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An analysis is made of instabilities of a homogeneous high-frequency discharge maintained by the field of 
a traveling plane electromagnetic wave in a cold gas of electronegative molecules; a low electron collision 
frequency is assumed. A general dispersion equation is obtained for arbitrary wave perturbations of the 
field and plasma density. The maximum increments are found, as well as the characteristic scales of the 
main types of instability, which are large-scale transverse and longitudinal modulation, backscattering, 
and small-scale stratification in the direction of the electric field vector. 

PACS numbers: 52.80.Pi. 52.40.Db 

1. One of the important tasks in the theory of high- 
frequency discharges i s  the determination of the main 
types of instability of possible steady-state postbreak- 
down We shall discuss instabilities of a ho- 
mogeneous discharge maintained by the field of a travel- 
ing plane electromagnetic wave in a cold gas of electro- 
negative molecules. The wave frequency w is assumed 
to be high compared with the electron collision frequen- 
cy v(w >> v) and the plasma i s  regarded a s  a nonabsorb- 
ing medium with a rea l  permittivity E =  1 -,V/S,>O (N i s  
the electron density and N, = szw2/4se2 i s  the cri t ical  
value of this density). The adopted homogeneous absorp- 
tion-free model makes it possible to reveal instabilities 
of real  discharges due to perturbations of characteristic 
scale smal ler  than the wave attenuation length. A simi-  
l a r  problem has been considered by Gurevich and 
ShvartsburgC2' for  the opposite limiting ca se  of v >> w , 
Re€=  1 assuming a specific type of perturbation (long- 
wavelength modulation in the longitudinal direction). 

We shall begin from the vector wave equation for the 
slowly varying (with time) complex amplitude of the 
electric field E(r, t )  

and from the ra te  equation for the electron density 

in which the frequency of ionization by electron impact 
vi is  regarded a s  a given function of the field amplitude 
[ L ' ~ =  vi( I E  I)]," whereas the diffusion coefficient D and 
the frequency of capture by neutral molecules v,, both 
depending much less strongly on I E  I, a r e  assumed to 
be constant. 

We shall introduce dimensionless variables by the 
substitution: 

Here,  E,  i s  the amplitude (known a s  the breakdown val- 
ue) corresponding to v , ( \  E 1 )  = v,, i.e., the amplitude at 
which a homogeneous discharge is  in equilibrium. In 
t e rms  of the new variables, Eqs. (1) and (2) become 

Here ,  

i s  the dimensionless diffusion capture length; f( 1 E 1 )  
=vi /v , -1 ;  for l ~ I = 1 ,  we havef=Oanddf /dIEI>O.  

Let u s  assume that, under steady-state conditions the 
field is a plane wave of unit (breakdown) amplitude E 
= Y o  e ~ ~ ( - i E ~ ' ~ x ) ,  traveling along the s axis in a homo- 
geneous plasma with an  arb i t ra ry  value of .\ = No< 1 
(E = E,= 1 - No >0)." We shall investigate the stability of 
this  s tate in the presence of small  perturbations. As- 
suming that 

N = N c + N , ( r ,  t ) ,  E,= (l+El(r, t))esp(-ie: I) 

and linearizing Eqs. (4) and (5), we obtain the following 
equations for the perturbations El and iVl: 

(here a =df/d 1 E 1 for  1 E I= I ) ,  o r ,  representing E l  in the 
form E l= t t l+  i ~ , ~ ,  where ul and L,, a r e  r ea l  functions: 
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In the range of small values of x we have Eqs. (15) 
and (16). If x 2 <  E,, we find that the instability is asso- 
ciated (as in the preceding case) with the roots y, , .  
However, if x2>  c0, an aperiodic instability can only 
a r i se  from the root y,, which reaches i t s  maximum 
value 

71 , , . = ~ N , ~ E ~ - ~ L ( ~ J V , ) , ' ~ ~  (2 0) 

For perturbations of the exp(yt - i x - r )  type, we find 
that the system (8)-(10) yields a cubic dispersion equa- 
tion which describes the time constant y as a function of 
an arbitrary real  wave vector x:  

a t  the point 

x=x,=(aNpj14/L112. 

