
that group of carriers which makes the greatest contribution 
to the nonlocal conductivity. There is a group of electrons in 
tungsten with an extremal shift (the section I "I); however, 
for these electrons, the quantity aS/ap, differs by 30% from 
the corresponding value for the holes of the section A (at the 
limiting points of the electron Fermi surface, this difference 
is even greater). Therefore, the oscillations in the "-" po- 
larization cannot be connected with the excitation of the elec- 
tron doo~leron. 
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All the possible types of solutions to the nonlinear equation for the distribution of a static magnetic field 
in a Josephon barrier of finite width are described. For each type of solution corresponding to the 
boundary-value problem, the Cauchy problem, which allows a unique association of a definite set of 
"initial" data with each solution, is formulated and solved by numerical methods. The magnetization 
curves of the Josephson junction are found for several barrier-width values (L = 1, 4, 10). The question 
of the stability of the static solutions, including those that are anomalous in comparison with the usual 
Meissner-type solutions, is investigated. Examples of the numerical solution of the nonstationary, 
nonlinear equation that illustrate the dynamics of the establishment of the static solutions are given. 

PACS numbers: 74.30.Ci, 74.50.+r 

The question of the penetration of a s tat ic  magnetic 
field into a Josephson junction h a s  been repeatedly dis-  
cussed  in the l i terature.  ""'I The one-dimensional l inear  
vortex s t ruc ture  that arises in the b a r r i e r  in  the case of 
a n  infinitely wide b a r r i e r  h a s  been analytically described 
by K ~ l i k , ~ ~ . ~ ]  while f o r  the case of a b a r r i e r  of finite 
width s o m e  examples of the field distribution in the 
junction have been obtained with the a id  of numerical  
methods by Owen and Skalapino. c41 A number of dis- 
tinctive features  of the penetration of a magnetic field 
into a junction of finite width have been noted in a paper  
by one of the p resen t  authorsC7l (in part icular ,  the un- 
evenness of the en t ry  of the individual vor t i ces  into the 
junction, as well as the presence  of "superheating" and 
"supercooling" fields that l imit  the exis tence domain of 
a given number of vort ices  in a weak superconductor).  

descr ibing different field distributions inside the b a r -  
rier. In the  present  paper  the boundary-value problem 
is reduced to an equivalent Cauchy problem; this  pro-  
cedure allows us  to uniquely associate a definite set of 
"initial" data  with each solution and find a l l  the solutions 
of the problem. Below we descr ibe  a l l  the possible types 
of solutions (Sec. 1) and find the integral  relat ions that 
allow the  determination of the initial data  (i.e., the val- 
u e s  of the function and its derivat ive a t  one of the b a r -  
rier edges)  in t e r m s  of the p a r a m e t e r s  of the boundary- 
value problem (Sec. 2). Dependences found with the aid 
of a computer  (and, in a number of c a s e s ,  analytically) 
are i l lustrated with graphs.  Besides the usual Meis-  
sner-type  solution^,^-'^ in which the field fa l l s  off into 
the b a r r i e r  in comparison with its value a t  the edges, 
we descr ibe  anamalous solutions in which the f ie ld in- 
creases into the b a r r i e r ,  or e l s e  there  obtains a n  asym-  

The presen t  paper is devoted to a m o r e  detailed-in 
m e t r i c  distribution of the field, as well as solutions 

and 7-study Of the character Of corresponding to m o r e  complex field configurations, in 
the penetration of a magnetic field into a Josephson b a r -  

par t i cu la r ,  to  an a r r a y  of vor t i ces  with al ternat ing 
rier of finite width. The boundary-value problem f o r  the 

signs. 
nonlinear equation governing the s teady-state  magnetic- 
field and c u r r e n t  distributions inside the b a r r i e r  turns We find the free-energy functions of the Josephson 
out to be nonunique: f o r  specified values of the field a t  b a r r i e r  in an external  field f o r  the various types of sol-  
the junction edges the equation h a s  s e v e r a l  solutions utions (Sec. 3), and presen t  g raphs  i l lustrat ing the  shape 
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of the magnetization curves of barr iers  of different 
widths (Sec. 4). 

