
.. 
absorption-emission of such photons by an electron is 
proportional to the parameter 

which characterizes the field of the transformed wave 
(E - E & ,/&,, w - $g/rnc2lf). Consequently, the probability 
of electron-positron pair production will be - 5;,  in con- 
trast to the case of pair production in a stationary plas- 
ma in the field of strong waves or  radiation, where the 
probability of this process is -tZS(s r lo6 for optical 
photons, and 5 << 1). Thus, the principal small quantity 
in the probability of electron-positron pair production 
is eliminated in this case. 
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The mass operator is obtained for an electron moving in the field of an intense wave propagating along a 
magnetic field. An operator diagram technique is used for the analysis. The radiative shift of the levels 
and the electron radiation probability are obtained. The cross section is calculated of the Compton effect 
on an electron moving in a magnetic field. The region near cyclotron resonance is analyzed in detail. 

PACS numbers: 41.70. + t 

If a plane wave propagates along a magnetic field, a 
very interesting situation is  realized: at the cyclotron- 
resonance point, where the wave frequency coincides 
with the frequency of the particle motion in the magne- 
tic field (with allowance for the Doppler shift), reso- 
nant energy transfer from the particle to the wave and 
back is possible. This process (cyclotron resonance) 
can take place in a large number of physical phenomena, 
particularly in the formation of pulsar radiation, as well 
as  in devices used to amplify electromagnetic waves or 
to accelerate particles by a laser wave. 

In this connection, an analysis of radiative effects in 
a field of the indicated configuration, including the vi- 
cinity of the cyclotron resonance, is of undoubted in- 
terest. An approach to the analysis of this problem was 
formulated by us in an earlier paper,[" where the case 
of particles with zero spin was considered, and where 
a brief bibliography concerning processes in this field 
is given. In the present paper we consider the case of 
fundamental physical interest, that of particles with 
spin 1/2. We used in our approach an operator diagram 
technique based on the operator representation of the 
Green's function of a charged particle in a given field 
with a subsequent specific transformation of the opera- 
tor expressions. This technique was developed earlier 

for the analysis of radiative effects in the case of a ho- 
mogeneous external field by Katkov, Strakhovenko and 
one of and for the case of a plane electromagnetic 
wave by Katkov, Strakhovenko, and both of us.[31 The 
analysis of radiative effects in a field having the config- 
uration considered in the present paper is a substanti- 
ally more complicated problem, and the preceding pa- 
pers were limited to an analysis of some particular 
cases. In the present paper we obtain a general expres- 
sion for the mass operator of an electron in a given 
field, from which we deduce both the probability of the 
electron emission and the quasienergy level shift. We 
analyze some limiting cases and, in particular, obtain 
the cross section of Compton scattering in a magnetic 
field. Effects near cyclotron resonance are considered 
in detail. 

We describe the electromagnetic field by a potential 

4 = A w ( ~ ~ , )  +Av(v), (1) 
where rp = x x  and X X , ,  = 0 .  Assume that the magnetic 
field is directed along the wave-propagation axis (the 
3 axis); then 

A' (2,) =-zZII ,  A"(q) =n,'a, (cp) +n,"aa,(cp) ; (2) 

Here 40 = x x = x O  -$; we have introduced the vectors 
nf =&, n: =&, xu =g:+&, where &are  components of 
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the metric tensor. 

The electromagnetic field intensity is represented in 
the form 

t 

P = = F u v  +x fkuva; ((p), fkllv-~Lln;-~"n,", 
a-1 

(3) 

where FZ1=H, H i s  the magnetic field, and a:@) 
=&,(cp I/&. 

The mass operator of an electron in an external field 
can be represented in the form [see Ref. 2, formula 
(3.111 

where P, = i8, - ed,(e> 0). We carry out the standard 
parametrization of the integrand 

Formula (4) can then be rewritten in the form 

iCI - ' 
~ 1 % )  = -----;j sds I duiW"; 

(2x1 

Here 

i ~ ' ' ~ ) = -  j d i k r m ( b - ~ t m ) e x p ( i s u [  (~-~)~-m~]]+i,ex~~is(l-u) kz]. (7) 

The evaluation of the integral with respect to k re- 
duces primarily to calculation of the quantity 

Q" :'=I d n k  csp[isu(~-i)']exp[is(f-U) k'] 

- j d4k e-'k" rxp( isn p)  e"" e s p [ i s ( l - U )  h.']. 

where the shift operator in momentum space is used; 
for a certain function f(P) we have 

e-"Xf ( P )  e'"-f ( P - k ) ,  [P, .  S, I -ig,.. 

