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A calculation is made of the Maxwell stress tensor on the basis of symmetry considerations. An 
expression is obtained for the force acting on a plasma in the presence of isotropic and anisotropic 
inhomogeneities. It is shown that a negative pressure may appear in the anisotropic case. This pressure 
may give rise to a modulation instability. The reaction of magnetic inhomogeneities to large-scale flow of 
a plasma is calculated. The specific case of magnetohydrodynamic waves in a homogeneous magnetic field 
is discussed. 

PACS numbers: 52.30.+r, 52.35.Py, 52.35.Bj 

INTRODUCTION modulation of inhomogeneities). The action of a negat- 

Magnetohydrodynamic turbulence is a phenomenon 
which is widely encountered in astrophysics and in lab- 
oratory experiments. There a re  a number of problems 
related to this turbulence which a re  being solved one 
way or  another. They include the range of problems 
associated with weak fluctuations of magnetic fields in 
the presence of a strong hydrodynamic turbulence (dyn- 
amo instability), and those associated with magnetohy- 
dronamic (MHD) waves and their interaction. The par- 
ticularly difficult cases a re  those of strong turbulence 
when the magnetic and kinetic energies a re  comparable 
and when the magnetic energy includes the energy of a 
homogeneous magnetic field, if such i s  present. 

Nevertheless, calculation of the average electromag- 
netic force in the case of an MHD turbulence-which 
need not be weak-is a relatively simple matter. The 
present paper deals with such a calculation. Let us 
first  of all consider what results can be expected from 
qualitative physical considerations. The theory of the 
internal structure of s t a r s  frequently involves the prob- 
lem of the magnetic pressure which appears even in 
the absence of a large-scale magnetic field and is sim- 
ply due to small-scale inhomogeneities. In fact, it is 
clear that a set of such inhomogeneities should have 
elasticity. However, the problem becomes more com- 
plicated if we bear in mind that the electromagnetic 
force acting on a plasma does not consist of the mag- 
netic pressure alone. There is also a component which 
is known a s  the line-of-force s t ress  (LFS). Because of 
this s t ress  we may expect elasticity in nonpotential mo- 
tion. Moreover, the LFS makes i t s  own contribution to 
the magnetic pressure but with the opposite sign. The 
question ar ises  whether the LFS can compensate com- 
pletely the magnetic pressure o r  make i t  negative. We 
shall show that such a situation is indeed possible. 

We may expect a medium with a negative magnetic 
pressure to be unstable. This instability is similar to 
the modulation type. In fact, let us assume that there 
is a fluctuation of the mean-square field intensity, i.e., 
that the average energy of the field varies slowly over 
distances much greater than the dimensions of inhomog- 
eneities (in other words, let us assume that there is a 

ive pressure begins to drive a plasma toward the reg- 
ion where the magnetic pressure i s  higher and this en- 
hances the fluctuation. Thus, qualitative considerat- 
ions show that the average electromagnetic force may 
give r ise  to a number of effects with interesting applic- 
ations. 

$1. GENERAL RELATIONSHIPS 

We shall begin from the Maxwell s t r ess  tensor 

(see, for example, the book by Landau and ~ i f sh i t z ) .~"  
The tensor does not include the electric component be- 
cause in the range of validity of magnetohydrodynamicswe 
have E/H << 1, where E is the electric field intensity. In 
fact, direct substitution shows that -dim = [curl H X H]/ 
4r  is the force acting on a plasma, which occurs in the 
equation of motion 

where p is the pressure. We shall now average u,, over 
small-scale pulsations, i.e., we shall calculate the av- 
erage (large-scale) force acting on a plasma. Clearly, 

where Tij=(H,Hj). The tensor ? is the correlation ten- 
so r  of the magnetic field and the values of the fluctua- 
tions Hi and H, a re  taken at coincident points. We shall 
use the nonnegative definite form of the matrix Ti,: 

which follows from the f a d  that T i j  is a correlation 
tensor.c21 This also follows directly from the definition 
of Ti,. 

