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Investigation is made of the galvanomagnetic properties of an electron gas in a layer-inhomogeneous 
system. The motion of electrons is limited to a one-dimensional potential well and a magnetic field is 
applied parallel to the layers. It is shown that in 3 static electric field an a!lowance even for very weak 
electron scattering alters greatly the expressions for the transport coefficients found in the collisionless 
approximation. Calculations carried out using the quantum transport theory formulas give the final results 
in the zeroth approximation in respect of the scattering potential, but the quadratic correction diverges. 
The magntoconductivity tensor is found in the approximation of the classical transport equation. It is 
shown that the Hall coefficient of such a system is not governed by the carrier density and that the 
cyclotron resonance line width depends on the magnetic field even in the absence of quantum effects. 

PACS numbers: 51.50.+v, 05.60.+w, 51.60.+a 

1. INTRODUCTION 

Quantum theory of irreversible processes gives for- 
mally exact expressions for the transport coefficients 
of macroscopic systems. However, actual calculations 
can be carried out using these expressions only if we 
introduce additional simplifying assumptions, whose 
number and extent a re  governed by the specific feat- 
ures of each separate problem. In a nonquantum ~ t -  
uation (where there is no quantization of the energy 
spectrum of quasiparticles, and when electric and mag- 
netic fields a re  sufficiently weak), the quantum theory 
reproduces the results obtained from the Boltzmann 
transport equation and only modifies the range of their 
validity. Examples a re  the theory of the electrical con- 
ductivity developed by E d ~ a r d s , ~ ' ]  the formula of Tit- 
eica for the magnetocond~ctivity,[~~ and the theory of 
cyclotron resonance given by Kubo, Hasegawa, and 
~ashi tsume!~]  In all these cases the scattering is ass- 
umed to be (in some sense) weak and, consequently, 
the transport coefficients found in this way differ little 
from their values in the collisionless approximation. 
For example, the Hall component of the conductivity 
tensor in a magnetic field subject to the condition 
w ~ T > >  1 (wH is the cyclotron frequency and T is the re- 
laxation time representing the scattering processes) is 
completely independent of T in i t s  principal order : 

where N is the electron density and H is the magnetic 
field. 

Allowance for the scattering gives r i se  to small corr-  
ections of the order of ( ~ ~ 7 ) ~ .  The diagonal elements 
of a ,  transverse relative to the magnetic field, a r e  
proportional to 7-1, i.e., they also differ little from 
their collisionless value (which is zero). The longitud- 
inal component a,, is infinite in the absence of scatt- 
ering and i f  allowance is made for the scattering, this 
component is proportional to 7. However, the dynamic 
conductivity at the frequency of an external field w is 
given by the following expression in the quantum and 
classical theories : 

o,,=Ne21rn (io+r-I). (2) 

If the scattering is weak in the sense that WT>> 1, allow- 
ance for the scattering has little effect on the value of 
0,,(4. 

We can see  that in all the examples considered so 
fa r  the transport coefficients found using the quantum 
theory in the collisionless approximation a r e  in a sense 
stable when allowance is made for weak scattering. 
Moreover, the results of the quantum and classical 
calculations a re  identical. 

However, all these results apply to spatially homo- 
geneous systems. We shall consider the problem of 
the magnetoconductivity tensor o,,(H) for an electron 
gas  in a stratified inhomogeneous system in which the 
motion of electrons along the y axis is limited by the 
potential 

A magnetic field is directed along the z axis, i.e., i t  
is parallel to the layers (Fig. 1). From the purely 
methodological point of view, this problem is interest- 
ing because the formally exact quantum transport 
theory is not inapplicable in practice. In making this 
statement we have in mind that calculations can be 
completed (in the density matrix method o r  using the 
Kubo formulas) only in the weak scattering approxim- 
ation. Then, the zeroth approximation is the tensor 
a,, (H) , calculated without allowance for collisions. It 
is undoubtedly desirable that allowance for the scatter- 
ing should give r ise  to small corrections to the zeroth 
approximation. The main distinguishing feature of our 
problem is that allowance for even very weak scatter- 
ing alters considerably the form of the magnetoconduc- 
tivity tensor. The stability of the collisionless trans- 
port coefficients mentioned above does not apply to the 

FIG. 1. 
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spatially inhomogeneous case considered here and the 
results of the quantum and classical treatments do not 
agree. 

