
'L. D. Landau and E. M. Lifshitz, Kvantovaya Mekhanika 
(Quantum Mechanics), Nauka, M. , 1974 (English translation 
Pergamon Press ,  Oxford, 1975). 

2 ~ .  S. Chang and P. Stehle, Ehys. Rev. A 4, 641 (1971). 
3 ~ .  B. Delone and V. P. Krainov, Atom v sil'nom svetovom 

pole (Atoms in Strong Light ~ i e l d s ) ,  Atomizdat, M. , 1978. 
*B. R. Mollow, Phys. Rev. A 5, 2217 (1972). 
's. Swain, J. Phys. A 5, 1587 (1972). 
6 ~ .  Guccione-Gush and H. P. Gush, Phys. Rev. A 10, 1474 

(1974). 
'D. Proznitz, D. W. Wildman, and E. V. George, Phys. Rev. 

A 16, 1165 (1977). 

'A. 0. Melikyan and K. Kh. Simonyan, Jm: 'Tezisy dokladar 
Vsesoyuznogo soveshchaniya po nelineinomu preobrazovaniyu 
chastoty" (Abstracts of Papers read to the All-Union Conf. 
on Nonlinear Frequency Conversion) , Krasnoyarsk State 
University, 1977, p. 72. 

'A. E. Kaplan, Zh. Eksp. Teor. Fiz. 65, 1416 (1973) kov. 
Phys. JET-P 38, 704 (1974)l. 
'w. P. Krainov, Zh. Eksp. Teor. Fiz. 70, 1197 (1976) [Sov. 

Phys. JETP 43, 622 (1976)l. 

Translated by S. Chomet 

Superradiance in Raman scattering of light 
V. I. Emel'yanov and V. N. Seminogov 
Moscow State University 
(Submitted 6 June 1978) 
Zh. Eksp. Teor. Fi. 76, 34-46 (January 1979) 

A multimode theory of superradiance in Raman scattering (SRRS) of light in atomic and molecular 
systems is developed. The process of formation of the superradiant state from an initially incoherent state 
via exchange of spontaneously emitted photons between the atoms is considered in explicit form. The time 
dynamics of the populations in the waveform of SRRS pulse as well as the angular structure of the 
radiation are investigated. The influence of the depletion of the pump is estimated and an additional 
condition is derived for the density of the number of scattering atoms, namely, n has an upper bound 
besides the lower bound, n,,, < n  <n,,. It is noted that, as a result, the observation of SRRS is most 
probable in gaseous media. 

PACS numbers: 42.50. + q, 42.65.Cq 

1. INTRODUCTION 

The  effect of collective spontaneous emiss ion  of a 
s u m  of two-level a t o m s  (the Dicke superradiance') 
w a s  by now investigated qui te  fully both theoretically1-6 
and e ~ p e r i m e n t a l l y . ~ ~ ~  Much l e s s  investigated is the 
analog of this  effect in Raman (RS) of light in molecular  
and atomic systems-the effect of superradiant  Raman 
scat ter ing (SRRS). T h e  paper  devoted t o  th i s  question 
c a n  be divided into two classes .  

The  f i r s t  includes dealing with RS in a 
medium excited beforehand by a coherent  field. T h e  
macroscopic polarization induced by th i s  field leads to 
the onset  of a nonstationary IS, whose intensity i s  
proportional to  the  square  of the number N of the 
scat ter ing part ic les .  T h e  interatomic interact ions 
due to  the  radiation field of the a toms  themselves a r e  
not important in this case .  An effect of this type w a s  
observed in experiment  in  Ref. 11. 

In a study belonging t o  the second class'2 a single- 
mode model  was used to consider  the onset  of SRRS in 
a n  initially incoherent sys tem of a t o m s  via spontaneous 
induction of interatomic correlat ions.  T h e  analysis  
in Ref. 2 i s  in the given-pump-field approximation. 
In this  approximation, the problem t u r n s  out to be 
s imi la r  to that of superradiance of a sys tem of two- 
level   atom^."^ The  SRRS takes  in  this  c a s e  the  f o r m  
of a pulse of duration rp, whose maximum i s  observed 

a t  the instant t, (delay time). T h e  SRRS intensity at 
t h e  instant t ,  i s  proportional to N'. Just as in the 
c a s e  of resonant  super rad iance ,  t h e  condition f o r  the 
observat ion of t h e  SRRS i s  of t h e  f o r m  t,- l/n < T, (T, 
i s  the t ransverse-relaxat ion t i m e  and, n i s  the density 
of the number of the sca t te r ing  atoms).  T h i s  means  
that  a t  a given pump intensity I, t h e r e  i s  a lower 
bound of t h e  density of the medium, n >n,,,(l,). 