To calculate (8) it is necessary to transform the opera- 
tor expression exp (is&). This transformation (disen- 
tanglement), being one of the central points in the pre- 
sent method, is  given in the Appendix. Substituting ex- 
pression (A.14) in formula (8), we integrate with res- 
pect to k. The integration with respect to variables k0 
and 123 can be carried out with the aid of a procedure 
used in Ref. 3. It is necessary in this case to change 
over to the variables 

k,='lz(k9k"), k,='/,(k"-k3), (9) 

and the integration with respect to k, yields 6(k, - up,), 
meaning that the integration with respect to k, reduces 
to the substitution k, -up,. Integration with respect to 
the variables k1 and k2 can be carried out with the aid of 
the procedure adopted in Ref. 2. A s  a result we get 

x ( i + 2 g ) e x p  ( ~ s u -  e;F ) exp ( i q ~ ~ ? ,  (10) 

where the following notation is used1) [see also formu- 
las (A.4) and (A.7)] 

1- cos 22 
sin 2x+2x( l -u)  / u  I * 

Here x =  sueH and the matrix B'" =Fuu/H. 

The expression for &('/2'(7) contains terms of two 
types, without and with k, in the factor preceding the 
exponential expression. We have calculated the terms 
of the first type, and it remains to find the terms' of the 
second type. We use here the same method a s  in Ref. 3 
(see formula (3.9) therein): 

Calculating the commutators in this expression and sub- 
stituting (11) and (12) in (7), we have for the mass op- 
erator in the given field 

where 

~- -~ - ' . ""3 l r+ ;  (ye-..g), 

for the remaining notations see (11) and (A.3). 

The expression obtained for the mass operator should 
be renormalized in standard fashion [see Ref. 2, formu- 
la (3.15)]: 

The obtained mass operator can be used in various 
applications. A s  shown by us earlier,c41 the change of 
the quasi-energy of the electron is determined by solv- 
ing the secular equation (owing to the presence of the 
double degeneracy): 

where 9, is the solution of the Dirac equation in the 
given field (i, j = 1,2). Knowledge of the change of the 
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quasienergy (at a given quasimomentum) makes it pos- 
sible to obtain the quantities of interest, namely the ra- 
diative shift of the levels ReA& and the probability W of 
electron emission: 

A ~ n e - e ~ = R e  Ae-l/ Z Z ~  ' "11 . (18) 

A solution for the Dirac equation in the field of the 
considered consideration was obtained by R e d m ~ n d . ~ ~ ~  
We represent this solution in the form (a covariant nor- 
malization condition is used) 

where 
nll,=i~,-eA,, (z,,), . r=zD+i  ' , p " Y m = ' i : k ~ ~ v c ) .  

Here H, are Hermite polynomials. 

Substituting in the secular equation (17) the mass op- 
erator (16) and the wave functions (19), we get a gener- 
al solution of the problem for the analysis of radiative 
effects in the field (I), (2). Since the resultant expres- 
sions are very cumbersome, we confine ourselves here- 
after to the case of circular polarization of the wave 
[see (2)l: 

GCa COS (p, al=a sin cp, 

for which the result is relatively simple. We note that a 
substantial simplification of the formulas compared with 
the general case is a well known fact in the problem of 
radiative effects in the field of a circularly polarized 
wave. 

Using the wave functions (19), we can obtain the quan- 
tity (yO) which enters in the secular equation (17): 

where v= wX/eH (the sign of v depends on whether the 
wave is left- o r  right-polarized), 6 = 1 + v, and 
5' = de2/m2 is a parameter of the wave intensity. 

After rather laborious calculations we obtain2) the 
following final formulas for the matrix element of the 
mass operator 

in the field of the considered configuration 

Here 
(Im R )  ' Ha a'.,-@,+E'@,, 6=2:'-- 
s i d p  H ' 

Ha z ' s i n y  
@ o = ~ n I z ( i - u ) - p ~ ,  Q --[ (-) -s in(z+y)  '-H z + y  s i n z  

sin2y --- vzyu 2 I m R  
-ctgplRIz--  

2 ( l + v ) l  ( z i - y )  ( i + v )  
sin y ] ; 

I + v  

We present below the explicity forms of the coefficients 
of (23) 

