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A method for calculating spectra of complicated systems in the quasiclassical approximation is proposed, 
which is based on. the adiabatic invariance of quantum numbers; this enables one to avoid the basic 
calculational dificulties involved in finding caustics and fixing initial data for the quantized classical 
trajectories. The validity of this method is verified with the example of a two-dimensional anharmonic 
oscillator. The results of the adiabatic calculation are identical with those obtained previously by an exact 
direct quasiclassical calculation for this case. Some general questions connected with the application of the 
method are discussed. 

PACS numben: 03.65.Sq 

1. INTRODUCTION 

Much attention has been given to the development of 
the quasiclassical method for  many-dimensional sys- 
tems that do not permit separation of the variables (see, 
for example, Refs. 1-3 and references given there). 
Progress  in this field is of great importance for the 
theoretical study of the spectra of such physically im- 
portant objects a s  closed and open resonators, excitons, 
hydrogenlike atoms in strong magnetic fields, polya- 
tomic molecules (vibrational spectra), and s o  on. Ne- 
vertheless we know of only two paperszv3 devoted to the 
quasiclassically exact calculation of the discrete spec- 
trum; the cases  considered were the nondegenerate and 
the degenerate two-dimensional anharmonic oscillator. 
This situation is due to the lack of a practical recipe 
for finding the quantized classical trajectories. The 
only way at present is to choose initial data directly and 
then check the quantum conditions fo r  the resulting tra-  
jectories. For  systems with several  degrees of free- 
dom this method requires an  excessive amount of com- 
puter time, mainly spent in rejecting unsuitable trajec- 
tories. Furthermore, the checking of the quantum con- 
ditions requires the calculation of caustics,'' which a re  
integral characteristics of trajectories, s o  that it is 
hard to find an algorithm f o r  them. These difficulties 
naturally arise in the case of many-dimensional sys- 
tems that do not admit separation of variables. P re -  

cisely this sor t  of situation is discussed in what fol- 
lows. 

In  the present paper an approach is proposed which 
is different in principle, and which allows the removal 
of the main obstacles in the path of the quasiclassical 
calculation of spectra-those of fixing the initial data of 
trajectories and finding caustics. This approach is 
based on the adiabatic invariance of the quantum num- 
bers.  According to the adiabatic principle, the con- 
tracted action calculated over a closed path is con- 
served during a slow change of the potential; i.e., it is an 
adiabatic invariant? Consequently, in  a slow change of 
the potential the Bohr-Sommerfeld quantization condi- 
tions a r e  not violated and the trajectory of a particle 
will continue throughout to be a quantized one. The 
adiabatic principle can be  used to calculate the spec- 
trum of a Hamiltonian H in the quasiclassical approxi- 
mation in the following obvious way: First one chooses 
a reference Hamiltonian H,  for  which the classical tra- 
jectories that satisfy the quantization conditions are 
known, and then calculates with the classical equations 
of motion the development in time of these quantized 
trajectories during a slow change of the interaction 
V = H - H,,. When the interaction has been fully turned 
on, one obtains the quantized trajectory for the Hamil- 
tonian H and the corresponding eigenvalue of the ener- 
gy. The more slowly the interaction is turned on, the 
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more precisely the quantization conditions a re  satisfied 
for the trajectory found in this way. 

There has not been much investigation of the neces- 
sary conditions for the validity of the adiabatic princi- 
ple. It was originally formulated by Ehrenfest for one- 
dimensional  system^.^ In papers by Burgers and by 
KrutkovG the validity of the adiabatic principle was 
proved for many-dimensional systems that permit com- 
plete separation of the variables. There is no proof for 
the general case. Moreover, in papers devoted to the 
investigation of adiabatic invariance, the opinion has 
been variously expressed that the principle of adiabatic 
invariance is a consquence of the separation of vari- 
ables and does not hold for systems that do not allow 
complete separation (see, fo r  example, Refs. 4-9). 
However, no full justification has been given for this 
view. On the other hand, the absence of adiabatic in- 
variance in the general case would mean a violation of 
the correspondence principle in the adiabatic approxi- 
mation of quantum mechanics. In our opinion a suffici- 
ent condition for the validity of the adiabatic principle 
is that the caustics must vary continously during a slow 
change of the potential. This sort  of restriction is es- 
sentially related to the applicability of the quasiclassi- 
cal approximation. For  example, in the case of the vi- 
olation of adiabatic invariance when the energy level 
touches the top of a barr ier  (Ref. 7, p. 54) the ordinary 
quasiclassical method also becomes inapplicable for the 
stationary SchrMinger equation of the system; here it 
is necessary to use a more refined method involving 
comparison with the parabolic-cy linder equation. 