In addition to investigating the methodological aspect 
of the problem, we shall use the simplest model to 
calculate the transport characteristics of the system 
in question and to show that 

1) the Hall coefficient is not in this case governed 
by the mobile carrier density; 

2) a magnetic field does not occur explicitly in the 
static values of a,, although the parameter w ,T is not 
assumed to be large or small; 

3) in the classical regime for the H-independent 
scattering mechanism the cyclotron resonance line 
width depends on the magnetic field, in contrast to the 
case of a homogeneous system. 

This model of a parabolic layer may be realized 
experimentally. An example is a semiconductor film 
with completely ionized shallow donors placed between 
two metal electrodes (two Schottky barriers connected 
in opposition). A suitable selection of the work funct- 
ions and potentials applied to the film and metals can 
ensure electron depletion in the film. The excess pos- 
itive charge of density N+ creates a parabolic potential 
(3) where a2= 4ne2N + /&m and & is the permittivity of 
the semiconductor (Fig. 1). 

Another example are  electrons entrained in the field 
of a high-power acoustic wave in piezoelectric semi- 
cond~ctor!~' In the simplest case of a standing wave 
when the amplitude of the piezoelectric potential is 
much greater than the thermal energy, electrons con- 
centrate near the minima of the wave field where the 
approximation (3) applies. It is important to note that 
for attainable ultrasonic frequencies (10' sec-l) the re- 
laxation of the momentum of the entrained particles 
occurs earlier than a significant change in the piezoa- 
coustic wave field. 

An important opportunity for investigating transport 
effects in a layer-inhomogeneous systems i s  provided 
by the methods of ion implantation in semiconductors. 
It is now possible to create "subsurface" (i-e., separ- 
ated from the surface) conducting layers, for example, 
a p-type layer in n-type silicon (see the results of 
Romanov et d. ''I). Holes move in a potential trough and 
if the carrier density i s  low they occupy a small para- 
bolic part of the potential relief. The technique of 
measurement of the transport characteristics of such 
systems i s  analogous to the technique for investigating 
metal-insulator-semicondudor structures. Finally, 
electrons in magnetic surface layers in Schottky barr- 
iers  also form a conducting inhomogeneous layer sep- 
arated from the bulk of the semiconductor by a space- 
charge region which is practically free of electrons 
(exhaustion region). 

2. TRANSPORT COEFFICIENTS IN THE 
COLLISIONLESS APPROXIMATION 

We shall give the expressions for the elements of 
the electrical conductivity tensor o,, obtained from the 

quantum theory ignoring electron scattering. They are  
derived by the well-known method using the equation 
describing the evolution of the density matrix and the 
response of a system to a weak external field 
F~(s+'w",  s - +O. For a spatially inhomogeneous sys- 
tem the quantities o,, are  understood to be the coeffic- 
ients relating the linear spatial-average current Sjd3y 
with the components of the external field F: 

Nec oa2 Ne2 oz-8' 
U*" - -- on=-- 

El 8'-a'' iorn oz-a' ' 
. , 

Ne2 o2 N ez 
0," = -- (I,. =-. 

ram oa-aa' torn  

Here, N i s  the average bulk density of electrons and 
ij =a2+w,2. 