This instability (y, ,,>O) begins from the threshold 
value of aNO: 

The coefficient aNo on the right-hand side of Eq. (11) 
can be regarded as a parameter of the nonlinear cou- 
pling between normal solutions of the field equation (6) 
and of the diffusion equation for the electron density (7). 
If aNo= 0, the roots of Eq. (11) a re  negative o r  purely 
imaginary (Rey 0, no instabilities). If aNo>O, some 
roots have positive parts, i.e., the discharge becomes 
unstable. 

which corresponds to x,= ( ~ E J " ~  and if aN,>> (aNO)th, 
it exists in a band E,<x' < ~ N ~ / E ~ L ~ .  

(3) If x= x,, x, = x,= 0 (perturbation along the direc- 
tion of propagation of the wave):" 

2. We shall consider solutions of Eq. (11) for various 
directions and values of the wave vector x. We shall 
give the dispersion equations and the approximate ex- 
pressions for the roots in various ranges of the values 
of Xx, x,, and x,, and of the parameter aNO (we recall 
that y and x a re  dimensionless; the dimensional quanti- 
ties a re  obtained by multiplying them by v,, and w / c ,  re- 
spectively). 

(1) If x =x, ,  %,, = x, = 0 (perturbations along the mag- 
netic field of the wave): 

where A i s  the smaller of the two quantities 

6L2+ I '/~*eU'"/x 1, 4FL'+4( ' /2&eo"/~)~ .  

We note that y , ( ~ )  = yf(-x) and y,(x) =Y,*(-x), s o  that it 
i s  sufficient to consider the functions y,,,,,(x) in the 
range x > 0. 

When ;l. i s  small and 

the functions y,,,, a r e  described by Eq. (15). For some- 
what larger values of x, we have 

For small values of x ,  when 6aNo >>x4(+ + 6~')', we 
have 

An instability is due to roots y,,, whose real  parts 
Rey,,, in the 6L2 << 1 case have a maximum in the region 
of x. - (6a~,)"4: 

The maximum of B y ,  in the co- 1, 6 ~ ~ ( d , 6 ) " ~  << 1 
case corresponds to x- ( 6 a ~ ~ " ~  and its order of mag- 
nitude i s  

(Re  y2) mms- (a'1V2/6)'~. (28) 

(2) If x=x , ,x ,=  x,=O (perturbations along the elec- 
tr ic field of the wave): 

The corresponding imaginary part  is Imy," ( c r ~ ~ / 6 ~ ) " ~ .  

It is clear from Eqs. (24) and (25) that the maxima of 
the increments occur also in the vicinity of the point 
x= xo= 2 ~ : ~ ~ .  For small values of aNO, in the range of 
validity of Eq. (25), the maximum of Rey, i s  reached a t  
the point x = 2 ~ : / ~ ( 1 + 2 6 ~ ~ ) ,  where on condition that 
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&No <<4x;6L4, 6L2<< 1, we have 

The width of this maximum i s  1 x -  x, I=2x06L2. The 
root yl corresponding to small values of aN, and to 
x=zO is  negative [yl = -x2L2 for (YNO<< 4x:6L4(1+ 6L2)]. 
For  values of do lying within the range 4x;6L4 << aNo 
<<4x:6-', near the point x=xo[lx2- 4r0 ( < < 2 ( 6 a ~ ~ ' " ] ,  we 
have 

We must bear in mind that this analysis, based on the 
use of the functional dependence v,(IE I ) ,  i s  valid only 
for  perturbation scales x-' exceeding the characteristic 
heat conduction length and for times l y  I-' long com- 
pared with the electron temperature relaxation time. 
In the case of dimensionless x and y, the corresponding 
conditions a re  

where 6, i s  the fraction of the energy lost by an elec- 
tron in a collision with a molecule and If is the mean 
free path of electrons. The inequalities (32) impose 
certain restrictions on the permissible range of wave 
numbers x in the above expressions for the roots of the 
dispersion equation. For example, Eqs. (14) and (19) 
for y2,,, containing a small parameter 6 in the denomin- 
ator d the imaginary part, a re  valid only in the range 
X 2  << bTv/w << 1, SO that the instabilities defined by these 
equations should be regarded in our calculations a s  of 
the large-scale type (x<< 1). Small-scale instabilities 
(x  >I )  a re  given only by the roots ylfor x=x ,  (stratifica- 
tion in the direction of the vector E) and by the roots 
y1,53 for x = xSz 26;" (opposite wave instability). 