In Secs. 2 and 3 the adiabatic principle is used to cal- 
culate in the quasiclassical approximation spectra of 
two-dimensional systems for which the variables cannot 
be separated. So fa r  as we know, this is the first  time 
such a calculation has been done; therefore systems 
a re  studied for which the results of direct quasiclassi- 
cally exact calculations a re  a v a i l a i ~ l e . ~ ' ~  The results of 
the adiabatic calculations agree with those found in Refs. 
2 and 3. This indicates that adiabatic invariance does 
not depend on the separation of the variables. As com- 
pared with the method used in Refs. 2 and 3, the adia- 
batic method of calculation of spectra i s  much simpler 
and does not require any considerable computer time. 
However, i t  can be applied only when one can find a re- 
ference Hamiltonian Ho whose quantized trajectories a re  
not qualitatively different from those of the Hamiltonian 
and violation of adiabatic invariance are  considered in 
Secs. 3 and 4. Further possible applications of this 
method a re  also discussed in Sec. 4. 

2. NONDEGENERATE TWO-DIMENSIONAL 
ANHARMONIC OSCILLATOR 

Eastes and MarcusZ have calculated the spectrum of 
the Hamiltonian 

in the quasiclassical approximation for several values 
of the parameters w,, w,, X, and 77, with different val- 
ues of w, and w,. The Hamiltonian (1) occurs in the 

study of triatomic molecule. 

For  the adiabatic calculation of the spectrum of the 
Hamiltonian (1) we chose H(0) = H(X) I ,,, as the reference 
Hamiltonian. The quantized trajectories for this Ha- 
miltonian a re  well known: 

2, ( t )  -A. sin (o,t+cp,), 

yo(t) =A, sin (o,t+cp,). 

A . = [ ( 2 ~ + 1 ) / o . ] " ,  A,=[ (Zn,+l) /o,]",  

n, and n, a re  the quantum numbers of the oscillators 
along the x and y axes, and q, and cp, are  arbitrary 
phases. If the frequencies ox and w, a r e  incommensu- 
rable') the trajectories will in the course of time com- 
pletely fill a rectangle in the xy plane: Ix  I <  A,, 1 I 
<A,.  The sides of the rectangle a re  the caustics. At 
each point inside the rectangle the particle can be in 
four states, which differ from each other in the signs 
of the x and y components of the momentum p .  In other 
words, the solution of the Hamiltonian-Jacobi equation 
is four-valued. Each of these states, taken at an arbi- 
t rary  point inside the rectangle, can be used as an ini- 
tial condition for a trajectory which evolves, in the pro- 
cess  of slowly turning on the interaction V = H ( x )  - H(O), 
into a quantized trajectory of the Hamiltonian (1). We 
shall describe the turning on with equations of motion 
corresponding to the Hamiltonian (I), in which the pa- 
rameter X is replaced by a linear function of the time 
h(t) = hut. For  t = 0 this Hamiltonian is identical with 
H(O), and for  t =  l/v i t  is the Hamiltonian (1) with which 
we are  concerned. There a re  other possible ways of 
turning on the interaction, 

During the numerical solution of the equations of mo- 
tion the quantity H(A(t)) was calculated in parallel with 
the calculation of the trajectory. According to the adia- 
batic principle, a s  the rate v of turnirg on the interac- 
tion becomes smaller this quantity must approach the 
energy E,,,(A) of the quantized trajectory. The quanti- 
ty E,,,(A) is an adiabatic term in the quasiclassical ap- 
proximation. The calculation shows that the quantity 
H(A(t)) oscillates around the limiting value E,,,(A) with 
an amplitude proportional to the rate v, a period of the 
order of the period of oscillation of the particle along 
the x axis, and an initial phase that depends on the 
choice of the initial conditions. These oscillations a re  
due to the change of the potential in the region of posi- 
tive values of x during the time when the particle was 
in the region of negative x, and vice versa. For  the va- 
riable y the change of the potential is more uniform and 
produces less  effect. These oscillations bear no rela- 
tion to the adiabatic principle, which makes assertions 
about quantities averaged over time. The averaging can 
also be done by simultaneously calculating several tra- 
jectories which satisfy different initial conditions, and 
then calculating the average value 

(i numbers the trajectories). A natural procedure is to 
choose the distribution of the initial conditions s o  that 
their density is proportional to the square of the quasi- 
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classical wave function. The calculations show that this 
gives the result more rapidly than diminishing the value 
of v in calculations with one trajectory. 