In Sec. 5 we investigate the question of the stability of 
the obtained solutions. We show that the anomalous 
solutions a re  unstable, but that they can be realized in 
the course of a transition of the system from one stable 
state into another. The numerical solution of the non- 
stationary, nonlinear equation allows us to trace the 
nature of the formation of the static solutions. Under 
certain conditions the field and current distributions in 
the barrier can, for a long time, correspond to an un- 
stable state; therefore, such states can, in principle, 
manifest themselves in experiment. 

1. The basic equation describing the distribution of a 
static magnetic field in a Josephson junction has the 
formw7] 

dZcp - ---;- - sin cp, 
dx 

where the quantity cp(x) (the so-called phase difference 
of the wave functions of the superconductors) i s  related 
to the magnetic field in the barrier:  

In (1) and (2) we have used dimensionless quantities: the 
coordinate is measured in units of A, (A,-0.1 mm is the 
characteristic penetration distance of the field into the 
weak supercond~ctor)~ while the magnetic field is  mea- 
sured in units of H ,  =@,/2nA,~ (a, is the flux quantum, 
A cm is the penetration depth of the field into a 
bulk superconductor; usually, H, - 0.1 - 1 G). The bound- 
ary conditions for the problem of the penetration of an 
external field, He, into a barrier of width L have the 
form 

The solutions to Eq. (2) that satisfy the conditions (3) 
a re  given in an implicit form in terms of elliptic inte- 
grals, and can be of two types. 

The first  type of solutions is given by the formulas 

where n is  an arbitrary whole number. 

The second type of solutions is given by the formulas 

d o )  a2 Ii(z)-2& (z)R(cp(z)), pa-sin8-- T >  0, (z) -sign H (2) -*it 
2 

with cp(L) = cp(0) or q(L) = 2 n - ~(0). These solutions can 
be e x p r e ~ s e d [ ~ - ~ ]  in terms of the Jacobi elliptic func- 
tions, but we prefer to deal directly with the integral 
representations (4) and (5). 

To elucidate the difference in character of the solu- 
tions (4) and (5), let us note that Eq. (1) is  formally 
analogous to the equation for a compound pendulum with- 
out friction. It i s  known that the solutions of this equa- 
tion can be of two types.c81 In one case the solutions 
correspond to the rotation of the pendulum about an 
axis, the angle, cp, of rotation increasing without re- 
striction: by 2 r  after each complete rotation (it will be- 
come clear from what follows that solutions of the type 
(4) a re  analogous to the rotary motion of the pendulum). 
In the other case the solutions correspond to oscilla- 
tions of the pendulum about an equilibrium position with- 
out rotation about an axis, the angle cp varying in this 
case within the limits 0 s rp 2 n (it will become clear 
from what follows that solutions of the type (5) a re  ana- 
logous to the oscillatory motion of the pendulum). The 
sign function 5 (x) = k 1 in (5) then takes into account the 
change in the direction of the "velocity" of the motion. 
The foregoing is illustrated by Figs. l a  and lb ,  which 
depict the characteristic behavior of the solutions of 
Eq. (1) for the two indicated cases, the heavy points on 
the curves indicating the values of certain solutions that 
satisfy the boundary conditions (3), i.e., the values of 
the derivative dq/dxl,=,. Notice that if q(x) i s  a solu- 
tion to the problem, then cp(x) +2m i s  also a solution. 