T h e  single-mode model used in Ref. 12 d o e s  not 
make  i t  possible to consider  a l a r g e  number of impor- 
tant charac te r i s t i cs  of SRRS (including the very  con- 
dition of t h e  applicability of the single-mode approxi- 
mation). In the  p resen t  paper ,  using the given-pump- 
field approximation, w e  develop a mult imode theory 
of SRRS f o r  a medium of a r b i t r a r y  geomet r ic  shape. 
T h i s  makes  i t  possible to consider  in explicit f o r m  the 
p r o c e s s  of formation of t h e  super rad ian t  s ta te  f r o m  an 
initially incoherent s t a t e  via  exchange of spontaneously 
emitted Stokes phonons by t h e  atoms.  T h i s  p rocess  
de te rmines  t h e  delay t i m e  t,, which depends substan- 
tially on  t h e  geometry of the medium. W e  investigate 
the  angular direct ivi ty  of the radiation i n  SRRS. The 
resu l t s  of the p resen t  paper  are applicable a l so  to t h e  
c a s e  of resonant  super rad iance  in a sys tem of initially 
inverted two- level  a toms.  

The  express ion  obtained f o r  t, differs  f r o m  the 
corresponding f o r m u l a s  of Refs. 3 and 12. The  reason 
i s  that in  Refs. 3 and 12 t h e  dynamics of the popula- 
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tions in all the stages of the time evolution, starting 
with t=  0, was deduced by using the law of conservation 
of the length of the Bloch vector, but this law does not 
hold at short times (when account i s  taken of multi- 
mode spontaneous emission). 

The formation of the SRRS i s  also influenced by 
transverse relaxation. It is  shown in this paper that 
allowance for the finite time T, leads to an increase of 
the value of t,. Under the condition t ,  2 T,, SRRS i s  
the analog of resonant superradiance in weakly ampli- 
fying media." 

The results obtained in the present paper for the 
multimode case a r e  valid in the given-pump-field 
approximation. We have also calculated the single- 
mode SRRS model with account taken of the depletion 
of the pump. We present here only a qualitative esti- 
mate, which agrees with the calculated results. It 
turns out that allowance for the depletion of the pump 
leads to another condition for the observation of the 
SRRS, namely besides the lower bound on the density 
of the medium, there exists also an upper bound, 
n,,(ZL) <n <n,,. The reason i s  that the superscatter- 
ing state ar ises  a t  the instant when the populations of 
the working levels become equalized on account of the 
absorption of the pump energy. In a sufficiently dense 
medium, the pump i s  depleted before this occurs, and 
there i s  no superradiance. We note that allowance for 
the motion of the populations is  the principal aspect 
that distinguishes the SRRS from the regime of non- 
stationary RS, which i s  usually described with the 
change of the populations neglected.14 

2. THE MODEL. INITIAL EQUATIONS 

We consider a system of N multilevel atoms (mole- 
cules) contained in a volume V of arbitrary geometric 
shape. The system is acted upon by an electromag- 
netic field, which we specify in the form of a plane 
wave : 

Er. (Rj, t )  =EL- (Rj, t )  +EL+ (R,, t )  

=eL (EL exp ( - i ( w ~ t - k ~ R ~ ) )  +EL' exp ( i  ( ~ L ~ - ~ L R J )  11, 
(1 

where E L =  0 a t  t  <O and E L  i s  constant a t  t  > O  (the 
field pump is regarded a s  classical). 

