal is  amplified, and i ts  
velocity i s  equal to half the beam velocity. An increase 
in the amplitude of the initial perturbation by a factor 
of 4 (Fig. lob) results  in the appearance of positive 
potential pulses a t  the end of the system. 

By injecting the additional beam with velocity in 
excess of the phase velocity of the perturbation, it is 
also possible to produce unipolar positive pulses which 
propagate a t  constant velocity (4 X lo8  cm/sec, Fig. 
10a). A reduction in the velocity of the additional beam 
does not lead to the appearance of negative pulses in 
this case. The initial perturbation gradually decays 
toward the end of the system. 

4. DISCUSSION 

We must now analyze the experimental data and com- 
pare  them with theoretical predictions. 

We shall  consider the evolution of BGK waves when 
the perturbation is  defined by a bunched controlling 
beam. It is  c lear  from Fig. 6b that the velocity of the 
perturbation produced a t  the beginning of the sys tem 
i s  very different from half the velocity of the main 
beam. This indicates that the system i s  stable and 
that the initial perturbation velocity vDhi is determined 
by the corresponding dispersion relation (curve l b  in 
Fig. l b )  and i s  independent of the mean velocity of the 
bunched beam. This is then followed by a rapid re-  
duction in the phase velocity of the wave down to a 
value close to u,/2. The time taken for  this to happen 
is  about 4 X lo-'  sec ,  which is  much less than the 
period of the excited oscillations (T - sec). Am- 
plification of the initial perturbation is  observed a t  the 
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same time (Fig. 6a). The system has thus become 
unstable and the velocity of the amplified signal, uph, 
is  now determined by a different dispersion relation 
(curve 1, Fig, la) .  Theoretical analysis indicates that 
this transition is due to the presence of the finite- 
amplitude wave and, according to (7), its amplitude 
in our case should be not less that 12 V (u, = 1.04 
X lo9 cm/sec, u ,,,, = 8.5 x 10' cm/sec, and up,, 
= 8.3 X 10' cm/sec). We can now estimate the amplitude 
of the potential perturbation introduced by the 
bunched beam by substituting the charge distribution 
in the beam into the Poisson equation (by analogy with 
the procedure used by Fedorchenko et ~ 1 . ~ ) .  When the 
current in the additional beam is z ,  = 1 mA, the mean 
energy is u2 =220 eV, the modulating voltage is 

= 25 V, and the modulation frequency is  f = 12 MHz, 
the amplitude of the plasma wave excited by a bunch 
may reach 20-25 V at the point where the electron 
trajectories begin to cross (in our case, this is  the 
point a t  which the bunch enters the plasma, L = 0). 

As noted above, the shape of the observed oscilla- 
tions depends on the relation between the mean ve- 
locity of the additional beam and the phase velocity 
of the initial perturbation. This can be explained a s  
follows. When the initial phase velocity of the pertur- 
bation and the mean velocity of the bunched particles 
a r e  close to one another, the trapping of the bunched 
particles by the field of the initial perturbation occurs 
a t  relatively small amplitudes. Under the above ex- 
perimental conditions, the phase velocity of the per- 
turbation a t  the beginning of the system is 8.3 X 10' 
cm/sec and the mean velocity of the bunch particles 
is 8.9 X 10' cm/sec. When the modulation amplitude 
is 6 =25 eV, the bunch contains particles with veloc- 
ities in the range 8.3 X 10'- 9.3 X 10' cm/sec, i.e., 
they a r e  all  greater than the phase velocity of the wave 
and a r e  concentrated in a small phase volume, which 
corresponds to the trapped electrons being localized 
in the upper part of the phase plane shown in Fig. 2a. 
It is easily estimated that an amplitude of 3 V is suf- 
ficient to trap the most energetic electrons in this 
beam. Since the initial perturbation amplitude is sub- 
stantially higher, the electrons a r e  concentrated in 
the neighborhood of the bottom of the potential well, 
i.e., near the maximum of the potential. This is fol- 
lowed by a fast (in a time of about 4 X lo-' sec)  reduc- 
tion in the phase velocity of the perturbation, connected 
with the transition of the system from the post-critical 
state to the instability region. The velocity falls 
from 8.3 X 10' to 6.2 x 10' cm/sec and, a s  a result, the 
trapped particles assume a retarding phase, begin to 
give up their energy to the wave, and remain near the 
bottom of the potential well during the slowing-down 
process. This is precisely the reason why the mea- 
sured position of the variable component of the current 
in Fig. 7 coincides with the maximum of the potential 
throughout the length over which the interaction takes 
place. All this is accompanied by an increase in the 
perturbation amplitude (curve 2, Fig. 6a): after the 
point at which the phase velocity becomes stabilized, 
the amplitude increases by a factor of 3 in a time of 