FIG. 1. a) Schematic representation of the dependence cp(x) 
corresponding to a solution of the type (4) (analogous to the 
rotary motion of a pendulum). The two samples of the curves 
correspond to the two possible ranges of variation of cp(0) 
noted in the text, namely, - r < cp(0) < 0 and 0 <  cp(0) < r . The 
heavy points on the curves correspond to the values at  which 
cp' (L)= cp' (0). These points are  given numbers indicating the 
number of the corresponding solution (see text). For example, 
the solution 4 starts from the point cp(0) for x =  0 and ends at  
the point 4 shown on the curve. b) Distribution of the field H 
=dcp/dx in the barr ier  for different solutions (schematic). The 
solutions 1 and 3 are  the basic ones in the series of solutions 
with odd numbers. The solutions 5, 7,  etc., are  formed by the 
addition of one o r  a larger number of vortices (n denotes the 
integral number of vortices in the given distribution). Simi- 
larly, the solutions 2 and 4 generate a series of solutions with 
even numbers. The hatched regions correspond to one vortex. 
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Therefore, i t  is sufficient to limit ourselves to the study 
of the solutions for which the q(0) values lie in the in- 
terval - ra  q(O)a n (see Figs. l a  and 2a). 

We shall number the solutions of the type (4) (Fig. 1) 
in the following manner. If the boundary value cp(O)< 0, 
then we shall characterize the solutions by odd numbers, 
N =1,3,5, .  . . , etc., setting in correspondence with 
these numbers the following possible values of rp(L): 

etc., o r  

The basic solutions in this ser ies  a r e  the solutions 1 
and 3; the others a r e  obtained from them by the addition 
of an integral number of cycles (see Fig. I) ,  corre- 
sponding to the presence in the junction of a certain 
whole number of vortices. The addition of an extraneous 
cycle (vortex) corresponds to a transition in the formu- 
las (6) from the solution characterized by the number n 
to the solution n + 1. 

If the boundary value q(0) > 0, then we shall number the 
solutions by even numbers, 2,4,6, etc., setting in cor- 
respondence with these numbers the following possible 
values: 

etc., or 

The basic solutions in this ser ies  a r e  the solutions 2 
and 4; the others a r e  obtained from them through the 
addition of an integral number, n, of cycles (see Fig. 
I), which corresponds to a transition to a solution with 
n additional vortices. 

FIG. 2. a) Behavior of a solution, cp(x),  of the type (5) (analo- 
gous to the oscillatory motion of a pendulum). b) Schematic 
distribution of the field H = d g / d n  in the barrier.  The basic 
solutions a re  those numbered 1' - 4' ; all the other solutions 
are  obtained from these basic solutions by the addition of in- 
tegral numbers of vortices. The solutions 5' - 8' a re  res- 
pectively obtained from 1'- 4' by the addition of one vortex. 

The solutions of the type (5) a r e  numbered in analog- 
ous fashion (see Fig. 2): we shall characterize these 
functions by primed numerical subscripts (I1, 2', etc.) 
and se t  them in correspondence with the following val- 
ues of q,r (L): 

The basic solutions here a r e  the solutions l', 3' (for 
q(0) < 0) and 2', 4' (for q(0) > 0); the r e s t  a r e  obtained 
from them by the addition of an integral number of cy- 
cles (Fig. 2). Notice that these solutions describe states 
with oppositely directed vortices (i.e., the magnetic 
fields in neighboring vortices have opposite directions: 
see  Fig. 2b). 

The above-enumerated solutions exhaust all the pos- 
sible types of solutions of the static problem formulated 
in (1)-(3)." 

2. It is not difficult to  obtain integral relations char- 
acterizing each of the possible solutions. Indeed, sub- 
stituting the value x = L into (4), we find 

FIG. 3. Plots of the functions F,(x)  and DN, ( x ) .  The heavy 
curves depict the functions F 1 ( x )  (for X <  0) and the functions 
F 2 ( x )  for x >O) .  The thin continuous lines represent the func- 
tions F 3 ( x  ) ( X  < 0) and F 4 (  X )  ( X  > 0). The dotted lines give the 
functions D 1 ( x )  ( X  < 0) and D 2 ( x )  ( x > O ) .  The broken lines give 
the functions D3(x ) ( X  < 0 )  and Dr(x ) ( X  > 0). The numbers on the 
curves indicate the values of the parameter Hz < 2 .  Drawing 
the horizontal straight lines y = L ,  and determining the points 
of their intersection with the curves shown, we find for the 
given L  the possible roots of Eqs. (a), (9). It can be seen from 
the figure that, for example, the equation L = D I ( x )  has no 
roots for L < u , while the equations L  = D b r ( x  ) have no roots 
for L  < 2 7 .  For a given value of L  there exists a definite range 
of He values at which the solutuion with the number N is pos- 
sible. 
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where the cp,(L) are defined in (6) and (7). The rela- 
tfans (8) a r e  used fo r  tfie determination of the boundary 
value ~ ( 0 )  m a function of He, L, and N. Introducing in 
place of rp (0) the variable x = 1 p (0)I , and carrying out 
simple transformations, we obtain for the right-hand 
side of (8) the expressions 

