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The Landau-Lifshitz equations for a medium with an easy-axis anisotropy are used in an investigation of 
various types of nonlinear waves. Exact asymptotic expressions are obtained for the distribution of the 
magnetic moment in the region where a homogeneous magnetization is established and allowance is made 
for internal magnetic fields. It is shown that in addition to the solutions describing the steady motion of 
Bloch and NQI domain boundaries, there can be also solitary waves of two types. For waves of the first 
type (magnetic solitons) the establishment of a homogeneous magnetization is accompanied by precession 
of the magnetic moment about the anisotropy axis, whereas in the case of waves of the second type the 
precession is accompanied .Iso by nutational motion of the magnetic moment vector. Waves of the second 
type separate the solutions of the magnetic soliton type from nonlinear spin waves. Expressions are 
obtained for the limiting velocities of the propagation of the new types of wave. The respective solutions 
are found numerically. 

PACS numbers: 75.30.Ds, 75.30.Gw, 75.60.Ch, 75.60.Ej 

1. Akhiezer and ~ o r o v i k ~ ' * ~ ~  investigated nonlinear 
magnetic moment waves and found an explicit solution 
corresponding to a moving Bloch o r  NBel domain bound- 
ary, as  well as solutions corresponding to a "fast" soli- 
tary magnetic moment wave. In the case of a moving 
domain boundary, the explicit solution, characterized by 
an orientation of plane of rotation of the magnetic mo- 
ment constant over all space, it was shown that the ve- 
locity of such a domain boundary has the upper limit 
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Here, A and K are  the exchange and anisotropy energy 
constants; M ,  is the saturation magnetization; y is the 
gyromagnetic ratio; E = 2nM:/K. A similar result, 
found by Walker, i s  given in Dillon's review paper.c33 
However, the conclusion of the existence of a limiting 
velocity of a moving domain wall is based on the expli- 
cit analytic form of a particular solution of the Landau- 
Lifshitz equations, which does not make it possible to 
separate the class of solutions satisfying the above ve- 
locity limitation condition. 

In the case of fast solitary magnetic moment waves 
(magnetic solitons) the unresolved questions include not 
only the separation of the relevant class of solutions of 
the Landau-Lifshitz equations but also the possibility of 
retention of this type of solution (a solitary wave o r  a 
magnetic soliton) if allowance is made for internal mag- 
netic fields and for the propagation of a wave at an an- 
gle to the anisotropy axis. In fact, a fast solitary mag- 
netic moment wave found by Akhiezer and ~ o r o v i k [ ~ ~  is 
an exact solution of the Landau-Lifshitz equations only 
for the case of a wave traveling along the anisotropy ax- 
is of a uniaxial ferromagnet. Only in this specific case 
do the Landau-Lifshitz equations admit the existence of 
two exact first integrals of the solutions and make it 
possible to analyze the problem completely in the phase 
plane. In all other cases, including the most interesting 
case of the propagation of a wave orthogonal to the an- 
isotropy axis there are  internal magnetic fields which 
result in the elimination of one of the two exact first in- 
tegrals. 

The ways of overcoming the above difficulties were 
pointed out in an earlier paper by the present authors.c41 
Namely, we showed that the appearance of a lower ve- 
locity limit (1.1), discovered by Akhiezer, Borovik, and 
Walker is associated with a specific type of asymptotic 
boundary conditions for the behavior of the magnetic mo- 
ment vector in the region where a homogeneous magne- 
tization is established and these conditions determine 
the corresponding class of solutions of the Landau-Lif- 
shitz equations. Moreover, a qualitative analysis of the 
problem of magnetic moment waves in the phase space 
revealed the possibility of retention of solutions in the 
form of fast solitary waves (magnetic solitons) even if 
allowance is made for internal magnetic fields. It was 
also shown that the limiting Walker velocity can be de- 
termined without an explicit solution, investigating only 
the asymptotic behavior of the magnetic moment distri- 
bution. However, the absence of general analytic ex- 
pressions for the asymptotic behavior of the solutions in 
the region where a homogeneous magnetization is estab- 
lished made it impossible to  find the exact upper limit 
to the velocity of fast solitary waves in the presence of 
internal magnetic fields and to prove the existence of 
specific types of magnetic solitons. 