In Ref. 2 several of the lower energy levels of the 
Hamiltonian (1) were calculated to five significant fig- 
ures for several values of the parameters w, and w, of 
the order of one, and X  and q of the order of one-tenth. 
The adiabatic calculation gives all five figures correctly, 
and also automatically provides, to the same accuracy, 
the values of the energy for all  intermediate values of 
A(0 < A  < A). The calculation of an entire E,,,(A) curve 
requires about two minutes on an M-222 computer 
(speed 27 thousand operations per second). 

3. DEGENERATE TWO-DIMENSIONAL ANHARMONIC 
OSCILLATOR 

In the paper of Noid and Marcus3 the spectrum of the 
Hamiltonian (1) was calculated for  the following values 
of the parameters: q =  -1/3, A =  (0.0125)'/~3 0.112, w, 
= w, = 1. We calculate here the spectrum of this Hamil- 
tonian by the method of adiabatic invariants. The re- 
ference Hamiltonian and the mode of turning on the in- 
teraction a re  the same as in Sec. 2. An essential dif- 
ference is that for  w,=o,  a quantum state of the refer- 
ence Hamiltonian can correspond to an infinite number 
of different classical trajectories, and for the adiabatic 
calculation we must f i rs t  select from among them the 
correct initial trajectory. 

When w, and w, are  equal the spectrum of the refer- 
ence Hamiltonian H(0) is degenerate; all the trajec- 
tories a re  ellipses, and a single trajectory is not suf- 
ficient to form a quasiclassical state, since it specifies 
the state of the particle only on a manifold of measure 
zero in configuration space. T o  obtain a quasiclassical 
state defined in a finite volume it is necessary to take 
an ensemble of trajectories of a given energy. The 
Bohr-Sommerfeld condition for an individual trajectory 
fixes only the energy of the particle E = N  + 1 (N = 0, 1, 
2,. . . is the principal quantum number). A second quan- 
tization condition appears in the formation of the en- 
semble a re  selected. 

When a small perturbation i s  turned on the degener- 
acy is removed. The trajectory will now fill a finite 
volume in configuration space, with the formation of 
caustics, and it must now satisfy two quantization con- 
ditions. The shape of the caustics depends on the form 
of the perturbation. For  example, when one of the fre- 
quencies is changed the trajectory fills a rectangle in 
the xy plane, but if the perturbation is spherically sym- 
metric it fills a ring. According to the form of the per- 
turbation the quantum conditions restrict  the choice of 
the initial unperturbed motion which is the starting point 
for the calculation of the perturbed trajectory; in the 
f i rs t  case the unperturbed trajectory must have half-in- 
teger values of the quantities 

1 1 
E,=-(p . ' ix ' ) ,  E,=-(p , '+y2) ,  

2 2 
(3) 

and in the second case the angular momentum L must 
be an integer. This situation is analogous to the quan- 

tum perturbation theory for the degenerate case: here 
also, before calculating the correction to the energy it 
is necessary to find the correct initial state, which is 
determined by the form of the perturbation. 

Accordingly, to carry out the adiabatic calculation of 
the spectrum of the Hamiltonian H(A) it is necessary 
f i rs t  to determine the parameters of the initial ellipti- 
cal trajectory, so  as to assure that when the anharmo- 
nic interaction is turned on it will develop into a tra- 
jectory that satisfies both quantization conditions. For  
this purpose we use the method of secular perturbations 
(see Ref. 9) ,4' Under the action of the small perturba- 
tion the particle will move in an elliptical trajectory 
whose parameters will change slowly with time. T o  
check the quantization conditions it is sufficient to find 
the parameters of the ellipse a s  functions of the time. 
As these parameters it is convenient to choose the quan- 
tities E,  and E, given by Eq. (3) and the angular momen- 
tum L . The variation of the parameters with time i s  
described by the equations 

where 

a re  the projections of the perturbing force on the x and 
y axes, W = H ( X )  - H(O), and x is a small parameter, 
Then, according to the secular-perturbation method, 
we must replace the right-hand sides of Eqs. (4) with 
their averages over the unperturbed motion. But at 
q =  -1/3 the averages of all of these right-hand sides 
a re  equal to zero. To  obtain a nontrivial result one 
must use perturbation theory to a higher order. For  
this purpose we represent the radius vector of the par- 
ticle in the form 

r ( t )  =to ( t )  +xr ,  ( t ) .  (51 

Here ro(t) is the radius vector of the unperturbed mo- 
tion of the particle along an ellipse with the components 
(2), and the components of the vector r,(t) a re  to be de- 
termined from the equations of motion 

Solving the system of Eqs. (6) and then averaging the 
right-hand sides of Eqs. (4) over the trajectories r(t) 
given by Eq. (5), we get 

The solution of the system (7) is 
E,='/:[E+ (EZ-L2)  '' cos ( ' i IxYLt)  1, 
E,=*I, [E-  (E'-L?)' C O S ( ~ I ~ X ~ L ~ )  I, (8) 

L=const. 