K.+, (-3) -Fl ( -XI  + n V ( x ) ,  F,,+z(x) -Ft(x) + n V ( x ) ,  

%,+a ( - 2 )  =K.+&(X) - ( n + l )  V ( X ) ,  

z 61.' H 
R ( z )  = sin2 - + - - s i n z L  , OGXGX., x.-2 arc sin --l. 

1 2 4  2 2 

The functions F, (*x)  for N =1,2,3,4 a r e  depicted2) in 
Fig. 3 for values of He 6 2 and in Fig. 4 for He > 2. The 
points, X,, of y = L  coincide with the roots of Eq. (8), 
and allow us to determine the values of cp,(O) = * x,. 

Similarly, we can derive the equations determining 
the values of cpN,(0) for the solutions of the type (5): 

l  *N'(L' 
L = -  j dz = D , . ( q ( O ) ) ,  N'=lP,2' ,..., 

2 p,,, S( . t )R(x )  (10) 

where the functions D,t have the form 

D,,,, ( - X )  = D , ( - x ) + I z W ( X ) .  D'm+r(x) = D ~ ( T . )  +nI.V(x),  
D..+,(-X) =Din+r(~.)  = ( n + f )  ~ V ( X ) ,  

r ( x )  = (sin (A+x)s in x )  '", A=2 arc sin 

x.<x<n, OGAGn.  

FIG. 4. Plots of the functions FN(x) for He > 2. The numbers 
on the curves indicate the number of the solution. The heavy 
lines give the curves for He = 2 . 1 ,  the dotted for He=2.5, the 
dashed for He = 5 (only part of the dashed lines are  shown). 
The solution with the given number N in the field He corres- 
ponds to the point of intersection of the horizontal straight line 
y =L with the curve FN. 

FIG. 5. The external-field (He) dependence of rp(0) for L= 1 
in the Cauchy problem ( 1 2 ) .  which is  equivalent to the original 
boundary-value problem (1)-(3). The numbers on the curves 
correspond to the mode of numeration of the solutions in the 
present paper. The numbers of the branches corresponding to 
the stable solutions a re  1 ,  5, 9, etc. (the solid lines). The 
branches with the numbers 6. 1 0 ,  etc. correspond to unstable 
solutions. The branches 4, 8, etc. correspond to nonsymme- 
tric solutions. Their mirror  image in the plane x=L/2 gives 
the nonsymmetric solutions determined by the branches 3, 7, 
etc . 

The functions DN, for N' = I t ,  2', 3', 4' a r e  depicted 
in Fig. 3. There a r e  no solutions of the type (5) for He 
> 2  (for the parameter @ in (5) cannot be negative). The 
points, x,,, of intersection of the curves D,I(*x) with 
the straight lines y = L give the roots of Eq. (10): cpN,(0) 
= * X,'. 

Figures 5-7 show the cp,(O)- and cp,~(O)-versus-~~ 
curves for L =1,4,  and 10. 

Having determined the cp(0) values from (8) and (10) 
(see Figs. 3-7), we can formulate the Cauchy problem 
for E,q. (1): 

For the found value of cp(O), the solution satisfying (12) 
will automatically satisfy the condition dcp/drl,=, =He 
a s  well. The reduction of the boundary-value problem 
(3) to the Cauchy problem (12) turns out to be convenient 
for the purpose of carrying out numerical computations, 
a s  well a s  for the general classification of the solutions. 
Examples, obtained by solving the Cauchy problem (12), 
of the field and current distributions in barr iers  of dif- 
ferent widths a re  given in Sec. 4. 