2 Im R euP+m' iv e-i= 

+ ~ e - ~ u  [z' ( sin p - z ) + x ( - 2 ~ m ~ + -  v c O s y )  l+v  11. 
bz=b,'(m-c-m), 6 ; = i ~ [ c , + c ~ + ~ ~ ( m + - m ) ] ,  

cl- ( R ' - s ) { ( l  + : ) [ i e - I a  

e-ItP+n' 
X(-- -is;- + (5 - i ~ )  e-'0) -iz'elp] 

m ~ e ' ~  sinte'" 
- i - - ( z + - + s i n ( y - z ) ) ) ,  e l + v  l+v 

sin y 
r:-2 ~e {( R' - -) l + v  eio[T - sin p 

sin y b, - $(I-  :) (R'  --) e'~@[2zefp+ iura'*-o~ 
i +v 

sin p 
+2u (- - eio 

qH 
where L, are Laguerre polynomials, 

z sin (zfg) 
eiY- 1 ,  

Re -"sin z 
Z - . P-(z) '", Z - s u e r  Y - ~ W , , .  (24) 

sin p 

v = = d / e I I ,  Ha-mL/e, e1=m'(i+2niI/IIo); 

the remaining notation is given in (11). 

The result (22) gives the general picture of the radia- 
tive effectss' (the emission probability, the level shift) 
when an electron moves in a field of the considered con- 
figuration. We analyze now the radiative effects in a 
number of limiting cases. 

At t2<< 1 we have the description of the field in a mag- 
netic field of any intensity in the presence of a weak 
plane wave. To obtain an explicit expression for 
(M"~),, we must expand in powers of t2. The zeroth 
term of this expansion describes the radiative effects in 
a magnetic field, while the terms proportional to t2, 
after division by A/ ( . , , )  and the substitution t2- 4na/m2w 
gives a complete cross section of the Compton effect on 
a polarized electron in a magnetic field of arbitrary in- 
tensity. For an electron in a state 1 [see (20)], the to- 
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tal cross section of the Compton effect 

where A  = wX/m2 and the remaining quantities are de- 
fined in (23). 

For the polarization of an electron in state 2 we have 
a2=a1 (m+-m) (26) 

and for unpolarized electrons 

acm.-'/2 (Ol+(l,). 

For any other choice of the polarized states of the elec- 
tron, it is necessary to take the corresponding combin- 
ation of #, and $J, and of the matrix elements (M"~),,. 

The Compton effect on an electron in an external mag- 
netic field was discussed earlier by Milton et ~ 1 . ~ ~ '  who 
succeeded in taking into account, within the framework 
of the Schwinger operator technique for an electron in a 
magnetic field in the lowest order of perturbation theo- 
ry, the interaction with an electromagnetic monochro- 
matic wave propagating along the field H. Our expres- 
sion is substantially more compact. 

In the case H/H,<< 1 and v =  Xo/eH>> 1 we can obtain 
an explicit expression for the cross section o of the 
Compton effect. The contribution to the integral (25) is 
made in this case by the region of small x .  Carrying 
out the expansion and integrating, we get 

o=oo+o~. (28) 

Here 

where 5, = i1 for right- and left-hand polarizations of 
the wave 

The expression for a, agrees in form with the cross 
section of the Compton effect in the absence of a field if 
A =  kp/m2, k and p are the momenta of the photon and of 
the electron [see Ref. 3, formula (3.4)], and p is the 
spin correlation term. By virtue of the double degen- 
eracy in spin, an electronic state with arbitrary polari- 
zation can be represented a s  a linear superposition of 
wave functions (20): 

Here 9 and cp are certain angles. In this case, in a sys- 
tem where p3 = 0, the spin correlation term in a circu- 
larly wave is  

m 
(2neH) " sin 6 cos 9. b2p--cos6-- 

e 

The quantity a, is a correction to the cross section. 
For an unpolarized wave (and also in the case of linear 
polarization), all that remains in o, is the term propor- 
tional to p. This term agrees with that obtained by Mil- 
ton et ~ 1 . ' ~ ~  The remaining contribution to o, is missing 
from Ref. 6, since an unpolarized wave was considered 
there. 

A s  already noted, a resonant situation arises in the 
considered field configuration (cyclotron resonance, in 
which the wave frequency coincides with the frequency 
of particle motion in the magnetic field, v =-I). Let us 
consider this question in the case when 

In the case 5/6 - 1 the shift of the quasilevels is given by 

In the first term, the main contribution to the integral 
with respect to u is made by the interval u -ff/Ho<< 1, 
while in the second term (the contributioh anomalous 
magnetic moment) the main contribution is made by the 
region x - H/Ho << 1. The imaginary part of (31) deter- 
mines the probability of radiation of an electron in the 
field of the given configuration in the classical limit 
(this result as  obtained by us earlier). This term of the 
expansion of this probability in powers of $ [with ac- 
count taken of the procedure used in the derivation of 
formula (25)] yields the cross section of the Thompson 
scattering or  a circularly polarized wave by an electron 
in a magnetic field 

In the case when 5/6 >> 1, the main contribution to the 
integral with respect to y is made by the integral y << 1. 
Carrying out the corresponding expansions in (22)-(24) 
(the terms with b,, b,, and b, make no contribution), we 
have for the quasi-energy shift 

where X =  5H/6H0, K, is  a Bessel function of the imagin- 
ary argument (MacDonald function), while the function 
L, is defined in Ref. 7, p. 181. The last term in the 
curly brackets is the spin term. 