3. The above results allow u s  to identify three main 
types of electrodynamic instabilities in discharges. 

1. The f i rs t  is a large-scale instability with maxi- 
mum values of the increments Rey attained in the range 
of small values of x: in the case of transverse pertur- 
bations (x,=O) a t  x - (bc~NJ ' /~ ,  whereas in the case of 
longitudinal perturbations ( x = x J  a t  x- (6do)"S [see 
Eqs. (16) and (28)]. In fact, this i s  an instability of elec- 
tromagnetic perturbations which a r e  almost exactly 
matched directly to the pump wave e~p(-k; '~x).  

2. The next is a backscatter ing instability for which 
the increment maximum [Eqs. (29) and (31)] i s  reached 
a t  z = 2 r f 2 ,  i.e., near the point of matching of the per- 
turbation wave E , e ~ ~ ( - k ; / ~ x )  with the opposite (re- 
flected) magnetic wave exp(ir;/ 'x). Perturbations of the 
electron density in this instability a re  striations travel- 
ing parallel to the front of the electromagnetic pump 
wave a t  a velocity u = Imy in the same direction a s  
this wave [roots (28) and (30)] o r  opposite to i t  [roots 
(29) and (3 I)]. 

3. The third is a threshold aperiodic small-scale in- 
stability with increments (18) and (20), producing sta- 
tionary plane striations perpendicular to the electric 

field vector E. This instability is not related to any 
wave matching: i t  i s  purely quasistatic and is in fact 
due to a plasma resonance effect, i.e., to the increase 
in the component of E normal to the plasma layer on re- 
duction in <. It i s  fully analogous to the well-known 
modulation (stratification) instability in a plasma with a 
"striction" nonlinearity (when a</a I E  1' > 0). [4s " Such a 
small-scale instability in nonlinear media with 

I E l a  < 0 was considered by Gil'denburg and 
~ i t v a k .  16' 

A comparison of the values of Rey,, for various 
types of perturbations shows that in the range of the pa- 
rameters 

the greatest  increment is exhibited by the lar  ge-scale 
transverse instability of type 1 [x, ," ( b a ~ , ) " ~ ,  Rey, 
-(aNO/6)'/ '1. If the last of the above three inequalities 
i s  disobeyed in the range aN0/6 2 4(2cif ' L ) ~ ,  the incre- 
ment Rey,, for  the type 2 instability (backscattering) 
becomes of the same order of magnitude. 

However, we must bear in mind that in a real  spati- 
ally confined discharge the type 1 large-scale instability 
may appear only if its longitudinal (I,,) and transverse 
(1,) dimensions a re  very large (wxl,,/c > I ,  wxl,/c > 1). 
The type 2 opposite-wave instability i s  of the small- 
scale type (for <,- 1 and x = 2) but it may be important 
for sufficiently large values of I , ,  (wc~'Reyl,,6> I ) ,  when 
perturbations manage to grow significantly in the time 
that a signal takes to pass through the discharge region. 
It follows that in the case of the discharges of moderate 
dimensions the main instability is the type 3 aperiodic 
small-scale one, the condition of whose appearance i s  
[when the threshold condition (22) is satisfied] is simply 
that the transverse dimension of the discharge be great- 
e r  than the wavelength. 

We shall conclude by noting that, in addition to elec- 
trodynamic instabilities in a cold discharge for which 
the main processes a r e  those involving changes in the 
field intensity with the electron density, in the case of 
discharges operating for some time the important pro- 
cesses  may also include various "kinetic" instabilities, 
which have been investigated thoroughly for discharges 
in static fields (see, for  example, the papers of ~ l l i s [ "  
and of Golubev et a ~ . [ ~ '  as well as the literature cited 
there) and which a r e  associated with changes in the 
ra tes  of some elementary processes in a gas  when en- 
ergy is transferred from hot electrons to various de- 
grees of freedom of molecules and ions. 

The authors a r e  grateful to M. A. Miller and A. G. 
Litvak for discussing the results. 