We assume that a t  the initial instant t  = 0 all the 
atoms a re  in the ground state, and the average polari- 
zation of the medium i s  zero. The RS produces in the 
medium a Stokes field at the frequency w,= w, - w,,, 
where w,, >O i s  the frequency of the transition of a 
selected pair of levels: 

E .  (R,, t )  =E.-(R,  t )  +E.+(RI, t )  
= (EaI-e-'~~'+E,j+e"~'). (2 ) 

We write down the equations for the atomic and field 
operators. For  a nonmagnetic medium, in the absence 
of free currents, the Hamiltonian of the "atoms plus 
field" system takes in the dipole approximation the 
form15 

1 d- EE.o..' + - I (H2+Dz) dR- ~ P D  dR+Zn (PL)'dR. (3) 
8n 

=I I 

Here H i s  the magnetic-field intensity vector, D= E 

+ 4np1 i s  the induction vector, E= A,+EL, 

a: and a, a r e  the operators for the creation and annihi- 
lation of an atom in a state with energy &,, d,, i s  the 
dipole-moment matrix element, and 

1 gradn div P (R', t )  
P ~ R ,  t ) -P(R,  t ) + - j  

4n IR'-RI 
dR' 

i s  the transverse polarization. The atomic operators 
o;, and D, = 4, - a$ satisfy the commutation relations 

[aa', ohJ] =-Dj61jr [ a d ,  Djl =-2uboi6cJ, 
[Odi, Dj]  =kai6ij,  ~ a ' ~ b d + o s i ~ d j = l .  

Starting from (3), we write down the equation of 
motion for 4, and D,. Using the averaging method 
of Ref. 16, we obtain the system 

aDI - 
at  

&a {E'- (R,, t)E.+ (&, t)ahj(t) +~bd(t)EL- (&, t ) E f  (&( t ) ) +  H.c. a-- 

f i  

(5) 

where 

the line broadening i s  assumed homogeneous, and T, 
i s  a phenomenologically introduced relaxation time. 

From the Hamiltonian (3) follows also an equation 
for the Stokes field 

a2E. (R, t )  - c2AE. (R ,  t )  ---4n 
a2PsL(rt, t )  . 

atz atz ' 
P i  i s  the transverse part of the polarization P, a t  
the Stokes frequency. We obtain an expression for P,, 
using Ref. 16, in the form 

P. (R ,  t )  = E P S j 6  (R-R,) =- E {%.EL- (Rj, t ) ~ b . ? j ( t )  + H . c . } ~ ( R - R I ) .  
J I 

(8) 
The solution of Eqs. (7) and (8) can be represented 

a s  a sum of the solution of the homogeneous and in- 
homogeneous equations, and the solution of the latter 
in the "wave zone" can be written out, with (4) taken 
into account, in explicit form17 

where t l = t  - R , / c ,  n,, = R,,/ IR,, 1, and R,, = R, - R,. 
Since there i s  no external field a t  the Stokes-wave 

frequency, the homogeneous solution E,,  corresponds 
to the vacuum field 

E., (R,, t )  =i E (Znhkc/V)'"e,[a, exp(-i(kct-kR,)} 
k 

-ak+ exp(i(kct-kR,))];  (10) 

here a; and a, a re  the operations of creation and 
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annihilation of the field quanta, with 

The angle brackets here and below denote average of 
the operators over the vacuum state of the field and 
over the ensemble. 

The change to slowly varying variables pa,,: 

oabj=pdj(t)  exp {-io*tf ikLR,}. (12) 

Using (1) and (2) and neglecting the derivatives of the 
slowly varying density matrix pa,,, we obtain from (9) 
an expression for the amplitude of the Stokes field 
produced at an arbitrary point R,, by the radiation of 
the atoms: 

E*)-= (Eat+) +; 

here ds = rapL. 

We substitute (12) and (9) in (5), with (2) and (13) 
taken into account, and average the resultant operator 
equation: 

where ? c i j =  (d,.[df xni j ]  x nij) and 

a(D,)o id. - = - - (Eeo+ (R j ,  t )pbs l ( t )  t p b a j ( t ) E , , +  (R j ,  t )  )e-'".'+H.c. 
at ti 

(1 5) 
The term a(D),/a, in (14) describes the influence of the 
zero-point field fluctuations on the dynamics of the 
population difference. The remaining terms with i # j  
take into account the influence of the correlations 
produced between the different atoms by the interaction 
via the dipole-radiation field. 