The explicit expression for the asymptotes obtained in 
the present paper have made i t  possible to show that 
there a re  two ways of establishing homogeneous states 
in a ferromagnet with an easy-axis anisotropy. In the 
first  case the nature of the asymptotic boundary condi- 
tions is governed by zeros of the dependence of the pre- 
cession frequency on the azimuthal angle and is charac- 
terized by the establishment of a plane of rotation of the 
magnetic moment constant in space, whereas in the sec- 
ond case these solutions are  characterized by a period- 
average value of the ratio of the logarithmic derivative 
of the polar angle to the precession frequency. A change 
in the type of asymptotic boundary solutions occurs 
when the wave velocity passes through the limiting val- 
ue given by Eq. (1.1). We can thus see that the limiting 
Walker velocity is simply the velocity at which there is 
a change in the nature of the magnetization switching. 

946 Sov. Phys. JETP 47(5), May 1978 0038-5646/78/050946-05$02.40 01979 American Institute of Physics 946 



We shall find the dependence of the upper limiting ve- 
locity of the propagation of fast solitary waves on the 
characteristic parameter of a magnetic medium E al- 
lowing for internal magnetic fields: 
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Moreover, an investigation of the asymptotes reveals 
the existence of a new characteristic velocity of fast 
magnetic moment waves, which is (see Fig. 2 below) 
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In the velocity range U_< U <  Uo the asymptotics of 
simple waves corresponds to the establishment of a 
homogeneous state in the presence of precession of the 
magnetic moment around the anisotropy axis and mono- 
tonic variation of the polar angle of the magnetic mo- 
ment vector. In the velocity range Uo< U <  U+ the estab- 
lishment of a homogeneous state occurs in the presence 
of precession of the magnetic moment and of decaying 
oscillations of the polar angle 0. This type of solution 
separates solutions representing the magnetic solitons 
and nonlinear spin waves. It should be noted that such 
a solution vanishes in the limint E -0. As the parame- 
ter  c increases, the range of existence of fast solitary 
magnetic moment waves, characterized by the absence 
of oscillations of the polar angle 0 in the region of es- 
tablishment of a homogeneous state, becomes narrower 
(Fig. 2) and for E >E, = (a+ - 1 this type of solitary 
wave vanishes completely. A numerical calculation con- 
firms the conclusion of the existence of solutions sepa- 
rating magnetic solitons from nonlinear spin waves. It 
is shown that solutions in the form of fast solitary waves 
of the magnetic moment a re  retained even if allowance 
is made for internal magnetic fields and for the propa- 
gation of the wave at right-angles to the easy magneti- 
zation axis. 

The three characteristic velocities and the charac- 
teristic value of the parameter E, obtained in the pres- 
ent paper allow us essentially to determine completely 
all possible types of magnetic moment wave in a medi- 
um with the easy-axis anisotropy. 

2. In the case of solutions corresponding to steady- 
state magnetic moment waves and, in particular, those 
describing the steady-state motion of domain boundaries, 
the Landau-Lifshitz equations for a ferromagnet with 
the easy-axis anisotropy become 

dZO/dp2- (I+€ cos2 q+02) sin 0 cos 8=uo sin 0, co=dqidE, 

d a0 
- (osinZO)+ ~ s i n ~ O c o s q s i n q = - u - s i n 0 .  (2.1) 
dS d's 

Here, 0 and cp a re  the polar and azimuthal angles of the 
magnetic moment vector in a spherical coordinate sys- 
tem with i ts  polar axis along the easy magnetization di- 
rection; the variable 5 = x - ut is reduced to the charac- 
teristic size of a Bloch boundary 6, = @/K) ' / ' ,  whereas 
the velocity u i s  reduced to the characteristic velocity 
2 1 Y 1 @fc)1'2/~,. 

The system (2.1) has the first  integral 

%= (d€~/dg)~- (I+& cosZ q-w') sin' 8, (2.2) 

and the condition for attainment of homogeneous-state 
solutions 

8=0, O=n, (2.3) 

corresponding to the magnetization along the anisotropy 
axis, is governed by the constant of the first  integral 
which vanishes (X = 0). 