In the simplest case of an isotropic random process, 
we have Tij=+6,,(H2), Then, (0 ,~)=6,~(H~)/3*8r .  Con- 
sequently, the average magnetic pressure is one-third 
of the "usual" pressure H2/8r. This reduction is due to 
the compensating effect of the LFS. In fact, the LFS in 
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the tensor (3) is represented by the term - Tip In the 
absence of this term, we have (u,,) = Bit& 2)/8n. 

The next case of increasing complexity is the exis- 
tence, in a random process, of some preferred direc- 
tion parallel to a unit vector A. Then, obviously, 

Reducing the tensor (5) to the principal axes, we now 
find that the requirements (4) lead to  

If c = 0, we return back to  the isotropic case; c may be 
positive o r  negative. In particular, we can have the 
case c = -1 (the maximum, in the absolute sense, nega- 
tive value of c). 

The other limiting case is c >> 1. Averaging of the 
tensor u i j  gives 

Two conclusions can now be drawn. Firstly, calcula- 
tion of the force Fi = -8 ,(uij), shows that the tensor (u,,) 
corresponds not only to a potential force: there is also 
a term A(Av)B/4r, which contains the nonpotential com- 
ponent. Secondly, we may have a situation in which a 
negative pressure appears. Let us, in fact, assume that 
E >> 1. Moreover, let us postulate that (H ') =f(Aex), i.e., 
that the mean-square value (Hz) varies along the direc- 
tion of A, whereas A itself is the selected direction of 
the tensor Tif. Then, 

A negative pressure appears because the LFS [the sec- 
ond term in Eq. (7)] may exceed the ordinary pressure 
[the first term in Eq. (7)] in the anisotropic case. The 
ponderomotive force which appears in a continuous med- 
ium because of fluctuations has been calculated in many 

This force can be expressed in terms of 
the permittivity tensor cij. Washimi and ~ a r p m a n [ ~ ]  
demonstrated, in particular, that the expression for 
the force can be obtained by direct averaging of the 
equation of motion. In the examples considered below 
(88 2-4) the assumption of weak fluctuations is not used 
and, therefore, the determinatian of the tensor c,, is 
difficult. For this reason, we shall average directly the 
equations of motion. 

$2. TRANSVERSE AND LONGITUDINAL 
SECOND SOUND 

Let us assume that small-scale magnetic fluctuations 
are  distributed homogeneously in the statistical sense, 
i.e., that (Hz) is independent of the coordinates. In this 
case the average force naturally vanishes. A weak per- 
turbation against the background of (Hz) causes pertur- 

bation of the large-scale velocity which in its turn af- 
fects the perturbation. We shall describe linear micro- 
scopic motion using Eq. (2): 

(the plasma pressure is assumed to be low and there are  
no velocity fluctuations) and the influence of the plasma 
motion on the fluctuations of H will be assumed to be 
given by 

aH - = curl [U x HI , 
at 

where u is the macroscopic velocity. Multiplying the 
i-th component of Eq. (10) by H,, and the j-th compon- 
ent by Hi, averaging, and adding the two resultant equa- 
tions, we obtain 

a - T"-T~~aju j f  Tj,aju.-ujajT1~-2T~j div u. 
at (11) 

In this averaging we have used the large-scale nature of 
the field u, i.e., (H,Hef) = (H,H,)uf. Let us assume that 
Ti, = TPj+ Tij, where To  is the unperturbed tensor and 
?' is a fluctuation. Then, 

a - T 1 ~ = T l , o a j u j + T J ~ a j u I - 2 T ~ ~  div u. 
at 

(12) 

Equation (9) contains only the perturbation ?". Assum- 
ing next that all the perturbations vary a s  - exp [i(k-x 
-ot)], we obtain the equation for u: 

4np,02ui=T,~k.k,(6.,u,+6,,u.-6.,u,) +(T,,"k,-2T,,Ok,) ( k u ) .  