The equation for the operator p,, i s  obtained from (6) 
in similar form 

apobj(t) - ids --- {E.,+ (R,,  t ) D , ( t )  f D, ( t ) E S o f ( R , .  t )  )e-'"‘' 
a t  2~ 

+%E exp (-i:q xij(p,. (t')Dj(t)+D,(t)pmbi(tt)). 
2Ac" 

(16) 
In the derivation of (16) we have put T,= *, assuming 
that t,<< T,. For a discussion of the case t ,  2 T, see 
formula (46) below. 

As seen from (14) and (16), the interaction between 
the atoms takes place with a delay due to the finite 
speed of light. We assume that the maximum linear 
dimension of the system L is such as to satisfy the 
condition 

L / c ~ T P ,  (17) 
where T, i s  the characteristic superradiance process 
(the characteristic time of the variation of D o r  pa,,). 
We can now put t l=  t -  R,,/c-t in (14) and (16). It is 
seen from (14) that the dynamics of ( D )  i s  determined 

by the correlations (pab,(t)p,,j(t)). The correlators with 
i = j make a contribution that describes the spontaneous 
emission of the individual atoms. The correlators with 
i+j are  responsible, a s  we shall verify later, for the 
onset of the superradiation. 

The equation for  the correlation with i +j 

that determines the superradiant dynamics of D j ( t )  i s  
obtained from (15): 

where 

I n  the derivation of (19) we have neglected the terms 
that describe the effect of the shift of the frequency of 
the atomic transition in superradiance 

(%) = 14 (E .2  (R, ,  f) Sb* ( t )  +pbe( t )E,f  (R , .  t )  ) (D,)e-'**' 
o A 
id ' - -2 ( p d i  ( t )  E.,-(Rl, t )  +E,o- (RI ,  t )  pabi ( t )  >(Di)ei". (20) 
A 

The te rms  a(D,),/at (15) and (aP,,/at), (20) a re  
important a t  the initial time of the evolution, before 
the superradiance process has managed to establish 
itself. We therefore calculate then by using for the 
zeroth approximation of the solution of (16) the ex- 
pression 

We substitute (21) in (15) and (20), using for E,, the 
expansion (10). Then, after averaging over the en- 
semble, over the orientations of d,, and over the va- 
cuum state of the field with allowance for ( l l ) ,  and 
also after summing over all the modes of the field k, 
we obtain 

a t ~ , > , t a t = - r < ~ , ) ,  (22) 

( a ~ , l a t ) , = r c ~ , ( D ~ ) ( D ~ >  ( i # i ) ,  (23) 

where X'=2w:l~1~ and 

We now average (14) and (19) over the orientations 
of the dipole moment (x,, = - (1/5) lr 1, IE, 1,) and sub- 
stitute in them the expressions (22) and (23). Taking 
into account the commutation relations for the opera- 
tors  Dj and p,,,, we get 
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where 

Eq. (25) describes the dynamics of the total atom 
population difference. At the initial instant of time 
t=O, Pij=O, (D)= -N. The start  of the time evolu- 
tion of (D) is determined by the spontaneous RS, to 
which the last term of (25) corresponds. The first  
term in the right-hand side of (26) describes the in- 
duction of interatomic correlations by spontaneous 
emission of a Stokes photon from one atom, and the 
reaction to it by another atom. Without this term, 
a s  seen from (26), we find a t  the specified initial con- 
ditions (P,,(t = 0) = 0) that Pij(t)= 0 a t  all  instants of 
time and there i s  po superradiance. 

By virtue of the condition (I?), the spatial dimension 
of the SRRS pulse i s  CT,>> L. We can assume therefore 
in (26) that the differences of the populations of all  the 
atoms a re  the same: 

(we shall henceforth omit the angle brackets). 

To find the solution of (25)-(27), it i s  convenient 
to introduce the eigenfunctions $,(Rj) and the eigen- 
values X of the interatomic-interaction matrix C,, 
(Ref. 6): 

where 

and dS1 i s  the solid-angle element. 