FIG. 6 .  Same a s  in Fig. 5, but for L = 4. 
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I He 

FIG. 7. Same as  in Fig. 5, but for L = 10. 

3. The above-obtained dependences of the parameter  
q (0)  on He allow us to determine eas i ly  the value of the 
mean field, RN, in the b a r r i e r ,  i.e., to  find the magneti- 
zation curves  of the weak superconductor. In fact,  we 
have 

f r o m  which we  obtain the following expressions f o r  type- 
(4) solutions with different numbers  N (see (6), (7)): 

Similarly, we find for  type-(5) solutions with different 
numbers  N' (see (6'), (7')): 

FIG. 8. Dependence of the mean field in the barrier on the ex- 
ternal field (magnetization curves) for L = 1. The numbers on 
the curves indicate the numbers of the corresponding solu- 
tions. The inserts show the free energy, computed from the 
formulas (16)-(19). The curves represented by the heavy 
lines correspond to stable solutions. The arrows indicate the 
field values, H,, at  which the system should, under condi- 
tions of thermodynamic equilibrium, go over from one branch 
to another with a unit change in the number of vertices. The 
sections of the heavy curves lying in the regions H S He, cor- . 
respond to possible metastable states (superheating and super- 
cooling). 

-, C..' 
FIG. 9. Same as  in Fig. 8, but for L = 4 .  

R(,,+,).= (-2n+2 1 q(~.+t), (0) I}/L, 
R,,.+*,*= {2x--2qh,"l*). (O)}/L, (15) 

R(,,+,)r=R(,.+,,.=O, n-0, 1, 2, .  . . 
Figures  8-10 show the gN and B,, v e r s u s  He curves  

f o r  L =1 ,4 ,  and 10. 

To  each point on the curves  in Figs.  8-10 corresponds 
i t s  own field and c u r r e n t  configuration inside the b a r -  
r i e r .  (Examples of the possible  s ta t i c  distributions of 
the field a r e  indicated in Figs.  1 and 2 and in Sec. 4.) 
When the  ex te rna l  field is changed, the field configura- 
tion in the b a r r i e r  and, consequently, the energy of this 
s t a t e  change. The question a r i s e s  of the comparison of 
the energ ies  of the various s t a t e s  that a r e  possible in  a 
given field He. It  i s  c l e a r  that it is advantageous for  the 
sys tem to b e  in  the s t a t e  that p o s s e s s e s  the lowest f r e e  
energy. This  question is discussed in Sec. 4. 

4. T o  find the external-field values a t  which a thermo- 
dynamic-equilibrium transi t ion f r o m  a solution of num- 
b e r  N t o  a solution with a different number can occur ,  
i t  is necessary  to  compare  the Gibbs f r e e  energ ies  f o r  
s t a t e s  with different N. 

Le t  us  wr i te  down the Gibbs p ~ t e n t i a l ~ ~ ' ~ " ~  for  the 
s t a t e  of number N (s imilar ly fo r  N'): 

-7 L 
FIG. 10. Same as  in Fig. 8, but fo rL=lO.  
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where 6, corresponds to the internal energy of the bar- 
r ier,  while the term B N ~ ,  corresponds to the change in 
the sample energy in the external field. Taking for 6 ,  
the expression0* 

going over from the variable x to the variable q ,  and 
carrying out simple transformations, we obtain for the 
various N in the case of type-(4) solutions the expres- 
sions 

8 8 
&,,+,=-2aZ - - T ,  + - ( n + l )  T,,  

L L (18) 

where n =0,1,2, .  . . , a2 =fg - sin2(qN(0)/2). 
iPN(0)1/2 

Ti = j (a'+sin2 .) ' dp ,  T.  = 7 ( a Z + s i d  p )  'A dp.  
0 * 

In the case of solutions of the type (5), we find, according to 
(17) the expressions 

The curves GN(H,) and G,,(H,), obtained on a computer 
with use of the formulas (16)-(19), a r e  shown in the in- 
serts in Figs. 8 and 9 for L =l  and 4. Under conditions 
of thermodynamic equilibrium, the system should trace 
the curve with the least free energy. An equilibrium 
transition of the system from one state into another is 
possible a t  the points of intersection of the G, curves 
(in Figs. 8-10 the equilibrium field values, He,, cor- 
responding to these points a re  indicated by arrows). 

