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An analysis is made of the frequency redistribution in resonance lines due to the scattering of ions with a 
large residual charge Z when the hypothesis of a complete redistribution is violated. The problem of the 
evolution of the line profile in an infinite homogeneous medium is considered in detail. It is shown that in 
the Lorentz wings of a Voigt profile the line expands in accordance with the law Avac t 'I4. Solutions for 
an Smite homogeneous medium are used to estimate the thermalization length T,,. Asymptotic formulas 
found for T,, are identical with those obtained on the assumption of a complete redistribution in the 
Doppler core of a Voigt profile and they differ considerably from those for the Lorentz wings. The 
thermalization length is estimated also for the case when the main role in the frequency redistribution is 
played by coherence violation due to the finite duration of the scattering process. in solution 78.70. - g 

The discovery of x-ray emission lines in the spectra 
of cosmic sources1 and attempts to explain them within 
the framework of the existing  model^^*^ have made it 
necessary to review some of the results of the existing 
theory of radiative transfer in spectral lines. This 
theory is based on the assumption of a complete fre- 
quency redistribution in each resonance scattering 
event4 and i t  is fully applicable to optical and ultraviolet 
resonance lines of ions with small values of Z. The 
approximation of a complete redistribution is usually 
justified by the fact that the width of an absorption pro- 
file u(v) is governed by the interaction with the sur- 
rounding plasma particles (linear Stark effect in hydro- 
gen-like ions) whose spatial positions change in a time 
much shorter than the excited-state lifetime r". How- 
ever,  the linear Stark effect decreases on increase of 
Z a s  Z" (it is assumed that the plasma consists mainly 
of hydrogen with small admixtures of heavy elements), 
the natural line width r ises  in accordance with the law 
I" a Z 4 ,  and in the range of temperatures in which a 
resonance line is formed -- the thermal velocity of parti- 
cles r i s e s  only proportionally to 2. It is thus clear that the 
assumption of a complete redistribution should be vio- 
lated a t  sufficiently high values of Z. For example, 
this assumption i s  totally inappropriate for resonant 
lines of hydrogen- and helium-like ions of iron a t  densi- 
ties N <  loa2 cm-= (Ref. 5). 

Under these conditions the problem of radiative 
transfer in a spectral line should be solved for a real 
redistribution function which is obtained by a concrete 
analysis of the resonance scattering process. However, 
even in the simplest spatially inhomogeneous cases 
this problem causes enormous mathematical difficul- 
ties.' In view of this, the concept of the thermalization 
length T,,  (discussed in detail later) becomes particu- 
larly important in a qualitative analysis of the physical 
situation and in order-of-magnitude estimates. We 
shall find the thermalization length from the law of ex- 
pansion of a line profile along the frequency axis in the 
case of an infinite homogeneous medium and situations 
in which the assumption of a complete redistribution is 
invalid. 

1. KINETIC EQUATION 

The kinetic equation describing the behavior of a line 
profile in an infinite homogeneous medium i s  

where x =  (v - v,)/~v, is the dimensionless frequency 
measured from the line center a t  v = v, arid normalized 
to  the Doppler width Av, = v0(2 kT/Arn,~?)'1~; &(x - xl)/ 
d?c' is the differential (with respect to  the frequency 1 )  
resonance scattering cross  section; n(t,x)& is the num- 
ber of photons per unit volume in the frequency interval 
(x, x +  dx); N ,  is the number of ions (per unit volume) 
which scatter the investigated line. 

Equation (1) is derived on the assumption that I v - v, l 
<< v, within the limits of the line profile and that factors 
of the ( v ' / ~ ) ~  type differ from unity by a negligible 
amount. Within the framework of this approximation, 
the terms responsible for the stimulated scattering 
cancel out; a thermodynamic equilibrium i s  obtained 
for n(t, x)=  const and the principle of detailed equilib- 
rium reduces to  the condition of symmetry of the dif- 
ferential scattering cross  section 

We shall find it more convenient to  replace the differen- 
tial cross section with the concept of a redistribution 
function 

1 &(z+z') 
R(z,zf)--- 

I: dz' ' 
where the quantity 

is governed by the oscillator strength f ,, of a resonance 
transition 1 - 2. 