Let the eigenfunctions satisfy the completeness and 
orthonormalization condition: 

As follows from (28)-(30) that 

I 

C<j- D + a ( ~ d $ a ( & ) .  (3 1) 

We introduce the collective quantity 

Then, using (28)-(31), we obtain from (25)-(27) the 
system 

We note that by virtue of the definition (32) we have 
C,P(X, t )=  0. Summing both halves of (34) over X, we 
can easily verify that both halves of (34) vanish. 

Eqs. (33) and (34) a r e  valid for arbitrary geometry of 
the scattering medium. 

3. DYNAMICS OF POPULATION DIFFERENCE. SHAPE 
OF THE SRRS PULSE. ANGULAR DIRECTIVITY 
PATTERN OF THE RADIATION 

We consider the particular case of a cylindrical 
volume. The characteristic geometrical parameters 
a r e  

H=o.L/c, h=o.Rlc ( H w h w i ) ,  

where L i s  the length of the cylinder, and R and S a r e  
the radius and the cross-section area. In the limit 
of small and large Fresnel numbers (F = S/X,L, where 
X, is  the Stokes-emission wavelength) all  the largest 
eigenvalues and the corresponding &(R,) a r e  explicit- 
ly def ined.6 For F << 1 and F >> 1 al l  the large eigen- 
values a re  degenerate with multiplicity go and a re  
equal to 

The remaining X << X,, and the eigenfunctions take 
the form 

1 0 . -  
'P*, (Rj) = = (COS koRj + sin koR,), k, = - vr? ko, (37) 

C 

where k, i s  a unit vector directed along the cylinder 
axis. 

We obtain the solution of the system (33) and (34) 
for the cases (35) and (36). At X =  A,, the last term 
in (34) i s  of the order of gdN<< 1 of the second term 
in the right-hand side, and can be neglected. It 
follows then from (34) that all 'the P(Xo, t) a r e  the same 
and we have in (33) 

Recognizing this, we can rewrite (33) and (34) in the 
form 

We note that when the substitutions D - - D and r - y z  (4/3) w:, Id,, I2/Ec3 a r e  made, Eqs. (38) and (39) 
describe the process of superradiant emission of an 
initially inverted system of two-level atoms with 
transition frequency o,,. 

Eliminating P(Xo,t) we obtain an equation for D(t) 

aaD ria aDz a + - - -  r Z D  (N-D) 
r - ( N - D ) =  

P D  (N-D) 
ata 2~ at at N 

ho - - ho'go, 
N1  

(40) 

with initial conditions 
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If we neglect the terms of the right-hand side of (40), 
then the solution takes the form 

act) --o(o)e (= ) 
ZP 

(41) 

rP=2/rao, tm~-i/ ,~,  ~n ha, (42) 

where X, i s  given by (36) for F>> 1 or  (35) for F<< 1. 
From (38) and (391, neglecting the spontaneous terms, 
we get 

Dz+2NgS(ho, t )  =w, (43) 

whence, taking (41) into account, 

At the instant t =  t*, we have D(t) = 0 ,  P(Xo, t ) =  max, 
and the system i s  in a superradiant state. For large 
F, the phonon for t*, agrees with the result of Ref. 12 
(with account taken of the correction introduced for 
the multiple modes). The very same result is obtained 
also in the theory of resonant superradiance.' 

It i s  impossible to obtain an analytic solution of the 
complete equation (40). From i ts  general form it 
follows, however, that the delay time t, should in 
fact be larger than predicted by (41), (44), and (421, 
since the right-hand side of (40) vanishes when the 
spontaneous component in (39) i s  increased by a factor 
N / A , ~ ,  >> 1. 

We can estimate t, approximately in the following 
manner. Assuming that D(t) - - const at 0 5 t 5 t, we 
get from (39) and (43) 

p (ha, t,,,) ~2 ( e r h r m - l )  =Ni2go. 

Hence 

The expression for t, can be represented, taking (35) 
and (36) into account, in the form 

[In ho +In B]/IXa, FBf 
1 . 3  ( [ln ho+ln(hz/n) ]/rho, 

i.e., t,>t*,. 