However, the transition from, for example, the state 
1 into the state 5 (which has the lower energy when H 
> He,) should be accompanied by a reconstruction of the 
magnetic-field configuration in the barrier.  Indeed, the 
states 1 have at the center of the barrier a field mini- 
mum, while the states 5 have a maximum (see Figs. 
lb ,  11, and 12). Therefore, these states a re  separated, 
so  to speak, by a "kinetic barrier" (we mean that, to 
get the transition from 1 to 5 to occur, we must impart 
additional energy to the system to se t  the electrons into 
the motion connected with the reconstruction of the field 
and current). As a result, it may turn out that the sys- 
tem, if it is  in the state 1, will on crossing the point 
H = H e s  remain in this state, which has a higher energy 

FIG. 11 .  Examples of static field and current distributions in 
a junction of length L  = 4 .  The arrows indicate the existence 
domains of the solutions with the various numbers. The solu- 
tions 1 ,  5, and 9 are stable; the rest  are  unstable. 

than the state 5, and once it has has got into the state 5, 
may remain in it when H <  H,, (although the energy of 
the state 1 is smaller than the energy of the state 5 when 
H <  H, ). (Here we have an analog of the phenomena of 
superheating and supercooling for superconducting films 
in a magnetic field.L91) It i s  clear that the boundaries of 
the regions of superheating, H, , and supercooling, H,,, 
coincide with the end points of the corresponding solu- 
t i ~ n . ~ '  A transition to a solution with a different num- 
ber necessarily occurs at H>H, (or H <  H,). Since in 
a given field the system can trace different curves, de- 
pending on which state it is in, it is  clear that hyster- 
es is  phenomena a re  possible here. 

Notice that a s  the external field, He, is increased, the 
mean field in the barrier can, in the case of sufficiently 
small L, vary smoothly, tracing the sequence of curves 
1 ,6 ,9  (see Figs. 8,9 and 11, 12 for L =1 and 4). When 
the field i s  subsequently decreased, the system can 
retrace in succession the curves 1, 6, 9, .  . . , i.e., 
there will be no hysteresis in this case. On the other 

FIG. 12 .  Relaxation of unstable distributions ( 2 , 4 , 6 )  to stable 
ones ( 1 , 5 ) :  a ) H e = l ,  L = l ; b )  H e = 1 . 5 ,  L = 7 .  The numbers on 
the curves indicate the moments of time in units of T ; the 
arrows indicate the direction of movement of the solutions. At 
the initial moment t = 0  the solution to Eq. (20) was given in the 
form of the static distribution 2 ,  4 ,  or  6 and left to itself 
(cp ( x ,  t = 0 )  = 0 ) .  the evolution of the unstable solution being de- 
termined by the presence of the increment (25). 
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hand, for a sufficiently wide barrier (e.g., for L = lo :  
see Fig. lo), a transition from a solution to a solution 
cannot be smooth, and the field must penetrate the bar- 
r ier  in steps a s  the individual vortices enter it (cf. Ref. 
7). Once the system gets into a new state, however, it 
can remain in that state a s  the field is decreased (right 
down to the end point, H,, of the solution), i.e., there 
will be hysteresis. Under this circumstance, we could 
have discerned a connection with the known operating 
conditions of current-carrying Josephson  junction^,[^*'^' 
to wit, with the anhysteretic regime that obtains in the 
case of narrow barriers and the hysteretic regime in 
the case of wide barriers. In reality, the situation is 
more complicated. 