In the limit w - 0, the Hall component tends to a 
constant value 

a,, tends to zero, and o, i s  described by 

~ ~ N e z 8 2 / i r n o i 3 ' .  (6) 

Comparing this expression with the dynamic polariz- 
ability of free electrons we can see that the difference 
i s  the mass renormalization: m - m@/Q2. 

a ( o )  =u/io=-Ne21rncl)2, (7) 

3. METHOD OF THE BOLTZMANN TRANSPORT 
EQUATION 

We shall now calculate the magnetoconductivity ten- 
sor of a parabolic layer using the classical transport 
equation. We shall allow for the carrier scattering in 
the simplest model: an electron experiences instant- 
aneous elastic collisions and the kernel of the collision 
integral i s  independent of the kinetic energy of a part- 
icle. 

The equilibrium distribution function f, depends only 
on the combination E =p2/2m +U(y). The nonequilibr- 
ium correction g(p, y)eiwt is given by 

P" ag ag a g  ePF i o g  + --+ -[PO,,]-rnSi2y - +- 
rn UY a~ dp, m 

The arrival and departure terms in the collision inte- 
gral refer to the same value of y because of the local 
nature of an elementary scattering event. We shall 
seek the solution of Eq. (8) in the form 

df 8 
g ( p ,  Y ) = ( A Y + B P ) ~ ~ .  (9) 

The collision integral is then equal to vB .p, where 

v = r-I = C TV,,. [i - cos 

P' 

The coefficients A and 4 are given by 
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B,=: [o,,F.-(io+v)F,], BI - --- e F .  . 
mi (o)  m io+v ' 

A (o )  soH'+ (io+v) (io+v+Q2/io). (11) 

Using Eqs. (9)-(111, we can readily calculate the cur- 
rent density 

and find the tensor u,,(w). In the limit of a high frequen- 
cy of the external field, WT>> 1 ,  the classical values of 
o,, calculated in this way a r e  identical with the quantum 
expressions (4). However, the situation changes great- 
ly in the low-frequency limit, w7 << 1, and particularly 
in the case of a static field. For w =  0, we obtain from 
Eqs. (10) and (11): 

The tensor a,,, corresponding to the solution (12), i s  

i.e., i t  describes a two-dimensional free particle with 
an isotropic mass  m. 

It follows that the classical and quantum results for 
the static magnetoconductivity tensor a re  very differ- 
ent. The Hall components a found from the transport 
equation vanish, whereas the quantum calculation gives 
the final value Necw$/HG2. Clearly, this is because 
the scattering of electrons is not allowed for in the 
quantum calculation and this leads directly to the state- 
ment made in the Introduction: in the problem under 
consideration (in contrast to the homogeneous case) 
allowance for even weak scattering (w"T>> 1) alters 
greatly the Hall component ox,. We can show that the 
corrections to a,, due to the scattering [in the model of 
point impurities uo6(r)] give rise,  in the first  order of 
u,, to the usual renormalization of the chemical poten- 
tial and the quadratic contribution diverges in proport- 
ion to 512u,2/is. This divergence is due to the fact that 
the diagonal matrix element of the operator x, which 
is the velocity component, does not vanish for an in- 
homogeneous system.') 

The scattering alters greatly the diagonal component 
u, . This is clear from the fact that Eqs. (12) and (13) 
include the "bare" m and not the renormalized mass 
m S/02. 

It should be pointed out that the tensor (13) is com- 
pletely independent of the magnetic field although no 
assumptions have been made about the value of w,. 
Thus, in this situation the transverse magnetoresist- 
ivity vanishes. This is not surprising because in our 
model all ca r r i e r s  have the same relaxation time and 
then there is no magnetoresistivity in the homogeneous 
problem. However, i t  is interesting that if T is a 
function of the total energy E =p2/2m +U, then-as can 
easily be demonstrated-the solutionof the transport 
equation is still given by Eqs. (10) and (11) or  Eq. (12) 
[for w = 0] . Consequently, there is no magnetoresist- 
ivity even in this case although different electrons have 
different relaxation times. Physically this is quite 

clear: each carr ier  undergoes elastic collisions and, 
therefore, it is characterized by i ts  own value of 7; 

for a given 7, electron drifts along they axis until i t  
reaches a point yo a t  which a balance is attained be- 
tween the electric force eF,, the Lorentz force e w g F x  
and the force m51'y0, due to the potential (1): 