We note that if go =l, then formula (45) corresponds 
to the result of the single-mode model.12 Thus, the 
condition for the validity of the single-mode approxi- 
mation for the description of SRRS is  go-1, i.e., F" 1, 
in agreement with the conclusion obtained in Ref. 6 
with respect to resonant superradiance. A numerical 
solution of the system (38) and (39) confirms the 
estimate (45). Figs. 1 and 2 show plots of P(Xo, t)  
and D(t), obtained by numerically solving (38) and (39); 
they a re  compared with the plots of P and D corre-  
sponding to formulas (44) and (41). The fact that we 
obtained a delay time t, longer than t*, can be attribu- 
ted to the following: In Ref. 3 and 12, the law of con- 
servation of the length of the Bloch vector i s  used to 
obtain D(t) during a l l  the stages of the time evolution, 
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FIG. 1. Shape of SRRS pulse: comparison of the delay times 
with t ,  and t:. Curves 1-3) numerical solution of (38) and (39); 
I*-3*) calculation by formula (44). We assumed L= 10 cm, 
S= 1 cm2, and N=10i4. A,= cm for cases 1 ,  l', lo-* cmfor 
cases 2,2', and cm for cases 3.3'. 

starting with t=O. For  the multimode mode this law 
takes in our notation the form (43). Formula (43) 
follows from (38) and (39) in which the spontaneous 
t e rms  a r e  neglected, and is therefore not valid a t  
short  times. It i s  easily seen that at the instant t = O  
formula (43) gives for the growth rate of the correla- 
tor  of the collective polarization (a~(X,,t)/at) a value 
N/X&,>> 1 times larger than then the one given by (39). 

It follows from the derivation that the results  given 
above a r e  valid for the case t, 2 T,. On the other hand 
if t,2 T,, then i t  is necessary to add a term 
-2T;'p(X0, t)  to the right-hand side of (39). We then 
obtain from (38) and (39), in analogy with the procedure 
used in the derivation of (45) 

Thus, SRRS i s  possible also in the case when t,Z T, 
but T*< TZ. This corresponds to the case of a resonant 
superradiance in weakly amplifying media.'= 

We proceed now to consider the shape of the SRRS 
pulse and the angular directivity of the radiation. 
The energy of the scattered field a t  the point of obser- 
vation i s  

FIG. 2. Diameter of the population difference in SRRS. The 
parameters and notation are the same as in Fig. 1.  
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We substitute in the last two terms of (47) the ex- 
pressions (13), and in the first  two terms the expres- 
sions (10) and (13), where pa,, i s  given by formula (21). 
After averaging we obtain in the f a r  zone ( 1 %  ( 
>> L, L2w,/cRp<r) 

We introduce the collective variable 

and the converse 

An equation for P(X, A t ,  t )  i s  obtained from (26). It is 
similar in form to (39), with P(X, t)- P(X, X1,t), and 
with the first terms in the right-hand sides of (34) and 
(39) multiplied by 6,,. Since P(A, kt, 0) = 0 a t  t = 0, it 
follows that P(x,  A', t) = 6,,P(X, X ,  t) = 4,,P(X, t), where 
P(X, t) i s  given by formula (32). Takingthis into account 
and using f ormula (50), we obtain f r  om (48) an expression 
for  the energy scattered in the unit time into a unit 
solid angle in the direction of the unit vector k: 

In the limiting cases  F >> 1 and F << 1, using (37), we 
obtain I,,(t) in explicit form 

where D(t) and P ( b , t )  a re  given by formulas (41) and 
(44) [where we make the substitution t*,- t,(45)], and 
the angular directivity factor of the SRRS i s  

sin */ ,H (1 r cos cp) 12( Jl(hsinp) 
) ' h sin cp * / ,~ (1  r cos cp) (53) 

(*I  

Here coscp = k. $/ Ik 1' (we recall that $ i s  directed 
along the cylinder axis: I k 1 = Iko I); J ,  i s  a Bessel 
function of the f i rs t  kind. 

The first  term in (52) describes the isotropic spon- 
taneous RS produced starting with the instant t =0 ,  the 
second term describes the collective radiation which 
i s  formed in the form of a pulse whose maximum is 
reached at the instant t,. As follows from (52) and 
(53), the radiation in SRRS goes into small solid angles 
and in opposite directions along the cylinder axis. 
From (52), (42), and (44) it i s  seen that at the instant 
t, the scattering power I,,,(t,) - N'. 