It i s  clear that, for the system to be able to get, for 
example, into the state 6, which has a higher energy 
than the states 1 and 5 (see Figs. 8-10), the state 6 
should be stable (metastable). The investigation, car- 
ried out in Sec. 5, of the stability of the obtained static 
solutions shows, however, that the solutions having the 
numbers 6, 10, etc. a re  unstable with respect to weak 
perturbations and, consequently, cannot be realized 
under static conditions. The stable solutions a re  the 
solutions 1, 5, 9, .  . . , which a re  depicted in Figs. 8-10 
by heavy lines. For this reason, the field in a narrow 
barrier cannot continuously trace the curves 1, 6, 9,. . . 
i n  succession, but should pass from one stable state 
(for example, 1) into another (for example, 5) discon- 
tinuously (over a sequence of nonstationary states; see 
Sec. 5). And having got into the state 5, the system may 
remain in this state a s  the external field is decreased, 
i.e., hysteretic behavior will occur. Thus, even narrow 
barr iers  located in an external field should behave in a 
hysteretic manner, and the field should penetrate them 
in steps. To be sure, the size of the hysteresis region 
in narrow barr iers  i s  small (cf. Figs. 8 and lo), and 
for L-0 (point barrier) the hysteresis region decreases 
to zero and a smooth (anhysteretic) penetration of the 
field into the barrier ensues. (For greater details 
apropos of the hysteresis phenomena experimentally ob- 
servable in Josephson junctions, see, for example, 
Ref. 6). 

5. As has already been noted, several different-in 
energy terms-states of the system a r e  possible in a 
given external field. In order for the system to really 
have a change of getting into a state with a higher ener- 
gy, i t  is necessary, in any case, that this state be 
stable (i.e., be a metastable state). The question of the 
stability of the states depicted in Figs. 8-11 should be 
resolved on the basis of a more general scheme that 
allows us to follow the development of the state in time 
under the influence of weak perturbations. For the des- 
cription of the evolution of the system we can assume 
the equationL3' 

which goes over into Eq. (1) on neglecting the time der- 
ivatives. Here t is  dimensionless time, expressed in 
units of 7=hJ/cO - lo-" sec, where A, is the Josephson 
length, c, =C(L/EA) '~  i s  the speed of electromagnetic 

waves in the junction, and E is the permittivity of the 
barrier. The dissipative term @I$ (the point denotes dif- 
ferentiation with respect to time) phenomenologically 
takes into account the ohmic losses in the barrier,  
which a re  connected with the appearance of a nonstation- 
ary electric field E -I$ and a normal component of the 
current, j, =oE (a is the normal conductivity). This 
term guarantees the asymptotic extinction of the trans- 
ient perturbations and the passage of the solution to the 
static regime described by Eq. (1). 

The question of the stability of the solutions of the 
nonlinear partial differential equation, (20), is rather 
complicated, and its detailed analysis falls outside the 
framework of the present work. We restrict  ourselves 
here to the presentation of preliminary results obtained 
in a numerical solution of Eq. (20) on a computer; these 
results allow us to get some indications of the nature 
of the stationary states of interest to us. 

The investigation of the stability of the static solutions 
of Eq. (20) can be carried out, using the following stand- 
ard  procedure. Let q,&) be a static solution to Eq, (20) 
that coincides with a solution to Eq. (1). Writing the 
time-dependent solution in the form 

and substituting (21) into (20), we find the linearized 
equation for the function * ( x ,  t ): 

Let us set  * ( x ,  t )  =$(x)ewt and go over to the Fourier 
components with respect to time. We then obtain for the 
amplitude + ( x )  the equation 

We assume that the boundary conditions (3) a re  given 
and a re  independent; consequently, a solution to Eq. (23) 
should satisfy the following conditions: 

From Eq. (23) we can find under the conditions (24) the 
spectrum of the eigenvalues, E, a t  which the problem 
has a nontrivial solution. Knowing the eigenvalue E ,  we 
can easily determine the increments determining the 
evolution of the solution in time: 