sec. The trapped particles then execute phase 

oscillations relative to the wave with frequency C2 
=k(ecp/m)1'2, and the inner part of the phase region 
containing the trapped particles for the amplitudes 
reached after the 10'' s ec  assumes the form shown 
in Fig. 2a as  a result of rotation because a proportion 
of the trapped particles will move downward from the 
upper part of the phase plane during the half-period. 
The result of all these processes is the formation of the 
sharp potential peaks observed in the experiment 
(Fig. 5b). The fact that this process does, in fact, 
proceed in this way is evidenced by the measured de- 
pendence of the maximum energy of particles corre- 
sponding to the variable component of the current on 
the length of the system (curve 3, Fig. 8). When the 
mean phase velocity of the formation is  uph = 6.2 
x 10' cm/sec, the current peak at the end of the system 
includes pafticles with maximum energies of 250 eV. 
If we suppose that the amplitude reached by this time 
is responsible for the maximum energy of these parti- 
cles, i.e., 

E,,=' / ,m[~p~+2 (ecp/m)"'I2, 

we find that the necessary value of this amplitude is  
about 40 V. This amplitude level is ,  in fact, reached 
a t  the end of the system because we estimate cp,, 
to be "12 V and an increase in the signal amplitude by 
a factor of three by the time the end of the system is 
reached is, in fact, confirmed experimentally (Fig. 6a). 

Potential valleys similar to those shown in Fig. 2b 
were observed (Fig. 5a) when the mean velocity of 
bunch particles was much less than the initial phase 
velocity of the perturbation which, a s  in the above 
case, was equal to 8.3 X 10' cm/sec and was determined 
by the same dispersion law. For the same modulation 
amplitudes, the bunch contains electrons with velocities 
in the range 4.5 x 10' - 6.2 x 10' cm/sec. It is clear 
from Fig. 6b that, a s  in the previous case, and for the 
same reasons, there is  a reduction in the phase veloc- 
ity but, in contrast to the situation examined above, 
only the most energetic electrons present in the 
distribution can be trapped at the beginning of the 
system for the above amplitude levels. Moreover, 
they immediately enter the accelerating phase, load 
the wave, and a r e  concentrated near the "apex" of the 
potential energy ecp at  the time when the phase velocity 
of the perturbation becomes stabilized (Fig. 2b). The 
region near each such "apex" is also found to contain 
electrons with lower energies, which can now be 
trapped by the wave because the phase velocity of the 
perturbation has fallen. The electrons trapped near 
5 = 0  can remain in the region of the potential minimum 
(i.e., near each "apex" of the potential energy) for a 
long time because the electron oscillation frequency in 
the field of the wave becomes zero  on the separatrix 
dividing the trapped particles from those passing 
through (thick line in Fig. 2b). Since, a s  the potential 
valleys a r e  being formed, the fast  electrons that were 
trapped a t  the initial instants of time a r e  still exper- 
iencing acceleration by the wave field, some of them 
may "roll over" the potential-energy "apex" and thus 
determine the character of the energy distribution of 
the trapped particles in each of the peaks of the charge 
distribution p1(5) shown in Fig. 2b. It is  clear that 
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particles in the left-hand peak of this distribution 
should have the maximum energy. This is confirmed 
experimentally. In fact, we see  from curves 1 and 2 
of Fig. 8 that the maximum energies corresponding 
to the left- and right-hand current peaks a r e  different. 

We have also established experimentally that BGK 
waves appear even when an unbunched controlling 
beam, which defines the initial perturbation, is in- 
jected into the system (Fig. 10a). Such waves a r e  
only produced when the velocity of the controlling beam 
is greater than the phase velocity of the initial pertur- 
bation. The wave formation process is now again con- 
nected with the transition of the system from a stable 
to an unstable state. This is indicated by the growth 
in amplitude with distance, and the difference between 
the velocity of these waves and the velocity of the 
initial perturbation. The nonlinear waves a r e  then 
formed more slowly, and the evolution terminates only 
a t  the end of the system. This is connected with the 
fact that the necessary distribution of trapped particles 
is established only by the phase oscillations in the field 
of the perturbation, and the time spent in this process 
is, of course, much greater than the time necessary 
for the analogous oscillation waveform to develop in 
the case of a bunched controlling beam. The fact that 
negative pulses cannot be produced in this case is ex- 
plained by the fact that, when the velocity of the con- 
trolling beam is reduced, the beam enters the accel- 
erating phase of the wave field, and this leads to its 
at ten~ation. '~ ' '~ The formation of unipolar pulses when 
the amplitudes of the initial perturbation a r e  sub- 
stantially increased (in the absence of the controlling 
beam and in the presence of developed instability) is 
shown by estimates to be  due to the trapping of 
particles from the main beam. 

') Stationary nonlinear waves in collisionless plasma are usu- 
ally unstable, but the decay time of such waves may be much 
longer than the characteristic time for their formation. 
Hence the name "uasistationary." 

2 ) ~ h e  wave evolves slowly it its amplitude, phase velocity, and 
profile do not change very much during one period of oscilla- 
tion of the trapped particles. 
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