We present here also asymptotic expansions for (33): 

Let us discuss the results. A s  resonance is ap- 
proached, the energy of the electron increases [see 
(21)], so that the particle motion becomes quasiclassi- 
cal. This is  precisely why formula (33) agrees with 
the quasiclassical approximation of the radiative shift 
of the energy when a high-energy electron moves in a 
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magnetic field [see Ref. 7, formula (12.7)]. It is easy 
to verify that in a system where ($9 = 0 [see formula 
(21)], the parameter x= H[/HOb in (33) coincides with 
the characteristic parameter x = H(PO)/Hom, which en- 
ters in the formula that describes synchroton radiation. 

The quasiclassical character of the motion of the 
electron makes it also possible to find other properties 
of the radiation, particularly the total intensity of the 
radiation of the electron resonance. Using the known 
results obtained in a magnetic field, we get 

(ID 

am' u(4+5u+4u2), 
I - - 

3 n f i I  ( i+u) ;  
K. (2) du. 

We have left out of this expression the spin term, which 
makes a small contribution to the radiation intensity at 
H / H , ~  1. 

We present for the sake of completeness the asymp- 
totic values of the expression for the density I: 

I-'/,am2x'+. . ., % t i ;  

I -  (2/,)samaI'(2/I) ( 3 ~ ) " ~ +  . . ., nW4. 

so that near resonance we have l a c  6-2/S. We note also 
that the maximum of the spectral distribution of the in- 
tensity occurs at the frequency 

APPENDIX 

Consider the operator 
e x p ( b P )  =exp[k  (P+e&/2) 1, 6-a,S.,,. 

We represent this operator in the form 

exp (is P) ==L (8)  ei.*eiM, (A.1) 

where 
a==P,z-P,bP,z, b=- (P,'+P?+e09/2) =-P,'+eof(cp)/2+eoF/2. 

Differentiating (A.l) with respect to s and multiplying 
the result from the left by L" and from the right by 
e-lue-fab, we obtain 

where 
j ( s )  -ei'"b(cp) e-'". 

Using the variables 
p=za-z' ,  T - ~ ~ + z ' ,  

we obtain 
~,'=4p,p,; p,-ia/ar, p.=ia/h. h.3) 

We see now that eta is the shift operator with respect 
to the variable cp, so that 

f ( s )  -b(@.) ,  O I P ( P - ~ P ~ ~ .  (A.4) 
We represent the operator P,, in the form 

P,-tafl-eA ( z n )  - eA(q)  =nr-eA ( 9 ) .  

Recognizing that 
[rr!!,, a , * ]  --ieF*, of ( P ) / 2 = - ~ ~ ~ ' ( c p ) ,  [x, OF] -0, h.5) 

we can transform (A .2) into 

where we use the matrix notation (My)  =AUF,,yY 

A r b )  ==e[Av(Q.)-Av(cp) I. (A.7) 
In the derivation of (A.6) we used the relation 

etr.or~rTue-is.~r/2 - (e-2as'r)r, (A.8) 
which can be easily obtained by differentiating the left- 
hand side of the equation with respect to s and using the 
commutation relation between u,, and y,. The solution 
of (A .6) is  

I 

L = ( l + ; g ( s )  )ex[, [ i s !  ~ ( ~ s ) d y ]  T(-I erp [- 2 i s j  d ( s y ) e - ~ ~ ~ ~ , , d y ]  . 
(A.9) 

where the symbol T"' denotes the antichronological pro- 
duct in the "time" s ,  

Account was taken of the fact that ( x ) ~ =  0. The T"' pro- 
duct contained in (A .9) can be calculated, since the 
commutator of the operators in the argument of the ex- 
ponential is a c-number (Ref. 7, Sec. 6.3). It is  easy to 
verify that 

Substituting (A.lO) in (A.9), and then in (A.l), - we get 

I I 

X ~ X P  (2is2 I d y l  I a ~Y~~(YZ-YI)A(SY~)~XP[-~~FS(~.-~.) I A ( s y J ]  . 
x esp ( iseuF/2)esp (isP2)exp ( t P L Z ) .  (A.11) 