It is clear from (25) that, for E > 0, there necessarily 
exists an increasing solution of the form Jlew+' , w+> 0; 
for E > 0 there is no growing solution. Thus, the ques- 
tion of the stability of the solution qo(x) reduces to the 
problem of finding the minimum positive eigenvalue of 
Eq. (23). If all the eigenvalues a re  negative, then the 
solution is stable. (Notice that the stability of the solu- 
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FIG. 13. Evolution of the stable solutions 1 (L = 1, He= 1,  
q(0) = - 0.4628) under the action of an initial impulse +(x, t = 0) 
=4.5361: a )  evolution of the phase c p ;  b )  variation with time of 
the mean (with respect to the coordinate x )  speed (i.e., 
of the voltage potential in the barrier);  i t  can be seen that in 
the course of the evolution the solution is retarded in the vicin- 
ity of the unstable distribution 2 (in the time interval 2 i t i l O ) ;  
C )  the evolution of the field H=dcp/dx. 

tion does not depend on the presence  of the decrement  
@; on it  depends only the magnitude of the increment  
(25). In the numerical  computations c a r r i e d  out by u s  
the parameter  p was  chosen to be  equal to 6 = 1 .) 

The genera l  solution to Eq. (23) can be  expressed  in 
t e r m s  of the Lam6 functions (cf. Ref. 5), but it  is then 
difficult to effectively find the eigenvalues. Therefore,  
the eigenvalues were  found numerical ly  by a d i rec t  cal- 
culation of Eq. (23) with the aid of a WANG-2200 compu- 
ter .  The resu l t s  obtained show that a l l  the specific sol-  
utions of the anomalous type (see the Introduction) in- 
vestigated by us  are unstable. Only the solutions with 
the numbers  N = 2n + 1 (see (6)), which correspond to the 
normal  vortex s t r u c t u r e  (cf. Ref. 7), and which are de-  
picted in Figs.  5-10 by the  heavy curves ,  are stable. 

The resul t ,  obtained on the b a s i s  of the (linearized) 
Eq. (23), that the anomalous solutions are unstable was  
verified direct ly  by solving the par t i a l  differential equa- 
tion (20) with the aid of a computer  (cf. Ref. 11). It w a s  
found that, upon being sufficiently strongly perturbed,  a 
stable  solution goes over  into another s table  solution, 
but that in the p rocess  of evolution the solution a s s u m e s  
a form corresponding t o  an unstable state and can  (in 
the case of a sufficiently s m a l l  increment)  re ta in  the 
unstable fo rm for  a long time. (Examples of the evolu- 
tion in t ime of the solutions are given in Figs.  12 and 
13.) The la t t e r  implies that such  solutions could, in 
principle, manifest themselves in experiment  (for ex- 
ample, they could affect the value of the switching t ime  
between s table ,  s ta t ionary states in devices based on 

the use  of the Josephson effects). The  problems connect- 
e d  with stability analysis  and the nonstationary solutions 
of Eq.  (20) will  b e  considered separa te ly  in greater de- 
tail. 

In conclusion, l e t  us  note that Eq.  (20) with fi =0 coin- 
c ides  with the so-cal led sine-Gordon equation, which is 
widely discussed in the l i t e ra ture  in connection with the 
s e a r c h  for  quasiclassical  solutions f o r  e lementary par- 
t i c l e ~ . ~ ~ ~  The s a m e  type of equation is used in, f o r  
example,  the dynamical theory of dislocations. 
In view of this ,  i t  s e e m s  that  the descript ion of the par-  
t i cu la r  solutions of this equation and the analysis  of 
the i r  stability (to which the presen t  paper  is devoted) 
can a l s o  be  of interest in other  problems.  

') Notice that for the symmetric boundary conditions (3) the 
problem admits of both symmetric (for example, 1 and 2) 
and nonsymmetric (for example, 3 and 4) field distributions 
inside the barr ier  (see Figs. l b  and 2b). Here we have an 
example of the so-called broken symmetry. '' The numerical calculations were carried out on a computer 
of the WANE2200 type. 
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