2. REDISTRIBUTION FUNCTION 

If the influence of the surrounding plasma particles 
can be ignored, then the frequency redistribution func- 
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tion of a system in which the scattering ion i s  a t  res t  
has the form 

We have introduced here a dimensionless natural line 
width a =  r /4n~v , .  Going over to  the laboratory coor- 
dinate system and averaging over the Maxwellian dis- 
tribution of the velocities of the scattering ions,? we 
obtain the following form of the redistribution function 
from Eq. (5): 

where s= (x+ xf)/2 and zi= (x - xf)/2, The absorption 
profile corresponding to Eq. (6) is described by the 
Voigt function U(a, x): 

To perform our task we have to, strictly speaking, 
solve Eq. (1) using the redistribution function (6). 
Since this cannot be done analytically, we shall consider 
only the asymptotic behavior in regions of interest to  
us. We shall begin by distinguishing two cases of a 
wide Doppler core (a << 1) and a narrow Doppler core 
(a  >> 1). Since the a << 1 case i s  the one of practical in- 
t e r e ~ t , ~  we shall concentrate on it. Only a summary of 
the main results will be given for the opposite case. 

I f  a<< 1, the absorption profile (7) can be divided into 
two regions: the Doppler core, 

o (z) aZn-v'e-s, I z 1 <to, (8) 

and the Lorentz wings 

The value x =  x, separating these two regions i s  found 
from 

zDa exp (-xDa) -all:. (10) 

The function xD(a) varies extremely slowly: xD(O. 1) 
=2.08 and x,(0.01)=2.67. 

The function in the integrand of Eq. (6) 

can be approximated in the a << 1 case by 

The relative e r r o r  in the integral (6) is thenof the order 
of s ' ~  for I S  I >> 1. According to  Eq. (12), the redistri- 
bution function (6) splits into two terms, R,(x, x'), and 
R, (x, x') where 

The function RD(x, x') is independent of the parameter 
a and represents the limit of (6) when a-  0. Its con- 
tribution to Eq. (6) i s  much greater than the contribu- 
tion of Ra(x, x') for Ix l - Ix' 1-1 and becomes compara- 
ble with the contribution of Ra(x, x') for Ix 1 - Ix' 1-xD, 

falling exponentially for Ix I >> x, or  Ix' I >> x,. On the 
other hand, the function Ra(x, x') decreases only as  x'2 
when Ix - x' I - 1 and lx I - m *  On the basis of these 
properties we shall assume that a frequency redistri- 
bution in the Doppler core, Ix l < XD, occurs in accor- 
dance with the function RD(x, x') and outside this core, 
Ix I> x,, this happens in accordance with the function 
Ra(x, x'), which we shall approximate-using the fact 
that x, 2 2-by 

Each of the functions R,(x, x') and Ra(x, x') satisfies 
separately the symmetry condition (2). 

Since the redistribution function (6) decays very 
rapidly in the wings, i t  follows that after a sufficiently 
long time interval the frequency redistribution i s  
dominated by the processes violating the resonance 
scattering coherence in the system in which the scat- 
tering ion is at res t  and these processes a r e  charac- 
terized by a much weaker (proportional to x '~) decrease 
in the wings. For example, these processes may be 
collisions with charged particles, photoionization of the 
ground state, etc. (for details see Ref. 5), which re-  
strict  the duration of the scattering process to the time 
y". We shall allow for the influence in the limit y << r, 
when instead of Eq. (5) in the system in which the scat- 
tering ion is a t  res t  we have to  use the redistribution 
functions 

where b= y/2nAvD << a. The function (16) is obtained a s  
the limit for y << r from the redistribution law in the 
case of scattering in subordinate liness and, in con- 
t r as t  to the formula used by Hummer: satisfies the 
symmetry condition (2). 

To obtain the redistribution function allowing for the 
thermal motion i t  is necessary to go over to the labo- 
ratory system in Eq. (16) and to average over the Max- 
wellian distribution. However, if b << a there i s  really 
no need for this because for Ix - x' I s 1 the redistribu- 
tion law obtained in this way i s  practically identical 
with R(x, x') of Eq. (6) and in the wings where lx - x' I 
>> 1 and Eq. (6) decreases a s  exp[- (x - x')'], it i s  prac- 
tically identical with Eq. (16)- Thus, for our purpose 
i t  is sufficient to  consider radiative transfer using the 
function (6) and then to allow for the influence of the 
wings by Eq. (16). 