I t  follows from (7) that the parameter E = Ex+ E ,  (the en- 
ergy of the particle in the unperturbed problem) i s  con- 
served; i.e., the ellipses among which the particle 
slowly wanders belong to a set of trajectories of the un- 
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perturbed system. This is a natural result in perturba- 
tion theory. The character of the resulting trajectory 
is obvious if we choose a s  the parameters of an ellipse 
the quantities L ,  E ,  and bi. The angle 6, which gives 
the direction of the major axis of the ellipse, is ex- 
pressed in terms of L, E,, and E ,  a s  follows: 

E -E, 
cos 20 - - (E2-LL) '!r . 

Substituting the solution (8) in Eq. (9), we get 

i.e., the particle moves along an ellipse which keeps its 
shape (L = const, E = const) and rotates slowly and uni- 
formly around the origin. Thus the trajectories fill a 
ring. This is the same sort  of motion a s  is found for a 
spherically symmetric perturbation. It follows at once 
that the correct initial state will be one with integer L 
and E. The direction of the major axis is immaterial. 

After finding out the kind of initial data that assures 
that we will get quantized trajectories when an infini- 
tesimal perturbation is turned on, the further calcula- 
tion is carried out precisely a s  in the case of different 
frequencies (Sec. 2). The results s o  obtained a re  iden- 
tical with those of the direct calculations of Noid and 
Marcus,' who also gave the energy to five significant 
figures. As an example, Fig. 1 shows (solid curve) the 
energy a s  a function of A for the state with the quantum 
numbers (at = 0) L = *2, N = 2. This energy level is 
twofold degenerate: 

In the same figure we illustrate an important me- 
chanism of breaking adiabatic invariance, which must 
be kept in mind in choosing a standard Hamiltonian. At 
first  glance i t  would seem that the investigation by per- 
turbation theory could be avoided a s  follows: start  with 
an initial Hamiltonian with different frequencies, with 
no degeneracy, and then in parallel with the slow in- 
crease of A bring the frequencies to equality in such a 
way that when the interaction is fully turned on they a re  
both equal to unity. In Fig. 1 the dashed lines show the 
results of such a calculation for  two states whose qua- 
siclassical terms should reach the same value, equal 
to that given by the solid curve, when the interaction 
has been fully turned on. The frequencies chosen in the 
initial Hamiltonian were as  follows: w: = 0.9, w: = 1.1. 
We see from Fig. 1 that at f irst  the two terms move to- 
ward the correct common value, but then they begin to 

move apart. The reason for the breaking of the adiaba- 
tic invariance is that the original state is four-valued 
and has only an outer caustic, but the final state, a s  
was shown in Ref. 3, is two-valued and has both an ou- 
ter  and an inner caustic. If one chooses the origin of 
coordinates in configuration space a t  a point of forma- 
tion of the inner caustic, and uses a s  the coordinates in 
the momentum space p, (the radial component of the 
momentum) and p, (the angular component of the mo- 
mentum), then for t < t, (to is the time when the inner 
caustic forms) p, takes positive and negative values 
with equal probabilities, but for  t > to the particle moves 
in only one direction around the origin in configuration 
space and the quantity p, can no longer change sign. 
Thus a t  the instant to there is a discontinuous (nonadia- 
batic) change of the caustic in the momentum space. At 
the same instant there is a change of the multiplicity of 
the solution of the Hamilton-Jacobi equation in configu- 
ration space. 

4. CONCLUSIONS 

The method of adiabatic invariance greatly simplifies 
the calculation of spectra of complicated systems and 
does not require large amounts of computer time. In a 
certain sense i t  is a generalization of the method of the 
reference equation to the case of many-dimensional sys- 
tems. Precisely a s  in the methodof the reference equa- 
tion, the fundamental problem here is to find a refer- 
ence Hamiltonian H, whose quasiclassical states do not 
differ qualitatively from the states of the Hamiltonian 
H. For  the present case, however, unlike that of the 
reference equation, we do not have clear cri teria for 
deciding whether o r  not a given function is a reference 
Hamiltonian for the Hamiltonian H. For  many-dimen- 
sional systems a superficial similarity of the potentials 
is no longer sufficient, as is convincingly shown by the 
example of breaking of adiabatic invariance considered 
at the end of the previous section, in which outwardly 
similar Hamiltonians could not serve a s  the given and 
reference Hamiltonians. The point is that in the many- 
dimensional case, depending on the state of the particle, 
additional effective potentials appear, such a s  the cen- 
trifugal potential. This situation reflects the intrinsic 
complexity of the problem of calculating the spectra of 
many -dimensional systems. 