In what follows it is convenient to recast (A .11) in a 
form that does not contain terms linear in P. We use 
for this purpose the formula 

e x p [ i s ( ~ - q ) , t j  = erp i q = ~ + ~ s '  d y , j  dy f i ( y , - y , ) .  c r  j ,' 

X? exp[2eFs(yZ-y.) l q ] ) e r p  [-2iqs 

(A.12) 

which can be easily obtained by the method described 
above. Putting 

we arrive at the following representation 

erp (isP') - ( l + k g ( s ) )  erp ( i Q , ( s ) )  esp ( i s e o F / 2 ) .  
x e s p  (is(P-9.) ,')exp (isPL2), (A.14) 

where 
1 L 

@ ( s )  - 2s' I GI dy,A(sy,)exp[2cFs(~~-y~) 1A (SYZ) 
a 0 
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"we use here and below extensively a matrix notation, eg., 
ABq= Al.tPVqv. 

2)~i thout  loss of generality, we can change over to a system in 
which p2=0. The operator transformations used in Sec. 3 of 
Ref. 1 are useful in this case. 

"~ormal transition from a right- to a left-hand polarized wave 
is  possible by making the substitution w - - w.  
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inhomogeneously by the Doppler effect 

L. D. Zusman 
Institute of Inorganic Chemistry, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk 
(Submitted 19 December 1977) 
Zh. Eksp. Teor. 75, 40247 (August 1978) 

Kinetics of saturation of a Doppler spectrum by a monochromatic field is determined. It is shown that the 
kinetics is exponential and the rate of saturation is found. At high incident-wave intensities, the rate of 
saturation of a Doppler profile is proportional to the collision frequency. The distribution of the population 
difference between the velocities is determined. It is demonstrated that the power absorbed per unit time 
is proportional to the rate of saturation of a Doppler spectrum. 

PACS numbers: 31.30.Jv, 32.80. - t 

Investigations of the nature of elastic collisions by the effects of diffusion in the velocity space. We shall 
nonlinear spectroscopy methods are now p ~ p u l a r . ~ " ~ '  show that if v>> l/T, where v is the effective frequency 
These methods are particularly interesting because the of the velocity-changing in collisions and T is the long- 
nature of the velocity-changing elastic collisions has itudinal relaxation time, the distribution of the popula- 
practically no effect on the luminescence spectra.CB1 tion difference between the velocities v has a dip, which 

We shall consider the kinetics of saturation, by a 
monochromatic field, of a two-level system broadened 
inhomogeneously by the Doppler effect, and we shall 
also deal with the steady-state absorption of the field 
by such a system. Since in most nonlinear spectroscop- 
ic investigations of gases and in studies of gas lasers 
the experimental results are interpreted using the mod- 
el  of relaxation constants, which ignores the changes in 
the atomic velocities a s  a result of collisions, we shall 
allow for the influence of collisions on the kinetics of 
absorption o r  saturation of a two-level system, and also 
on the steady-state nonlinear abvsorption. Following 
Kol'chenko e t  al.['l and ~ u r s h t e i n , ~ ~ ]  we shall use the 
model of weak collisions to show that the kinetics of 
saturation of a Doppler spectrum is exponential when 
the frequency of the incident field corresponds to the 
wings of the Doppler profile, and we shall find the rate 
of saturation of this profile. Moreover, we shall de- 

is different from the well-known Lamb and Bennett 
dips, and is of diffusion origin. Kol'chenko et a1 .['I al- 
s o  observed a dip of diffusion nature but it corresponds 
to the cri terion v<< 1 / ~  and is associated with the trans- 
ient stage of diffusion, whereas the dip found in our in- 
vestigation is associated with the quasisteady stage of 
diffusion. 

The difference between the atomic populations n(v, t)  
= pll(v, t) - p,,(v, t), traveling at  a velocity v, is des- 
cribed in the ra te  approximation by an equation which 
has the following form in the weak collision modelc6] 

with the initial condition 

termine the power The rate Here, no is the equilibrium difference between the pop- 
of saturation of a Doppler profile ca r r i e s  information ulations if level is the ground state, whereas if both 
on the type of collisions and it is proportional to the levels are excited, then n , / ~  represents pumping of 
effective collision frequency. level 1; T is the relaxation time of the population dif- 

The saturation method is used widely in investigations ference; v is the frequency of the velocity-changing 
of migration in magnetic resonance spectrac7] and in collisions. The probability of a transition W ( P .  w - wo) 
solid-state laser materials.c81 We shall also analyze is described by 

201 Sov. Phys. JETP 48(2), Aug. 1978 0038-5646/78/080201-03$02.40 O 1979 American Institute of Physics 201 