3. EVOLUTION OF A LINE PROFILE IN AN INFINITE 
HOMOGENEOUS MEDIUM 

Within the limits of the Doppler core lx I < x,, where 
we can assume that R(x, x')= R,(x, x'), the solution 
of Eq. (1) can be obtained analytically. lo Subject to the 
initial condition iz(0, x)= 6(x), i t  has the form - 

n (t, z) =t j exp (-tz-te-f') dE+e-'6 (2). (1 7) 
Id 

Here, t i s  the dimensionless time which i s  measured 
in units of fi/ Z;iV,c and which indicates the number of 
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a >> 1, we can replace Eq. (12) with 

FIG. 1. Line profile n(t,x) at various moments of the 
dimensionless time f ,  indicating the number of scattering 
events at the line center. The continuous curve is obtained 
for the frequency redistribution in accordance with the 
function R,k, x ' ) ;  the dashed curve corresponds to the 
assumption that the redistribution obeys the function 
R,G,xr), wherea=0.02. 

scattering events at the line center x =  0. A graph of 
the function (17) for several values of t is represented 
by continuous curves in Fig. 1. The asymptotic be- 
havior of n(t, 0) for t >> 1 is described by 

n (t, 0) (ln t) -'!:. (18) 

In the Lorentz wings Ix I > x,, where the contribution 
of RD(x, x') can be ignored and we have R(x, x') 
=R,(x, x'), Eq. (1) can be solved in the diffusion approxi- 
mation. This approximation is justified by the very 
fast [see Eq. (15)] fall of ~ , ( x ,  x') on both sides of the 
point x =  x'. Expanding n(t, x ' )  = n(t, x + 5 )  a s  a series 
in  6 and applying Eq. (15), we obtain 

The solution of this equation satisfying the initial con- 
dition ~ ( 0 ,  x )  = 6(x) is 

A graph of the function (20) for a =  0.02 and t = lo4 is 
represented by the dashed curve in Fig. 1. 

The line profiles (17) and (20) have a specific form: 
n(t,x) is practically constant for 1x1 <x,(t) and de- 
creases exponentially for Ix l > x,(t). A characteristic 
half-width of the profile x,(t) is given by the expres- 
sions 

~ ( t )  =(ln t)%, t<nHzD'/a. (2la) 
~ ( t )  -2-s14n-'f*r('/, (at)*-1.321 (at)", t>z.*/a. (21b) 

We can summarize these results by saying that for 
t < f ' 2 x v a  the profile of a line emitted at the center 
x = 0 of an absorption contour a t  a moment t = 0 expands 
on the frequency scale in accordance with the solution 
(17), whereas for t > xqda this happens in accordance 
with the solution (20). 

The ranges of validity of the asymptotic formulas 
(21a) and (21b) do not merge. This i s  due to  the fact 
that in the expansion of the profile beyond the Doppler 
core Ix I > xD the transition from the asymptote (18) to 
the asymptote (20) takes a longer time than that needed 
to reach the point x,(t) = x,. 

The case of a narrow Doppler core, when a >> 1, is 
basically similar to the case of the Lorentz wings. For 

s o  that Eq. (1) considered in the diffusion approxima- 
tion becomes 

an 1 a 1 an ----(--). at 2 a t  i+t'/crt a2 (23) 

Here, t is the dimensionless time normalized to one 
scattering event a t  the line center, i.e., to aa/~N,c.  
The solution of Eq. (23) for Ix I>> a is analogous to 
Eq. (20): 

We shall allow for the spreading of the line profile 
under the action of the wings of the function (16) in the 
following way. We shall assume that n(t, x) = n(t) for 
Ix I< x, and ~ ( t ,  x)= 0 for 1 . ~ 1  >x,. This approximation 
is justified by the solutions (17) and (20) obtained earli- 
e r .  Next, we shall use Eq. (1) to estimate the rate of 
r i se  n(t, x) for x 2 x, + 1, when the difference between 
the wings of the function (16) and the wings (6) becomes 
important. We thus find that 

Here, a s  in  the a << 1 case, t denotes the dimensionless 
time normalized to n112/C.Vzc. It should be noted that 
the main r i se  of n(t,x) in Eq. (25) occurs because of 
scattering from the region Id Is a, The law x,(t) can 
be found from the law of conservation of the total num- 
ber  of photons 

-. 
which gives 

We can now readily write down the approximate line 
profile spreading under the action of the wings of the 
redistribution function (16): 

It should be noted that the law n(t, 0) obtained in 
this way is practically identical with the asymptote 
n(t, 0) derived assuming a complete frequency redis- 
tribution. In fact, the solution of Eq. (1) with the re-  
distribution function 

is easily obtained by the method of Ivanov" and has the 
form 

2 bn" 

and hence for x =  0, t >> 1 we have 

n (t, 0) -n-"a(bt)-". (31) 
Here, I&) is a modified Bessel function. 