For the isotropic tensor qj, we have 

where v i  = (H2)/47rp,. Equation (14) corresponds to lon- 
gitudinal oscillations w2(ku) =$ kZ(kU)vi, i.e., w = ~ k ( $ ) ~ / ~ ,  
and two transverse oscillations: kl u, w = ~ , k ( i ) ' / ~ .  
Each transverse wave has a definite polarization: there 
are  two linearly independent velocities u perpendicular 
to k. Thus, longitudinal and transverse sound may ap- 
pear against a background of magnetic fluctuations. An 
example of steady-state magnetic fluctuations in the ab- 
sence of velocity fluctuations may, in principle, be im- 
agined. However, such a situation i s  not typical in ap- 
plications. Therefore, the treatment in the present 
section is purely illustrative, demonstrating the elas- 
tic properties of random magnetic inhomogeneities. 

83. INSTABILITY OF LARGE-SCALE 
FLUCTUATIONS 

Fluctuations of the velocity field v occur in Eq. (10) 
in the form of an additional term curl [vx H] and in Eq. 
(11) they occur a s  correlations of the (HiHjvf) type. In 
view of the resultant problem of closure, we shall ap- 
ply simple physical hypotheses relating to the nature of 
the interaction between the velocity v and the field H. 
We must bear in mind that a steady-state turbu_lence is 
considered. This means that all deviations of T from 
its steady-state value disappear in a short relaxation 
time T =  2/21, where 1 is the coordinate length and 



v = (v~)"~ .  In the preceding section we have ignored (v2). 
We shall now consider the opposite equidistribution 
case : 

The amplitude of turbulent pulsations v depends strongly 
on the turbulence sources. If we assume that these 
sources maintain (v2) at the steady-state level, we find 
that 

Any more general law, such a s  (Hz) = p a ,  a>O, does 
not affect qualitatively further considerations. There- 
fore, for simplicity, we shall adopt Eq. (16). 

We shall consider perturbations against the back- 
ground of an isotropic distribution of magnetic fluctua- 
tions: qj = A 6,,. Since the macroprocess time is con- 
siderably greater than thf relaxation time 7, we shall 
ignore the anisotropy of T. Using Eq. (16), we obtain 
the following linearized equation for large-scale fluctu- 
ations of the velocity u: 

from which the existence of longitudinal sound of veloc- 
ity (~/3 .8r) ' '~  = v, /6lI2 follows in a natural manner. Let 
us assume that now f is given by Eq. (5), where B >>A. 
Then, instead of Eq. (17), we have 

We shall select a coordinate system in which X={O, 0, 
I), k={0, k,, kJ. The dispersion equation is then 

Hence, it is clear that for k: > kt the second sound has 
both longitudinal and transverse components. If kz <kt, 
the absolute instability se ts  in (Re w = 0, Imw >O). The 
nature of the instability is related to the action of a neg- 
ative pressure which appears if the tensor f is aniso- 
tropic. In general, the tensor f has the form (5) and 

We shall substitute Eq. (20) into Eq. (2) and use Eq. (16). 
We then obtain an equation of the (18) type but with dif- 
ferent coefficients. For perturbations obeying -exp 
x [i(k.r - w t)], we have 

For E =m, we return to the system (18), An analysis 
shows that an instability appears for E > 1, w2 cc [k2 + E 

X (k2 - 2(k. x)~]. 

94. MAGNETIC RESISTANCE 

We shall now consider large-scale incompressible 
flow at a velocity u, where div u = 0. We shall assume 

that magnetic fluctuations against the background of this 
flow are  homogeneous: (H ') is independent of the coor- 
dinates. y e  shall determine the reaction (a slight devi- 
ation) of T' from its steady-state value to the appear- 
ance of flow. In view of the incompressibility of flow, 
there a re  no density perturbations and, therefore, the 
principal effect described in § 3 is absent. In the pres- 
ent section we shall allow for finer effects, including a 
slight deviation of the tensor f from its steady-state 
value. The dynamics of f' is given by Eq. (12), where 
we have to  allow additionally for the relaxation in a 
time 7. We shall use the ''7 approximation": 