The solution (9) describes the shift of the equilibrium 
distribution in the momentum and coordinate spaces. 
The average value of the coordinate y ,  

is, a s  expected, equal to yo of Eq. (14), where T is re- 
placed with ? defined by 

Thus, the transport coefficients of our inhomogeneous 
system depend much more critically on the scattering 
of particles than in the spatially homogeneous case. 
The reason for this can be found easily by analyzing 
the classical equations of motion in which the electron 
scattering is modeled by the 'Yriction force" 
Ff, =mu/r  (u is the drift velocity). Such an analysis is 
given by one of the present authors and ~ o p o v . [ ~ ' ~ '  It is  
is found that the characteristic equation for natural 
frequencies of the system has the form A (w) = 0 with 
A(w) from Eq. (11). There appears a new (compared 
with the homogeneous problem) relaxation parameter 
r0 =rZ2/5b2, which is an additional root of the charact- 
erist ic equation. The solutions obtained from the quan- 
tum formulas in the static case correspond to the init- 
ial  stage of the motion of the particle when t << T,. Since 
in the homogeneous problem we have 51 = 0, T, =a, 

these solutions describe steady-state motion (in the 
limit t- a )  and, consequently, apply to the macrosco- 
pic kinetics of the system. In the inhomogeneous case 
they relax to the solutions (12) and (13) with a decre- 
ment T, . Naturally, the static transport equation leads 
directly to Eqs. (12) and (13), corresponding to the 
steady- state electron motion. 

4. CYCLOTRON RESONANCE 

The absorption of microwave electromagnetic radiat- 
ion is described by the real  part  of u(w). For  a field 
polarized in the x direction, the absorption coefficient 
is obtained from Eqs. (10) and (11): 

A graph of the function q,(w) in the case 3>> v i s  plotted 
in Fig. 2. The half-maximum at zero frequency is of 
width T: and corresponds to the absorption by f ree  car- 
r iers:  the law i s  w-' in the range WT,,>> 1. In the homo- 
geneous case this maximum i s  absent for the microwave 
polarization perpendicular to the magnetic field. The 
second maximum of the q,,(w) curve corresponds to the 
usual cyclotron resonance frequency-shifted to the point 
we= (G2+ 9)1/2. It is important to note that the width of 
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this resonance 7;' includes an explicit dependence on the 
magnetic field. We find from Eq. (15) that 

The dependence of the line width on H in the absence of 
quantum effects is a characteristic feature of the inho- 
mogeneous problem under discussion. In the case of 
polarization at right-angles to the layer the absorption 
coefficient is 

The curve q has only one maximum at w = w, of the 
same width The, difference from the homogeneous 
case is manifested also by the fact that in the limit 
w -0 the quantity q,, tends to zero as w2 and does not 
reach the constant value Ne2v/mW2,. 

These features of the high-frequency conductivity of 
a parabolic layer may be observed when microwave 
radiation is absorbed by electrons populating magnetic 
surface levels in Schottky barriers.  

5. HALL EFFECT 

Vanishing of the nondiagonal components of the ten- 
s o r  (13) denotes formally the absence of the Hall emf 
in the system under discussion. However, we can see 
that the Hall emf t H  does not vanish exactly for the 
structure in Fig. 1 but it is small compared with the 
emf developed in an equivalent (in respect of free carr- 
iers)  homogeneous film: 6, <<6,0>. The ratio &$&: 
is governed by a parameter whose smallness is the con- 
dition of validity of all the theory given above. The 
point is that up to now we have understood F to be an 
external (transverse) electric field. However, the 
solution obtained describes a shift of the equilibrium 
distribution along the y axis; this gives r ise  to a field 
Fy induced by distortion of the coordinate distribution 
of electrons. Obviously, the Hall emf is governed by 
this field py : 