We note that when the substitutions D-  - D, w, - w,,, 
and I?- y a r e  made, formula (51)-(53) describe the 
shape of the pulse and the directivity pattern of the 
resonant superradiance in a system of two-level atoms. 

The results of the present paper were obtained in the 
given-pump-field approximation. This field can be re- 
garded a s  given if the energy supplied during the radia- 
tion time rP exceeds the energy drawn from the pump 
field, i.e., 

whence, taking (42) and (36), and (24) into account, we 
get 

Thus, in contrast to the case of resonant superradi- 
ance, in the case of SRRS there exists an upper bound 
on the density of the number of scattering particles. 
At L " 1 cm, w,- w,- lox5 sec-', and Ir 1 - loT4 cgs esu 
we obtain n,- 10'' cm3. Our exact calculation of the 
SRRS process in the single-mode model, with allow- 
ance for the depletion of the pump,'8 confirms the 
estimate (54). Consequently, observation of SRRS i s  
more probable in gaseous media. 

The authors thank S. A. Akhmanov for a discussion 
of the results. 

'R. H. Dicke, Phys. Rev. 93, 99 (1954). 
*R. Bonifacio, P. Shwendimann, and F. Haake, Phys. Rev. A 4, 

854 0971).  
'N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735 (1971). 
'v. I. Eme19yanov and Yu. L. Klimontovich, Opt, Spektrosk. 

41, 913 (1976) [Opt. Spectrost. (USSR) 41, 541 Q976)I. 
'A. V. Andreev, Yu. A. Il'inskii, and R. V. Khokhlov, Zh. 

Eksp. Teor. Fiz. 73, 1296 (1977) [Sov. Phys. JETP 46, 682 
(1977)l. 

6 ~ .  Ressayre and A. Tallet, Phys. Rev. A 15, 2410 (1977). 
IN. Skribanowitz, P. P. Herman. J. C. MacGillivray, and 

M. S. Feld, Phys. Rev. Lett. 30, 309 (1973). 
'H. M. Gibbs and 0. H. F. Vrehen, Phys. Rev. Lett. 39, 547 

(1977). 
9 ~ .  A. Hopf, R. Shea, and M. 0. ~ c h l l ~ ,  Phys. Rev. A 7, 2105 

(1973). 
'OT. M. Makhviladze. M. E. Sarychev, and L. A. Shelepin, Zh. 
Eksp. Teor. Fiz. 69, 499 (1975) [Sov. Phys. JETP 42, 255 
(1975)l. 

"R. L. Shoemaker and R. G. Brewer, Phys. Rev. Lett. 28, 
1430 (1972). 

I2s. G. Rautian and B. M. Chernobrod, Zh. Eksp. Teor. Fiz. 
72, 1342 (1977) [Sov. Phys. JETP 45, 705 (1977)l. 

1 3 ~ .  V. Andreev, ~ i s ' m a  Zh. Tekh. Fiz. 3, 779 (1977) h v .  
Tech. Phys. Lett. 3, 317 (1977)l. 

I4s. A. Akhmanov, K. N. Drabovich, A. P. Sukhorokov, and 
A. S. Chirkin, Zh. Eksp. Teor. Fiz. 59, 485 (1970) [Sov. 
Phys. JETP 32. 266 (1971)l. 

"s. Stenhol, Phys. Lett. C 6, No. 1 (1973). 
S. Butylkin, Yu. G. Khronopulo, and E. I. Yahbovich, Zh. 

Eksp. Teor. Fiz. 71. 1712 (1976) [Sov. Phys. JETP 44, 897 
(1976)l. 

'?L. D. Landau and E. M. Lifshitz, Teoriya polya (Field The- 
ory), Nauka, 1973 [Pergamon 19761. 

I%. I. EmelPanov and V. N. Seminogov, Kvantovaya slektron. 
(Moscow) 6, No. 4 (1979) [Sov. J. Quantum Electron. 9,  No. 
4 (1979)l. 

Translated by J. G. Adashko 

22 Sov. Phys. JETP 49(1), January 1979 V. I. Emel'yanov and V. N. Seminogov 22 