Assuming that all the macroprocesses occur in a time 
much longer than 7, we have 

We shall now calculate the force acting o? a plasma 
on the basis of Eq. (22). For  an isotropic TO, we have 

According to  Eq. (23), magnetic fluctuations have the ef- 
fect of viscosity and the viscosity coefficient found sub- 
ject to Eq. (17) is of the same order of magnitude as the 
hydrodynamic turbulence coefficient, which is pv 1/3. 
In the presence of an anisotropic background [TO is des- 
cribed by Eq. (5) and B >>A] the viscosity is anisotropic: 

where (XV)'= Xa&aaab. The potential part of the force is 
not given above because the motion is assumed to be in- 
compressible and the pressure compensates the poten- 
tial force. 

We shall now consider the situation when the tensor 
? is inhomogeneous. According to Eq. ( l l ) ,  we then 
have an additional perturbation ?' --ufaZf0. Hence, it 
follows that the additional nonpotential force acting on 
the plasma is 

The isotropic part of the tensor f ( ~ 6 , ~ )  makes no con- 
tribution to Eq. (25). We shall select the coordinate 
system in which x={O,O, I), u={o, O,u(y)) and we shall 
assume that B depends only on the coordinate z. The 
force (25) is parallel to the z axis: 

Consequently, an additional resistance appears for 
a 2 ~ / 8 z 2  >O. In the region of a maximum of B we have 
a 2 ~ / a z 2 < 0  and the force (25) results in an instability 
(negative resistance). The viscous and magnetic resis-  
tance can be ignored if the length of the inhomogeneity 
u(y) along the y axis is greater than the characteristic 
size of the inhomogeneity B along the z axis. 

We have considered s o  far only the Maxwell s t ress  
tensor. It follows from the general equation of motion 
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(2) that the turbulent stress tensor f= (pvivj) -p(v,v,) 
may give a contribution comparabie with (ai,). We shall 
consider briefly the contribution V primarily to the sec- 
ond sound. It i s  natural to assume that for isotropic ? 
the tensor ? is also isotropic. Using the hypothesis re- 
presented by 5qs. (15) and (16), we find that (pv2) -p(v2) 
=pv2,. Then, V compensates completely the LFS and 
instead of the longitudinal sound with the square of the 
velocity ( ~ / 3 . 8 n ) l ~ ~  [see Eq. (I?)] we have the velocity 
described by (~/8n)' '~. A s  pointed out in 8 1, the factor 
$ appears because of the compensating effect of the LFS. 

The problem of the role of ? in the presence of anifo- 
tropy is more complex. Clearly, if we assume that T 
is anisotropic, we have to assume that ? is also aniso- 
tropic. However, the relationship be-peen these tensors 
i s  not known. We shall assume that V is given by V,, 
=A16,,+BlAiX,. We shall introduce B, = EP,, where 
-1 c c < 00; if we use Eq. (I?), we find that A, =po(v2)/ 
(3 + c,) = vi(3 + E Now the equation for u differs from 
Eq. (21): 

It follows from this expression that allowance for the 
contribution of 9 generally hinders the appearance of an 
instability. For example, i f  c =&,, the perturbations are 
potential and stable. This is to be expected: for c = c,, 
the tensors ?/4r and P are identical and ? compensates 
completely the part of the Maxwell tensor responsible 
for the LFS. We recall that the nonpotential force (and 
oscillations), negative pressure, and instability owe 
their origin to the LFS. The instability criterion i s  

(if cf -1, then c > 1). Since the relationship between ? 
and V i s  not known, the values of E and E, should be de- 
duced from the experimental data. 

At the beginning of this section we have found the mag- 
netic viscosity which appears because of the Maxwell 
tensor. The tensor ? contributes the usual turbulence 
viscosity mentioned above; the expression for the force 
(23) is, in fact, compared with this viscosity. 