The field ky is found by solving the Poisson equation in 
which the charge density is governed by the nonequilib- 
rium correction to the distribution function: 

Elementary calculations give 

.1 4nez onrF.-F, 
Fy =- 

e ma" ~'o(Y). 

where No (y )  = i s  the equilibrium local concen- 
tration of the particles. In measurements of the Hall 
effect the transverse field Fy vanishes. Then, the Hall 
emf is given by 

Here, N,= S ~ , ( y ) d y  is the density of electrons per 
unit surface a rea  of the layer. In the case of a homo- 
geneous film of thickness L the Hall emf is 60, = wrE;L 
and, therefore, 

where w, is the plasma frequency corresponding to the 
average electron density. 

Clearly, in solving the transport equation the elec- 
tron self-field can be ignored if w i  <<SJ2. This is the 
parameter governing the range of validity of our treat- 
ment. The ratio w:/SJ2 can also be written in the form 
N/N+, where N is the average electron density and N+ 
is the density of the positive background. We can then 
easily see that the Hall coefficient of the investigated 
system is not governed by the number of carr iers  but 
is given by 

The usual Hall mobility pH = OR i s  meaningless because 
i t  is no longer dependent on the number of mobile carr- 
iers.  These points have to be allowed for  in the inter- 
pretation of the results of measurements of the trans- 
port characteristics of inhomogeneous layers. 

6. POSSIBLE GENERALIZATIONS OF THE PROBLEM 

Analytic solutions of the quantum and classical prob- 
lems (transport equation and equations of motion) can 
be obtained only for the model of a parabolic layer (3) 
and a constant relaxation time. Formally, the solution 
remains the same also in the case when T depends on 
the total energy p2/2m + U(y), but such a situation is 
not physically realistic. Generalizations of our model 
a r e  possible in two directions. 

Firs t  of all, we may consider the case of an arbitr- 
ary potential U(y). Such a generalization also lifts the 
restriction up2 <<a2 because if the number of electrons 
is not small compared with N+, the screening effects 
result in a considerable nonparabolicity of the potent- 
ial  of the layer. In this case the problem requires a 
self-consistent solution of the transport and Poisson 
equations. However, we can easily show that the 
reasoning leading to Eq. (14) still applies to a nonpara- 
bolic well and, instead of Eq. (14), we now have 

fTere FxrY are  again transverse homogeneous fields and 
$ is the self-consistent component due to the shift of 
the particle distribution. Hence, i t  follows that the 
steady-state motion of carr iers  under the action of a 
static external field remains effectively two-dimens- 
ional, the conductivity tensor has the form (13), and i t  
does not depend explicitly on the magnetic field. In 
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the case of weak "seed" fields F,  and F, the Hall emf 
can be found a s  follows. The average field (F,), due 
to a shift of the coorqinate distribution of electrons by 
an amount yo, can be SGressed in terms of the average 
electron density N using the obvious equality: 

(PJ =-4ney,A1/e. (2 4) 

For small values of F= and q, the quantities (F,) 
and y o  a re  also small. Therefore, we can replace 
(du/dy),, with U"(0)yo and the Poisson equation for the 
unperturbed distributioe gives 

where N(0) is the density of electrons at y = 0 (e is 
the electron charge! ). Then it follows from Eqs. (23) 
and (24) 

s o  that the Hall coefficient is described by 

ecR= (.V-I\'(o) +#+) - I  (2 6) 

[for N+>>N, N(O), Eq. (26) naturally reduces to Eq. 
(2211. 