We shall now determine the general asymptotic behav- 
ior of the solutions in the limits 0-0 and 0-n. Intro- 
ducing the logarithmic derivative of the polar angle 0 

we find that in the limit 0-0 and for arbitrary values of 
cp and w ,  the system (2.1) leads to  the equations 

Here, the new independent variable is the azimuthal an- 
gle cp. Eliminating the precession frequency w(cp), we 
obtain 

which governs the dependence of the logarithmic deriva- 
tive 0 on the angle cp. In particular, if c =0,  we find that 

and the velocity of a simple wave has the upper and low- 
e r  limits 

0<uZ<u:,=4. (2.8) 

The exact solution of Eq. (2.6) can also be found for 
any value of the parameter of the medium E # 0. In fact, 
we can readily show that the solution of Eq. (2.6) is 

r(cp)=ro+- ( r. C O ~  2q - - u sin 2p . 
uZ + 41702 ) 2 

The period-average value of l?, is given by 

Thus, there a re  two branches of the solutions, for one 
of which we have 

u2+41?:=[ ( I+~) '"+l ] '=u+~(e ) ,  (2.11) 

and for the other 

~ ~ + 4 r ~ ~ = [  ( I+€)  '"--112=u-2(e). 

Then, u_(E) i s  identical with the upper limiting velocity 
of moving domain boundaries characterized by an orien- 
tation of the plane of rotation of the magnetic moment 
vector which is constant in space (cp = const). 

For E = 0 the velocities u,(t) a re  identical with the 
limiting values of the velocities of a solitary magnetic 
moment wave [see Eq. (2.8)]. Using Eqs. (2.11) and 
(2.1 2), we obtain 
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r,(cp) =r,+'l,u, (E) cos 2(cp+6*), 

o,(cp) =-t/,u--1/2u, (E) sin 2(cp+6*). 

Here, tan 26 =u/2rO. The selection of the upper or  low- 
e r  sign is governed by the selection of the branches for 
I", in accordance with Eqs. (2.11) or  (2.12). The pre- 
sence, in the u<u_(e) case, of two branches is explained 
by the fact that in the phase space there a re  two singu- 
larities of the four -dimensional~saddle type and two se- 
paratrix solutions, corresponding to moving Bloch and 
NBel boundaries. The above explicit analytic expres- 
sion is in full agreement with the results of a qualitative 
investigation of the asymptotes given in our earlier pa- 
per.c41 

In the limit a s  8 -0, we have 

and, consequently, we can have two different waves of 
establishing a homogeneous magnetization state (8-0 o r  
n). In the former case the asymptotic behavior of the 
solutions is governed by zeros of the function w(cp) and 
gives 

Here, cp, is the angle at which the precession frequency 
vanishes. In this case the attainment of a state with a 
homogeneous magnetization establishes an orientation of 
the plane of rotation of the magnetic moment vector 
which is constant in space. It should be noted that in the 
case of the branch given by Eq. (2.12) only this method 
of attainment of a homogeneous state is possible. In 
fact, for all values u <u_(r) there is, according to Eq. 
(2.14), such a value of the angle cp, for which the pre- 
cession frequency vanishes: 

In contrast, for the branch given by Eq. (2.11), we find 
that zeros of the precession frequency o(cp) are  given by 
the equation 

sin 2(q,+6+)=-olu-(~), (2.18) 

which have no solutions if 

In the last case the nature of establishment of a homo- 
geneous state is governed by the period-average value 

Solitary waves disappear in the limit ( r / w ) ,  -0. The 
above explicit expressions for the asymptotic behavior 
of the solutions can be generalized in the case when a 
static magnetic field parallel to the anisotropy axis is 
present in the system. 

In the plane (2rO,u) the two branches of the solutions 
(2.11) and (2.12) correspond to the two circles shown in 
Fig. 1. The asymptotic behavior of the solutions of the 

FIG. 1. 

Landau-Lifshitz equations is characterized by the fact 
that for all the permissible values of I?, and u there a re  
such values of the azimuthal angle cp for which either the 
precession frequency vanishes or  the logarithmic deriv- 
ative of the polar angle 8 becomes zero. For the solu- 
tions corresponding to the outer circle the values of I?, 
and u correspond to the arcs  A B and A'B' on which the 
logarithmic derivative of the polar angle 8 is constant in 
sign and the precession frequency vanishes for certain 
values of the azimuthal angle cp. For the values of I", 
and u corresponding to  the arcs  CD and C'D' the preces- 
sion frequency does not vanish but the logarithmic deriv- 
ative of has zeros. In this case the asymptotic behavior 
of the solutions for the angle 8 exhibits oscillations 
whose amplitude tends to zero in the limit a s  8-0 (or 
9-n). 