A comparison of Eqs. (27) and (21b) shows that if the 
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resonance scattering process i s  limited, on the aver- 
age, to the time interval y'l>> r", then the effect just 
discussed begins to dominate the line profile spreading 
from the moment 

4. THERMALIZATION LENGTH 

In those cases when in addition to the scattering in 
the line there a re  processes resulting in photon anni- 
hilation, we can introduce the concept of a thermaliza- 
tion length T,,, which i s  the average distance between 
the point of creation and the point of annihilation of a 
photon, expressed in terms of the range at the line cen- 
ter.  This concept makes i t  much easier to analyze 
specific physical situations. For  example, if the op- 
tical thickness of a cloud a t  the line center i s  7 CT,,, 

then practically all the line photons emitted in this ' 

cloud escape outside. In this case the line radiation 
may be a powerful mechanism of plasma cooling of the 
cloud. However, if 7 >> T,,, then only the photons cre- 
ated in a thin surface layer 0 < r ST,, can escape; in 
this case the line mechanism of cooling of the inner 
parts of the cloud can be ignored. 

We shall estimate the values of T,, using the solutions 
obtained for an infinite homogeneous medium. We shall 
define r,, a s  the average optical thickness (t,,) tra- 
versed by a photon emitted a t  the line center from the 
point of i ts  creation up to  a moment t,,, when the prob- 
ability of i ts  absorption r i ses  to (1 - e-'). We can then 
distinguish two cases: 

a )  in addition to resonance absorption described by 
o(x), there is also weak absorption in the continuum 
whose cross section a, i s  frequency-independent; 

b) the albedo of single scattering is A < 1, i ,  e. , the 
absorption cross section is o,(x) = (1 - x)u(x). 

In case a) the moment in question is given by t,, 
= o(O)/o, = a$a,, whereas in case b) i t  is found from the 
condition v(t,,) = (1 - A)-', where v(t)  is the average 
number of collisions experienced by a photon in a time 
interval t. In other words, we can estimate rth by 
finding the average distance traveled by a photon F(t) in 
a time interval t and the average number of photon col- 
lisions v(t). All the estimates given below a re  asymp- 

( 3 )? ' j .  ( 3T2) ("G)", 
T*- - 47T erp -- ds= -- 

h f l h  4 t ,  31 0. 

calculated in accordance with the above definition, dif- 
f e r s  from that used by Ivanov' only by the factor (8/1r)'/~ 
=1.6. 

In more complex cases discussed below the problem 
of spatial propagation of radiation cannot be solved 
analytically, Instead, we shall propose a procedure for 
an approximate estimate of f (t) which we shall illus- 
t ra te  in detail by the example of the Doppler core of a 
Voigt profile in the a<< 1 case, when the frequency re- 
distribution function i s  R(s, x') - R,(x, st), 

We shall f irst  estimate the distance traveled by a 
photon from the point of i ts  creation by direct flight, 
We shall do this by averaging the mean distance 

which i s  traversed in a straight line by a photon of fre- 
quency x and we shall use the distribution (17) obtained 
by solving Eq, (1): 

+ - 
t t ( t ) = j  ;1,(t,z)n(t,z)dz=t/21nt. 

.-- 
(3 6) 

In estimating the diffusion displacement of a photon of 
frequency x we shall use the simple formula 

which i s  free of any numerical factors, Averaging Eq, 
(37) over the distribution (17), we obtain 

which, apart from a factor of the order of 1/2, is iden- 
tical with Eq. (36). Since both integrals (36) and (38) 
a r e  calculated within the range Ix I - (In t)'I2 [where Eq. 
(37) i s  already considerably in error]  and since they 
a r e  identical within the limits of precision of our esti- 
mates, it follows that photons travel from the points 
of their creation mainly by direct flight. This result 
was derived earlier by Rybicki and Hummeriz on the 
assumption of a complete frequency redistribution. In 
contrast to ?(t), the average number of collisions r(t) 
experienced by a photon in a time t can be estimated 
rigorously from the self-evident formula 

totic and valid only if  t >> 1, a, >> a,, 1 - X << 1. t -  ns~. t 
v ( t ) = J d t r  jn( tr ,z)*dz=-- .  