The second direction in which we can generalize the 
above results i s  associated with allowance for the dep- 
endence of T on the kinetic energy of carr iers .  The 
resultant difficulties a re  similar to those encountered 
in the homogeneous problem for anisotropic scattering. 
The point is that Eq. (8) is the transport equation in a 
homogeneous four-dimensional space @,, p ,  p, y )  fo r  
a particle with the quadratic dispersion law 
p2/2nz [this is exactly why the case 7 =T(E) 
is easily solved]. If T depends only on p2, then-as in a 
three-dimensional anisotropic problem-we shall seek 
the nonequilibrium correction to the distribution func- 
tion in the form of a ser ies  in terms of the spherical 
harmonics, 

The tensors C(y, p2) a re  irreducible and symmetric in 
respect of all the indices. The collision operator act- 
ing on n-th term of the ser ies  (27) gives 

where P, is a Legendre polynomial of order n. 

Next, averaging Eq. (8) with the weight 1, p,, pg, ,  
etc. over the angles in the p space, we obtain a chain 
of equations for the spherical harmonics C ( y ,  p2). We 
shall confine ourselves to the case w = 0. Averaging of 
Eq. (8) wiih a unit weight gives a closed equation for 
C,: 

Here the prime represents differentiation with respect 
t o y ,  the dot differentiation with respect to w. The 
absence of a static current along they axis means that 

the only permissible solution of Eq. (29) is C,(y, w) aO. 

We shall find the condition of validity of Eq. (13) in 
the case of W, depending on w .  We shall do this by 
terminating a chain of equations retaining tensors C(y, 
w) of rank up to two and requiring that the third term 
of the ser ies  in Eq. (27) is small compared with the 
second. Omitting the intermediate steps, we shall give 
the final form of this condition : 

where & is of the order of temperature of Fermi ener- 
gy, depending on theydegree of degeneracy of the elec- 
tron gas. For  the usual power-law dependence of T, on 
the carr ier  energy, the factor in parentheses in Eq. 
(30) is of the order of unity. If Eq. (30) is satisfied 
(and, moreover, we still have 51 >> w,), the magnetocon- 
ductivity tensor is given by Eq. (13), where T should 
be replaced with (rd: 

We shall conclude by considering the question of 
the limiting transition to the homogeneous case U(y) 20. 
Equations (5), (lo),  and (11) which govern the dynamic 
conductivity, permit such a transition (a -0) directly. 
Consequently, the cyclotron resonance results (see 
Sec. 4) reduce for 51 -0 to the formulas for the homo- 
geneous problem. In particular, for 7,- T, the line 
width ceases to depend on the magnetic field. A spec- 
ial feature is the case of a static external field. The 
tensor (13) does not contain Cd explicitly so that this 
going to the limit is meaningless. As explained above, 
this is because Eq. (13) corresponds to the motion of 
the system at a time t > > T & ~ / Q ~ .  

In Eqs. (14) and (19) the transition 51 - 0 is formally 
forbidden. However, if F,  in these equations repres- 
ents the y component of the total field (including the 
self-consistent field), then in the limit 51 -0, we have 
to take F,  = W,,.TF,. However, this is exactly the corr- 
ect  expression for the Hall field in a homogeneous 
system. However, the observed Hall coefficient is 
given by Eq. (26) in which the transition to the homo- 
geneous case is quite evident: we have to substitute 
N+ = N(O), which corresponds to the absence of space 
charges in the homogeneous case [in Eq. (22) there is 
no such limit because this equation is valid for o: << a']. 

The authors a r e  grateful to F.  F. Sokolov for valuable 
comments and discussions. 

' w e  readily see that in this situation it is meaningless to sum 
any sequence in the series obtained in the perturbation theory 
(for example, the most diverging diagrams). Since a,, * 0  
in the zeroth approximation and the results should be a,= 0, 
it is clear that nothing should be ignored in deriving this 
result and it is  necessary to sum all the diagrams, which is 
impradic a1 . 