Consequently, an analysis of the asymptotic behavior 
demonstrates the existence of three characteristic velo- 
cities of magnetic moment waves whose dependences on 
the magnetic parameter E is shown in Fig. 2. The trans- 
ition from region I to region I1 results in the excitation 
of the precession of the magnetic moment in a wave and 
instead of solutions corresponding to the moving domain 
boundaries, we have solutions of the solitary wave type. 
Transition from region 11 to region I11 results not only 
in precession but also in nutational motion of the mag- 
netic moment in the region where a homogeneous mag- 
netization is established. Finally, transition from re -  
gion I11 to region IV results in complete disappearance 
of the solutions of the solitary wave type and in the ex- 
citation of nonlinear spin waves. It should be noted that 
the existence of an intermediate region I11 is essentially 
associated with allowance for internal magnetic fields 
(E # 0). 

3. In a numerical analysis of the problem of fast sol- 
itary waves the attention has been concentrated on the 
result needed in proofs. The system of equations (2.1) 
makes it possible to separate the class of solutions 
which a re  symmetric in respect of the angle 0([) and 

FIG. 2. Limiting velocities of magnetic moment waves of dif- 
ferent types: 1 ) u  =u-(E); 2)u  =[ul(e) -U:(E)]~/~; 3)u =u+(E). 
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. 
FIG. 3. 

antisymmetric in respect of the angle ~ ( 5 ) :  

For this class of solutions the following conditions 
should be satisfied in the symmetry plane (5 =0): 

in this case we have d0/d< 1 ,=, = 0. 

According to the above asymptotic behavior of the so- 
lutions in the limit 0 -0 and, consequently, in the limit 
( 5 1 -m the asymptotic boundary conditions for 0 << n a r e  
determined completely by specifying the value cp, E [O,n]. 
For u>u,(E), the specification of cp, determines, in ac- 
cordance with Eqs. (2.9) and (2.12), the asymptotic val- 
ues of the logarithmic derivative of r(cp,) and the pre- 
cession frequencies w(cp,). Numerical calculation for 
different values of the velocities in the range 

gave the values of cp, E [0, 11] which satisfied conditions I 
o r  I1 in Eq. (3.2). When the angle cp is varied, the re-  
sultant solutions first  (for 6 << n) follow the asymptotic 
solution and then move away from it. For all the inves- 
tigated values of the velocities there a re  always two val- 
ues of cp,, which satisfy conditions I o r  I1 in Eq. (3.2). 
When the velocity is increased, max 6 = O(0) decreases 

FIG. 4. 
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FIG. 5. 

and the region of localization of a solitary wave becomes 
greater. Since an increase in the velocity is accompan- 
ied by a redudion in the value of r'(rp)/w(cp), the exact 
solution over an increasing range of the angle q remains 
close to the asymptotic solutions found above. In the 
limit u-u+(t) the asymptotes (2.9), (2.12), and (2.14) 
found here allow us to obtain essentially complete solu- 
tion of the problem of a small-amplitude fast wave. 

Figures 3, 4, and 5 give the dependences 0([) and 
w = w(cp) for  the case r = 0.2 and the wave velocities u = 2, 
1, and 0.1 [I is the solution corresponding to condition I 
of Eq. (3.2), I1 is the solution satisfying condition I1 of 
the same Eq. (3.2)]. The first  of the velocities is close 
to the upper limit of the velocities of u+(r) waves and 
corresponds essentially to the case of a small-amplitude 
solitary wave and the second value is close to  the lower 
limit u,(c). Figure 6 shows the dependences 0(5) and 
w(cp) for E =0.9 and u=2.35. The range of existence of 
solitary waves of the first  type is limited in respect of 
E to the values in the range E <E, = (a+ - 1. Thus, 
the results  of our numerical calculations demonstrate 
convincingly the existence, for 6 + 0, of two types of fast 
solitary magnetic moment waves in the velocity range 
U-(E) <u<u+(E). 