6. 2 (In t )" . (39) 
This definition of T,, i s  physically identical with that I -- 

adopted by Ivanov4 foi"a steady-state situation and, for 
exact solutions of the same problems, should give val- 
ues differingfrom those of Ivanov4 by amounts not 
greater than a numerical factor of the order of unity. 
This i s  easily illustrated by considering the thoroughly 
investigated example of monochromatic scattering, 
when the scattering cross section a, i s  completely f re -  
quency-independent. In this case the problem of prop- 
agation of radiation i s  easily solved in the diffusion ap- 
proximation: 

Substituting the,required values of t,, in Eq, (36), we 
obtain expressions for the thermalization length (46a) 
and (47a) (discussed below). They differ only by the 
factor $/8 from the values deduced by solving the steady- 
state problem on the assumption of a complete frequency 
red i~ t r ibu t ion .~  Such a good agreement can naturally be 
expected if we bear in mind the proven1' identity of the as- 
ymptotic expressions for n(t, x )  obtained using the exact 
redistribution function R,(s, x') and assuming a com- 
plete redistribution over a Doppler profile. This 

The thermalization length 

(33) agreement can be regarded a s  the justification of the 
procedure adopted for estimating F(t), The procedure 
can also be checked easily in the case of a complete 
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redistribution over a Lorentz profile, when the solution 
of Eq. (1) i s  written in the form (30). In this case the 
expressions for the thermalization lengths differ from 
those given by Ivanov4 by the factor 

[we recall that u , a u ( O ) = ; ~ ; / r ~ / ~  for a<<1], whereas in 
case b) we should use the expressions 

Applying the above method to the Lorentz wings of a 
Voigt profile, where the scattering cross section has 
the form (9), we immediately find that in this frequency 
range the spatial motion of photons is due to diffusion 
and not direct flight. In fact, substituting Eq. (9) into 
Eq. (35) and Eq. (20) into Eq. (36), we obtain 

1 D 1  t'" ra=- -<-a- 
1-1' a  I-I a ' . '  

If the Doppler core can be ignored and a >> 1, then in- 
stead of Eqs. (46) and (471, we have t o  use corres- 
pondingly 

whereas the diffusion displacement is 

The average number of collisions is 
and 

1 i 1 t 'X 
Tu--- a ' / * < - a -  

a  I - I '  I-)" 
We can improve the estimate (41) and obtain the 

"correct" numerical coefficient by solving the diffusion 
equation 

Here, us = u(0) = ~ / r n .  

We can summarize the above analysis a s  follows. 
Under the conditions such that the cri teria of validity 
of the hypothesis of a complete frequency redistribution 
in resonance scattering is violated and it  is necessary 
to  use the real redistribution function [given by Eq. (6) 
for  the isotropic case], we can nevertheless use the 
results obtained on the basis of this hypothesis when the 
redistribution plays an important role only within the 
Doppler core Ix l S x,. However, if the line profile 
expands in the available time beyond this core, where 
Ix I> x,, the hypothesis of a complete redistribution 
becomes totally unacceptable. In order-of-magnitude 
estimates and qualitative analysis of the situation one 
can then use the expressions for the thermalization 
length given by Eqs. (46)-(49); in a more rigorous anal- 
ysis i t  is necessary to  solve the problem of radiative 
transfer with the appropriate redistribution function. 

which describes simultaneous frequency and spatial 
diffusion. However, since it is not possible to solve 
Eq. (43) analytically, we shall give the following argu- 
ments in support of Eq. (41). It follows from Eq. (43) 
that 

satisfies Eq. (19) s o  that a t  a moment t the fraction of 
photons of frequency Ix I > >  (at)'l4 i s  exponentially small 
[see Eq. (20)]. On the other hand, according to Eqs. 
(37) and (9) the greatest contribution to the spatial mo- 
tion is made by photons with the maximum possible 
value of 2, i. e., with ix l - ( ~ t ) l / ~ ,  and this leads di- 
rectly to Eq. (41). It should be noted that the differen- 
tial operator on the right-hand side of Eq. (43) does 
not admit stationary solutions in an infinite medium. 