"we a re  in fact ignoring the spatial and temporal nonlocdity 
of the dependence of the electron temperature (or other ki- 
netic characteristics governing vi) on the amplitude, which 
imposes certain restrictions (see below) on the frequencies 
and wave numbers of the perturbations considered later. 

 he electron density N and its distribution in a steady-state 
spatially confined discharge a r e  established s o  that for given 
external sources the field in the discharge region is equal to 
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the breakdown value.[33 
3 ' ~ h e  substitution €0- cocos2$ easily generalizes these results 

to the case when the wave vector x l ies in the x ,  z plane and 
makes an angle $ with the x axis. 
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The question of the coupled motion of the localized magnetic moments and the magnetic moments of the 
conduction electrons in type-I1 superconducton in the vortex state is studied by the temperatur4ree.n- 
function method. The relaxation processes that occur under conditions of an "electron bottleneck" in a 
system of magnetic impurities and conduction electrons coupled by exchange interaction are considered. It 
is shown that the dynamic nature of the interaction of the localized magnetic moments with the magnetic 
moments of the conduction electrons leads to the narrowing of the magnetic-resonance line of the 
paramagnetic impurities on going from the normal to the superconducting state, whereas the existing 
theory, which does not take the dynamic interaction into consideration, predicts just the opposite line 
behavior-broadening. 

PACS numbers: 74.30.Gr1, 74.60.-w, 76.30.Pk 

1. INTRODUCTION 

The dynamic proper t i es  of the localized magnetic mo- 
m e n t s  and the magnetic moments  of the conduction elec- 
t r o n s  in superconducting alloys have recently been s tu-  
died intensively.['-51 In the  f i r s t  exper iments  on  elec- 
t ron paramagnet ic  resonance on  the  magnet ic  moments  
of impuri t ies  in superconductors  a broadening of the 
l ine was  observed on  going f r o m  the  normal  to the super -  
conducting phase. The  line broadening is in qualitative 
accord  with the  theory of nuclear  magnetic resonance in 
the  superconducting state. According to the Bardeen-  
Cooper- Schrieffer (BCS) model, the  increase  in the r a t e  
of relaxation of the nuclear  sp ins  in the superconducting 
phase occurs  owing to the coherence effects  and the high 
density of states of the quasipart ic les  at the energy-gap 
boundaries. The  application of the theory of nuclear  re- 
laxation to electron relaxation is justified by the  pro-  
found analogy between the phenomena of nuclear-magne- 
t ic  and electron-paramagnet ic  resonances,  with the only 
difference that,  in the case of e lec t ron  relaxat ion,  the  
r o l e  of the hyperfine interact ions with t h e  conduction 
electrons i s  played by the exchange interactions. 

On the o ther  hand, a narrowing of the l ine w a s  ob- 

se rved  in the study of electron paramagnet ic  resonance 
on the  magnetic moments  of E r  and La on  going f r o m  
the  normal  to the s u p e r  conducting phase. c4' T h i s  effect 

is quite unexpected, s i n c e  i t  sharp ly  contradicts  the 
ea r l i e r -per formed exper iments  and the  existing theory. 
I t  h a s  been suggested[5' that  the l ine narrowing is parti- 
a l ly  due to the dynamic n a t u r e  of t h e  interact ion between 
the  localized magnetic moments  and the magnetic mo- 
m e n t s  of t h e  conduction e l e c t r o n s  (the "electron bottle- 
neck" effect). T h e  magnet ic  resonance  of paramagnet ic  
impur i t i es  in the normal  phase,  including the  case when 
the  conditions f o r  a n  e lec t ron  bottleneck are fulfilled, 
h a s  been wel l  s t ~ d i e d . ~ ~ - " ~ .  A s  r e g a r d s  the theoret ical  
study of electron paramagnet ic  resonance  i n  the  super-  
conducting state, t h e r e  i s  Maki's paper,t12' in which a 
computation is c a r r i e d  out of the  dynamic response  of 
the  conduction e l e c t r o n s  i n  d i r ty  g a p l e s s  superconduc- 
tors .  The  dynamic proper t i es  of t h e  magnetic moments  
of the impur i t i es  w e r e  neglected in  t h i s  w o r k  

In the presen t  paper  w e  study on  a microscopic bas i s  
the  problem of the  coupled motion of the magnetic mo- 
m e n t s  of t h e  impur i t i es  and conduction electrons in 
type-II superconductors  in  the vortex state and consider  
the  relaxat ion processes that  o c c u r  in  the  sys tem under 
the  conditions of a n  electron bot t leneck These  resu l t s  
are obtained by solving a sys tem of equations fo r  the 
dynamic suscept ibi l i t ies  of the  magnetic moments  of the 
impur i t i es  and conduction e lec t rons  in the supercon- 
ducting state. T h e  equations f o r  the  susceptibilities are 
presen ted  in closed f o r m  in the gap less  region of the 
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