We shall conclude by pointing out that the method of 
finding asymptotic solutions proposed in the present pa- 
per can also be used in studies of nonlinear waves in 
ferromagnets with a more complex anisotropy, and also 
in the presence of a magnetic field perpendicular to the 
easy -magnetization axis.L51 

FIG. 6. 
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Electrohydrodynamic instability and anisotropy of the 
electrical conductivity in the smectic A phase of a liquid 
crystal 
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The phenomenon of electrohydrodynamic instability has been detected in the smectic A phase of a liquid 
crystal with positive dielectric anisotropy. The threshold, frequency, and contrast characteristics have 
been investigated both for this instability and for the electrically induced confocal-homotropic transition. 
The variation of the parameters of EHD instability and of the confocal and homotropic textures has been 
compared with the rules of variation of the electrical conductivity of the corresponding structures. A 
possible mechanism for the onset of instability is in many respects analogous to the Carr-Helfrich 
mechanism for nematic liquid crystals. 

PACS numbers: 61.30.Eb, 47.65. +a, 72.20. -i 

The  possibility of an onset of field-induced instabil- 
i ty  i n  the smect ic  A phase of liquid c r y s t a l s  (LC) is 
predicted by theory both i n  weakc11 and i n  sufficiently 
strongc2] electromagnetic fields. In  the f i r s t  case, 
because of the s m a l l  value of the deformation, the 
effect h a s  not yet  been confirmed experimentally, 
whereas  in  f ie lds  of l a rge  intensity an electr ical ly  in- 
duced transition has  been observed in a number of 
smect ic  liquid c rys ta l s  (SLC)!~' The occurrence of 
electrohydrodynamic (EHD) instability in SLC is a l so  
predicted theoretically ,[4] but experiments  confirming 
th i s  phenomenon are not, to our  knowledge, reflected 
in  the l i terature.  

In the present  paper ,  we  r e p o r t  r e s u l t s  of a n  inves- 
tigation showing the presence of EHD instability i n  
the  smectic A phase, and we compare the behavior 
andpecul iar i t ies  of the observed instability with the 
r u l e s  of variation of the electrical conductivity i n  SLC. 

Chosen as object of investigation w a s  4-nitrophenyl- 
4-octyl oxybenzoate, which p o s s e s s e s  both smetic and 
nematic  mesophases and p a s s e s  f r o m  the solid c rys ta l  
following sequence of t empera tures  : SC 49 "C SLC-A 
(SC) state to the isotropic liquid (IL) state in the 
61 "C NLC 68 OC IL.  T h e  smect ic  phase formed on cool- 
ing extended to -33 "C. On slow transi t ion f r o m  the iso- 
t ropic  phase to the  nematic liquid c rys ta l  (NLC) phase, 
the LC molecules  aligned themselves predominantly 
perpendicular to  the sur faces  of the electrodes,  pro- 
ducing a homotropic orientation, which pers i s ted  a l so  
in the smect ic  state. 

Application t o  the sample  of a low-frequency (-20 Hz) 
voltage above a cer ta in  threshold value (U,,) c a u s e s  the 
appearance in individual p a r t s  of the  cell of nuclei of 
turbulent motion, which, a f te r  spreading,  f i l l  the 
whole field of view. The  rate of spreading of the 
turbulence depends on the tempera ture  of the  sample  
and on the value of the applied voltage. Within the 
interval 35 "C< t <  55 "C, O< U - Uth< 15 V the numerical 
values of these  quantities sat isfy the empi r ica l  relation 

where  t,, is the  tempera ture  of the t ransi t ion SLC-A - NLC. 

The  value of U,, i n c r e a s e s  with lowering of temper-  
a t u r e  and with i n c r e a s e  of the frequency of the applied 
field (Fig. 1).  Each  tempera ture  h a s  its own "crit- 
ical" frequency (f,,), above which EHD instability does  
not occur .  With increase  of t empera ture ,  f, shif ts  
toward high frequencies. It  should be noted that the 
smect ic  phase formed on heating a sol id c r y s t a l  h a s  a 
predominantly planar  orientation of the  molecules  and 
that  the U,, of the corresponding texture is somewhat 
below the threshold f o r  the  homotropic texture.  

The optically t ransparen t  homotropic s t r u c t u r e  is 
destroyed in an electric field, and in the p rocess ,  
turbulence severe ly  scatters the t ransmit ted light. 
After  the applied. voltage is turned off, a s table  con- 
focal texture is formed,  and a sca t te r ing  condition 
p e r s i s t s .  The relaxation t i m e  of such  a s t a t e  is very  
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