55. SPECIAL CASE: OSCILLATIONS IN  A 
HOMOGENEOUS MAGNETIC FIELD 

We shall consider a low-pressure plasma with D =pan/ 
<< 1, where Ho is a homogeneous magnetic field. For 

a specific type of wave we can find directly the fluctua- 
tions of the magnetic field H and of the velocity v and 
thus find exactly the tensors f and V. We shall assume 
the presence of the following oscillations against the 
background of a homogeneous field: in one case we 
shall postulate the presence of the Alfven waves and the 
other of fast magnetic sound. In calculating the tensor 
(o,,) we shall allow only for the fluctuations of H because 
the field H,, does not contribute to the force F. The gen- 
eral stress tensor is (6 + @. Since H <<Ho, we can in- 
troduce the permittivity tensor .?. Substituting 2 in the 
expression for the stress tensor of Washimi and Karp- 
man,[61 we shall demonstrate that the expression ob- 

tained is identical with (6 + @. 
We shall first deal with the Alfven waves. Since 

~a [k x q] and v = [k x &I, i.~?., v 11 H, it follows that 
?/4r = ? for a monochromatic wave and an i so t r~pic~en-  
semble of Alfven waves. Consequently, the tensor V 
compensates completely the part of the Maxwell tensor 
responsible for the LFS. The only term that remains is 
the potential force F= -V(H2)/8n, which generates the 
second sound. Therefore, for ullH,,, we obtain longitu- 
dinal oscillations. 

We shall now consider the fast magnetic sound. We 
shall assume the presence of a monochromatic wave. 
We shall expand H,, parallel to the z axis and assume 
that k is in the yz plane. The perturbations v and H lie 
in the yz plane (Fig. 1). Hence, it follows that 

where v i s  a unit vector along the y axis and X i s  a unit 
vector in the direction of [k X [v x &]I, defined by 
X={O, -kg, k>/k. We shall turn first of all to steady- 
state but homogeneous fluctuations, i.e., to the case 
when (Hz) is independent of time but depends on the co- 
ordinates. Since all the inhomogeneities are driven 
along the direction of k, a steady-state situation is pos- 
sible if (H ') appears only along directions perpendicular 
to k, i.e., if  B =(Hz) is a function of ( r 4 )  and x, where 
r i s  the radius vector. We shall write the component of 
the force F, in the form 

It thus follows that a steady -state ensemble of the fast 
magnetic sound waves gives rise to negative pressure 
along &. 

The results of calculations of the other two compon- 
ents of the force are  

If (Hz) depends only on (r -X) ,  the component F ,  i s  of no 
special interest because (HZ) i s  known to be much smal- 
ler than H2, and it gives rise to  very small fluctuations 
across the main field H,,. However, i f  (H 2, depends also 
on x, then F, causes the flow characterized by u={O, 
u(x), 0). We can easily show that curl[u x H,,] = 0 (the flow 
simply transposes the force lines) and, therefore, the 
magnetic field H,, does not offer a resistance to such 
flow. 

We shall now consider oscillations against the back- 
ground of a homogeneous ensemble of the fast magnetic 
sound waves. It i s  known that in the presence of an en- 
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semble of the Alfven waves there a re  amplitude modu- 
lations of the second-sound type and in the presence of 
an ensemble of the fast magnetic sound waves there is 
a modulation instability for the motion along the field 

In this example we have obtained the same re -  
sults by a different way. In fact, at the beginning of the 
section we have mentioned longitudinal sound in the 
presence of the Alfven waves. The appearance of a mod- 
ulation instability in the field of the fast magnetic sound 
waves may be expected on the basis of Eq. (29). We 
shall now consider a density perturbation with the wave 
vector qllX (X 11 H), as shown in Fig. 1. As pointed out by 
Al'tshul' , C71 the energy (H 2, a r ises  in a region of higher 
density: Oy 2, a l / v i  a v i  = ~ ~ / ( 4 r p , ) ~ / ~ ,  where p, 
is the density averaged over small-scale fluctuations. 
It then follows from Eq. (29) that a plasma is acted upon 
by a force due to a negative pressure and this gives r ise  
to an instability. 