Among the problems which can be investigated by the 
proposed method, we must first  of all mention the cal- 
culation of the spectra of the helium atom and of the hy- 
drogen atom in crossed fields. To  calculate the helium 
spectrum it is natural to use an adiabatic turning-on of 
the interaction between the electrons. The reference 
Hamiltonian so obtained is degenerate. The classical 
perturbation theory for the interaction of the electrons 
in the helium atom, which is required for choosing the 
correct initial trajectory, was developed by Born, Hei- 
senberg, and Kramersl0 (see also Ref. 9). The pertur- 
bation theory for hydrogen in crossed electric and mag- 
netic fields is expounded in Ref. 9, and the initial ellip- 
tical trajectories of the electron which, when the fields 
a re  slowly switched on, will develop into trajectories 
satisfying the quantization conditions a r e  known. One 
can check that the adiabatic principle holds either by 
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selective verification of the quantization conditions or  
by varying the manner in which the interaction is turned 
on (if there is no violation of adiabatic invariance, the 
final result must obviously not depend on the way the in- 
teraction is turned on). At the present time it i s  evi- 
dently impossible to calculate the spectra of these sys- 
tems in the quasiclassical approximation in any other 
way. 

The author is deeply grateful to Yu. N. Demkov for 
valuable comments, and also to  A. K. ~ a z a n s k i r  and 
V. N. ~ s t r o v s k i r  for a discussion of the results of this 
work. 

"caustics a re  hypersurfaces in configuration space with sep- 
arate regions in which a solution of the Hamilton-Jacobi 
equation has different multiplicities. 

2)~n this paper we use the atomic system of units e = m = l i = l .  
S'~ommensurability of frequencies cannot play any special 

role in the adiabatic method, since the Hamiltonian is non- 
stationary and resonance effects occur at a set of points of 
measure zero along the time axis. 

4)An example of the use of this method in the old Bohr theory 
is  the calculation of the Stark effect for the hydrogen atom.$ 
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A simple closed expression is derived, in the dipole approximation, for the cross section for radiative 
recombination of an electron into an arbitrary level of a hydrogenlike atom. The effect of a magnetic field 
on this process is estimated. The possibility of using it in experiments on electm cooling of heavy 
charged particles i s  discussed. 

PACS numbers: 34.90. + q, 29.25.Fb 

1. In connection with work now in progress on elec- 
tron cooling' there is increasing interest on the process 
of recombination of electrons with protons. For  exam- 
ple, detection of the resulting hydrogen atoms has been 
used directly in the NAP-M storage ring to bring the 
proton and electron beams into coincidence and to ob- 
tain a rough estimate of the temperature of the latter 
beam. As is shown in what follows, for  values of the 
parameters corresponding to the experiment of Ref. 1 
recombination is due to radiative transitions. For  a 
formulation of the problem and a survey of the litera- 
ture on this question, see  Ref. 2. In the present paper 
an expression in closed analytic form for the cross sec- 
tion of radiative recombination to the level n of a hydro- 
genlike atom is obtained for the f i rs t  time, by success- 
fully performing the sum over all quantum numbers. An 
analysis of the experimental situation with electron 
cooling is also made, and in particular the influence of 
a magnetic field on the recombination rate is estimated. 

Recombination can occur both through the involve- 
ment of three particles (ternary recombination) and 
owing to the emission of photon (radiative recombina- 
tion). The total number N of recombinations per unit 
time i s  given by 

iV=pn.iv,, (1.1) 

where n, is the density of electrons, N p  is the total 
number of protons, and B is the recombination coeffici- 
ent. 

In  ternary recombination there is a transfer of ener- 
gy of the order of the mean kinetic energy from one 
electron to another. The characteristic length for this 
process is p-e2/T (the temperature T of the electron 
beam is in energy units), and its probability per unit 
time "v,p2n, (v ,  is the velocity corresponding to the 
temperature T). For  recombination to occur, the elec- 
tron that loses energy must be at a distance -p from a 
proton. The number of such electrons per proton i s  
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