2'We take this opporbity to correct the error in Ref. 4 on 
p. 537. The transverse magnetoresistivity disappears if 7 

depends on the total rather than on the kinetic energy of 
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Dependence of the effects of spatial dispersion in a crystal 
on the exciton-damping constant 

M. I. Strashnikova and E. V. Besonov 
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We calculate the spectral dependences of the optical constants of two nonnal waves due to the spatial 
dispersion of 6 in the region of the lowest excitonic state of a CdS crystal at different values of the 
damping constant y. The obtained curves are used for a quantitative estimate of y in real crystals. Two 
branches of the refktive index within the limits of the absorption band are measured by a direct 
interference method for a CdS crystal whose y is close to the "critical" value. 

PACS numbers: 78.20.Dj 

INTRODUCTION 

Pekar formulated theoretically in 1957[11 the main 
premises of crystal optics in the region of the exciton 
absorption bands, when spatial dispersion of the dielec- 
t r i c  constant c(w,  k) becomes significant. In contrast 
to  classical optics, which takes no account of the de- 
pendence of & on the wave vector k of the light wave, 
the new theory predicts the propagation in the crystal 
of two normal waves having the same frequency and po- 
larization, but different velocities, i. e., different re- 
fractive indices. 

One of the most important experimental proofs of the 
validity of the spatial-dispersion theory was the im- 
possibility of describing the optical properties of the 
CdS crystal at 4.2 K, in light transmitted through the 
target and reflected from it, by means of a single dif- 
fraction index n and a single absorption coefficient x ,  
i.e., by a dielectric constant of the form &(w) = [ n ( w )  
+ix (a)] 2. Thus, it was shownFz1 that the spectral depen- 
dence of the reflection coefficient R ( w )  calculated from 
the measured dispersionc3' and absorptionc4' curves 
differs strongly from that measured in experiment. At 
the same time, these results can be very well reconcil- 
ed by using the formulas of the spatial dispersion theo- 
ry.c5' It became recentlyc6e71 possible to measure the 
phase p ( w )  of the reflected light in the region of the 
exiton band A of the CdS crystal. These results also 
confirmed the impossibility of describing the behavior 
of p(w) at 4.2 K by the formulas of classical optics and 
the need for resorting to the theory of spatial disper- 
sion to explain the experimental data. 

Another no less important confirmation of the essen- 

tial role played by spatial dispersion in CdSe and CdS 
crystals a t  4.2 K was the observation of interference of 
normal waves on the short-wave side of the exciton ab- 
sorption bandC the reconstruction, from the obtain- 
ed interference pattern, of their dispersion relations 
El@) and E2@). I t  has thus been convincingly shown that 
the spatial dispersion exerts a significant influence on 
the optical properties of crystals in the region of exci- 
ton absorption bands at temperatures 4.2 K and below. 
I t  is known at the same time that at high temperatures 
the formulas of classical optics a r e  well satisfied, i.e., 
the spatial-dispersion effects become insignificant. 

The temperature dependence of the spatial-dispersion 
effects in CdS crystals was investigated experimentally 
by voigtCg' and by Brodin et a ~ . ~ ' ~ '  With increasing tem- 
perature, a sharp increase of the a rea  under a b s o r p  
tion curve in the region of the exciton band A and a 
characteristic change of the birefringence picturec101 
were observed. To explain the results ofC'O', theoreti- 
cal calculations performed by Davydov and Myasni- 
kovcul for anthracene crystals were used. But since 
exciton parameters of CdS and anthracene differ great- 
ly, only qualitative agreement between theory and ex- 
periment, and a qualitative description of the general 
tendency of the variation of the optical characteristic of 
the substance with increasing termperature, could be 
expected. 

We report here calculations that make i t  possible to 
follow the gradual change in various characteristics of 
both normal waves with increasing damping constant Y 
of the excitons in CdS crystals. The obtained data a re  
used for a quantitative estimate of y in various crystals 
investigated in different experimental conditions. Two 
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