A modulation instability in the potential motion (com- 
pression along &) was considered by Al'tshul' c71 s o  
that we shall turn to the incompressible motion. Let us 
assume that for u ={0,0, u(y)) all the quantities depend 
only on y. Then, the kinetic equation for the number of 
waves ("quasiparticles") is 

k,  an, an an, . an,+ v * o - - -  k.--- 0. 
at k a y  ay ak,  

The Doppler frequency shift is allowed above: w =vik  
+uk, In the linear approximation for perturbations of 
the -exp[i(qy - at)]  type, we have 

The force acting on a plasma is then 

The vector X exhibits a weak dependence on the coordin- 
ates: according to Eq. (30), the wave vector and, there- 
fore, X vary from one quasiparticle to another. There- 
fore, it is necessary to calculate the quantity 

We have allowed here for the fact that n,w, is the energy 
density of quasiparticles. Substituting Eq. (31) into Eq. 
(32), and then Eq. (32) into a linearized equation of mo- 
tion, we obtain the dispersion equation 

For a monochromatic wave with nf cc 6(kx)6(kx - k:) 
x 6(k,- kO,), we obtain 

It follows from Eq. (34) that the system acquires a 
new transverse oscillation branch for which ullH,. The 
oscillation frequency is 9 = v i  ktq/k because v, << v i .  
Nevertheless, in spite of the smallness of the correc- 
tion -v,/vi, we cannot substitute v, = 0 in Eq. (34) be- 
cause the denominator of Eq. (33) then vanishes and the 
discussion loses i t s  meaning. 

In the example considered, the denominator of Eq. 
(33) does not vanish. If the distribution of n i  is such a s  
to include the vicinity of a singularity, a resonance 
takes place when the phase velocity of the modulation 
perturbation W/q becomes equal to the quasiparticle ve- 
locity (the group velocity along the y axis). In this case 
the integral (33) can be calculated by writing the denom- 
inator in the casual from (51 - vikyq/k+ ie) .  

We shall now consider the situation when the maxi- 
mum of the distribution n,O(k,) lies in the region ki, kiv: 
<< k3,. The real part of the frequency is now a,= 
kqvAkO,/k. We shall use ni  in the form ni=A (ky)6(kx) 
x 6(k, - 120,). We shall write the imaginary part of the 
integral (33) as 

and the expression for 51 (assuming I k,l = k) as 

,=,, (,i ----- 
I in k= ) 2 p, Iql v,"k, ' 

where the derivative aA/ak, is taken a t  the point 
k, = W I k,I /viq. A simple estimate of the dimensionless 
correction to the frequency (36) gives 

where q=  (aA/ak,)/A,/kt) and aA/ak, is taken in the 
"tail" of the distribution A(k,) at the point k, = W I k,l /qvl, 
because 9k,/viq = vAk/v: Is  considerably greater than ki; 
here, A, is the characteristic value of the function A(k,). 
Hence, it is clear that 1. It is this smallness of g 
that ensures that the correction to the frequency is 
small. By analogy with the streaming instability, the 
modulation instability appears, in accordance with Eq. 
(36), in the presence of a hump in the functionA(k,) and 
is associated with the transfer of momentum from a 
quasiparticle to a modulation wave of frequency given in 
Eq. (34). 

DISCUSSION 

1. The term modulation instability is used many times 
above (and also by Al'tshul' C7 I) although this instability 
is not related directly to dispersion or, in particular, 
to the Lighthill criterion.[" Nevertheless, the use of 
this term is justified because, in the final analysis, the 
amplitude is modulated on a scale much greater than 
the wavelength (the correlation length in § § 2-4) and at 
frequencies much lower than the frequencies of the fun- 
damental oscillations. 

2. In the Introduction we have mentioned the problem 
of the magnetic pressure because of the presence of 
magnetic inhomogeneities in stellas convective shells. 
Equally important is allowance for this pressure in 
studies of the solar wind. In fact, a t  relatively short 
distances from the sun (less than 30 solar radii) the 
magnetic pressure is greater than the plasma pressure. 
The quantity (Hz) decreases with the distance and, con- 
sequently, the plasma is acted upon by the radial force 
facilitating the wind. 