The author is grateful to Ya. B. Zel'dovich, D. A. 
Kompaneets, and R. A. Syunyaev for many valuable 
comments. 

For t > t*, when the finite duration of the resonance 
scattering is the dominant effect, the spatial motion of 
the line photons by direct free flight i s  

An estimate of the diffusion spreading gives a value of 
the same order of magnitude. The average number of 
collisions i s  
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Combining the above results for F(t) and v(t), we find 
that in case a) the thermalization length should be esti- 
mated using the formulas 
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front of a turbulent electrostatic shock wave 
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The nature of turbulent processes and the mechanism of collisionless energy dissipation in the front of an 
electrostatic turbulent shock wave due to them are studied experimentally. It is shown that the 
development of instability of opposing ion beams results in a high level of turbulent noise, W/nT,S:  0.2 in 
the shock wave. The scattering of incident plasma ions by this noise is a mechanism which ensures beam 
energy dissipation over a distance of twenty Debye lengths. A phenomenological shock wave model is 
proposed which is based on two-stream electrostatic ion instability. 

PACS numbers: 52.35.Tc, 52.35.Ra, 52.35.F~. 52.40.Mj 

I. INTRODUCTION II. APPARATUS AND METHOD OF DIAGNOSTICS 

A turbulent electrostatic shock wave with Mach num- 
ber ~=u/c ,=2-3  was discovered in e~per iments ' .~  on 
the interaction of the flow of a rarefield nonisothermal 
plasma (T,>>T,) with a magnetic "barrier" (u is the 
velocity of plasma flow, c, is the ion sound velocity). 
The width of the shock front amounted to several centi- 
meters, which is 2-3 orders smaller than the free path 
length of the particles of the plasma relative to pair 
collisions. The formation of a collisionless shock front 
was attributed to instability development brought about 
by the part of the flow reflected from the barrier. 

The aim of the present work is the study of the nature 
of the turbulent processes and the character of the dis- 
sipation mechanism due to them in the front of an elec- 
trostatic turbulent shock wave. The study of the mech- 
anism of dissipation in shockwaves of such a type is of 
general physical and applied interest, since similar ef- 
fects can play a decisive role in such phenomena as  an 
earth surface shock wave,= isomagnetic discontinuities 
in the form shock wave front in magnetized plasmq4 
the interaction of ion beams with a plasma target,5 and 
so on. 

The study of processes in the front of an electrostatic 
turbulent wave has been carried out in two directions: 
1) the study of macroscopic density distributions and 
distribution of potential and flow velocity of the ions, 
and also the spectrum of random electrostatic oscilla- 
tions, time and amplitude characteristics, which makes 
it possible to establish the nature of the turbulent pro- 
cesses; 2) the study of the distribution function of the 
ions and ahead and behind the front, which enables us 
to decide on the character of the dissipation mechanism. 

1. The experiments were carried out on the "SOMB" 
apparat~s. ' .~ The diagram of the apparatus is shown in 
Fig. 1. The plasma flow was created in a metallic vac- 
uum chamber having the shape of a cylinder of length 
( L )  200 cm, diameter (D)  60 cm. A pulse of the work- 
ing gas (argon) was let into the volume, which has been 
pumped down to a pressure of s5X10's Torr, from one 
of the ends, making the pressure in the region of the 
ionizer = lom4 Torr. The expanding cloud was ionized by 
the current of electrons accelerated from the heated 
cathode. The plasma that was formed spread out in the 
vacuum at a velocity u=(5x10~-10~) cm/sec along the x 
axis of the volume, much greater than the velocity of 
motion of the boundary of the neutral gas, <lo4 cm/sec. 
Within a time of sec, a quasistationary flow of 
plasma was established in the region of the magnetic 
"barrier," located at a distance of 100 cm from the ion- 

FIG. 1. Diagram of the experimental setup: 1-pulsed valve 
for letting in the gas;  2-heated cathode; 3-wire-gauze anode; 
4-front of the neutral gas;  5-solenoid; 6-front of the shock 
wave; 7-Langmuir probes; 8-Hughes-Rojansky analyzer; 
9-apparatus for probing the plasma by a beam of ions. 
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