3. An instability in an anisotropic turbulent medium 
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( 8  3) reaches saturation only when the magnetic pres- 
sure  becomes comparable with the plasma pressure. 
Let us assume that initially we have B<< 1 (low-pres- 
sure  plasma). According to Eq. (16) the value of ( H z )  
increases proportionally to p, whereas p p7 in the case 
of adiabatic compression (y is the specific heat ratio). 
Since y> 1, the plasma pressure finally prevents com- 
pression. Consequently, a turbulent medium acquires 
regions with a much higher local pressure. 

4. The nonpotential forces acting on a plasma appear 
because of the anisotropy ( 8  1) o r  a re  manifested a s  a 
negative resistance [§4, Eq. (27)]. Large-scale flow 
may be produced in a plasma under the action of these 
forces. By way of example, we shall mention the ex- 
citation of shear motion in the solar wind because of the 
inhomogeneity of ( H z )  and a possible anisotropy of the 
magnetic inhomogeneities. 
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Magnetic moments of iron atoms in the fcc lattice of a 
transition d-metal 

V. t. Sedov 
(Submitted 26 July 1978) 
Zh. Eksp. Teor. Fiz. 74, 20662077 (June 1978) 

The atomic magnetic moment m,  was investigated in the fcc modification of iron (the y phase) and in its 
alloys with transition d-metals. The behavior of m,  was investigated as a function of the integral V of 
the transition between the localized levels of neighboring atoms at a fixed value of the mixing constant of 
the s and d states. In the assumed model, the magnetic state of the atom is determined only by the 
influence of its nearest neighbors. It is shown that the atomic magnetic moment of y-iron decreases with 
increasing V .  At V--0.35 eV, m,  vanishes, but in the same region of V the value of m, for the bcc 
modification of iron changes insignificantly. The function m,(V) for y-Fe is considered with allowance for 
the transition of the conduction electrons to localized levels as V increases. It is shown that m,, of 
impurity iron atoms in d-metals with fcc lattices depends on the quantity E g and E;, where E ,  is the 
energy of the d level of the iron atom at V = 0 with a spin direction corresponding to the less occupied 
part of this level, and E ,  is the analogous quantity for the matrix atoms. If the condition 
EL - E ,>4V is satisfied, then m,, of the impurity iron atoms depends little on V. This conclusion 
explains why impurity iron atoms in many d-metals with fcc lattice have large and approximately equal 
values of m ~ , ,  equal to (2.5-3) pB, whereas y-Fe has a small atomic magnetic moment, (0.5-0.7) p,. 
The dependence of the mean value fi,, on the iron concentration in alloys with d-metals having an fcc 
lattice is considered. In accord with the experimental data, the obtained relation f iFe(c) tends rapidly to 
zero at a certain critical iron concentration c,,. 

PACS numbers. 75.50.Bb. 35.10.D 

INTRODUCTION ly large spin magnetic moments that vary over a small  
range, approximately from 2 . 5 ~ ~  to 3y, for different 

The magnetic properties of iron in the face-centered matrices. Magnetic moments of this order a r e  pos- 
cubic (fcc) modification (y  phase) differ strongly from 
the properties of i ts  usual body-centered cubic (bcc) sessed by alloys based on Agr3] ; Ad4* 51; core]  ; CU[~] ;  

modifications (a phase). Iron in the y modification is 
~ i [ ' *  51; pdcQ1; ~t.[ '" '  These alloys a r e  either ferro- 
magnets o r  paramagnets. 

antiferromagnetic. Its atomic magnetic moment i s  - - 
(0.7-0.5)~,,[ ' 9  21 much higher than the atomic magnetic The magnetic properties of the iron atoms vary 
moment 2 . 2 ~ ~  of a, iron. In the fcc  lattice of transition strongly in alloys based on y iron. In the fcc alloys 
d-metals, however, impurity iron atoms have relative- FeCrNi (stainless steel) and FeMn the magnetic mo- 
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