
All these facts indicate once more that the smectic 
phase A can be in two stable textures: homotropic, which 
practically corresponds to the liquid-single-crystal state 
of ~e sample, and domain texture, corresponding to 
liquid-poly crystalline state. In this case tension de­
stroys the liquid single crystal state and converts the 
layer into a liquid-poly crystalline state, while the elec­
tric field orients the molecules along the field and makes 
the sample a liquid single crystal. 
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We develop a unique method, based upon a special representation for the spin operators, to calculate the 
high-frequency, kinetic, and thermodynamic properties of magnetic substances. We use this method to 
calculate the high-frequency susceptibility. the spectrum and the damping the spin waves, the 
thermodynamic potential. and the magnetization of a Heisenberg ferromagnet. We show that the 
components x.,.(k,CI) and Xyyk,CI) in this representation reduce simply to single-particle Green functions of 
the quasi~particles. 
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1. INTRODUCTION 

A large number of papers has been devoted to calcu­
lating the high-frequency properties of ferromagnets. 
The theory of these effects is mainly based upon the 
following approaches: a phenomenological one, going 
back to Landau and Lifshitz's well known paper[I]; the 
kinetic equation method, developed by Akhiezer[2] on 
the basis of the Holstein-Primakoff (HP) representa­
tion[3] for spin operators; the Green function method, 
using the HP representation of the Oyson-Maleev (OM) 
representation[41; finally, the Green function method 
using the Bogolyubov-Tyablikov, [5] the Vaks-Larkin­
Pikin, [8] or the Izyumov-Kasan-Ogly[71 spin operators. 

By now we· have reached an understanding of the basic 
regularities connected with the high-frequency proper­
ties of magnetic substances such as resonance effects, 
parametric excitation of spin waves, and also thermo­
dynamic properties at low temperatures. There ar(. 
however, a number of problems which are important 
not only for constructing a theory of magnetically or­
dered crystals, but also for a correct understanding of 
experiments. Among these there is, first of all, the 
problem of a consistent evaluation of the components 
of the high-frequency (hf) magnetic susceptibility tensor 
and the problem, closely connected with it, of deter­
mining the spectra and interaction of quasi-particles. 

Traditionally this problem is solved by changing from 
spin oper<!.tors to Bose operators USing the HP repre­
sentation. The dynamical interaction of the spins is 
then replaced by the interaction of the Bose particles. 
The HP Hamiltonian can serve as a basis for a consis­
tent calculation of the thermodynamic properties of a 
magnetic substance. As far as the interaction of the 
spin system with an external field is concerned, the 
situation here is appreciably more complicated. 

An external field acts directly on the spin variables 
which are in an essentially non-lineat way connected 
with the HP spin wave operators. We shall show that 
the calculation of the hf susceptibility tensor x( k, w) 
cannot be reduced to a calculation of the single-particle 
Green functions of the HP spin waves. 

Although the Green function method for spin opera;. 
tor[8,7] is consistent, its use for describing the prop­
erties of a magnetic substance at low temperatures is 
hardly justified due to its cumbersomeness. In that 
temperature region it is more convenient to use Bose 
operators. One must then give up the preference for 
the representation in which one of the spin operator 
components is linearly connected with the Bose opera­
tors. This is just the situation in the case of the OM 
representation and the representation suggested in Ref. 
8. In Ref. 9 the component x.-< k, w) of the hf suscep-
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tibility tensor was calculated on the basis of the Dyson 
representation. [4] 

We develop in the present paper a unique method for 
calculating high-frequency, kinetic, and thermodynamic 
properties of magnetic substances based upon the rep­
resentation of Ref. 8. We use this method to calculate 
for a Heisenberg ferromagnet the hf susceptibility ten­
sor, the spectrum and damping of the spin waves, the 
thermodynamic potential, and the magnetization. We 
show that the components Xs s( k, w) and X~ y( k, w) of the 
hf susceptibility tensor reduce in this representation 
merely to the single-particle Green functions of the 
quasi-particles for which one can apply well known cal­
culation methods. [10] 

The expression found in the present paper for the 
components of the hf susceptibility tensor X( k, w) has 
the correct asymptotic properties both in the region of 
small wavevectors (w arbitrary) and in the region of 
small w( k arbitrary). In the low-temperature region 
we construct a consistent perturbation theory in the 
parameter lIS (S is the atomic spin) and we find up to 
order S-2 the renormalization of the spin wave spectra 
and their damping. As in the HP method it is necessary 
for consistent calculations in powers of the expansion 
in 1/S to take into account processes which involve not 
only four, but aiso six spin waves. The same results 
have also been obtained by us by employing the HP and 
DM methods in the standard way and we show their 
equivalence. We show that with an accuracy up to the 
same processes the thermodynamic potential is the 
same as the results obtained earlier by Dyson[4] and 
Oguchi. [11] 

2. SPIN WAVE HAMILTONIAN IN A FERROMAGNET 

We consider an isotropic ferromagnet in an external 
magnetic field H which is described by the Heisenberg 
Hamiltonian 

d6 = - -i E iff,SjSj'-gll.H Est', (1) 
t.;l<!' f 

where III' is an exchange integral, J1.0 the Bohr mag­
neton, g the Land~ factor, while the spin operators Sf 
satisfy the well known commutation relations. For a 
study of the high-frequency and thermodynamic prop­
erties of a ferromagnet it is convenient to change from 
the spin operators to Bose operators. Usually this 
change is accomplished by using the HP representation. 
We shall use the representation[8] 

Sj+=S/+iS/ =[ (s+s/) (S-s/+1) J'" exp (i ~~s~:j) , 
Sj-=(Sj+)+, S/=i(S/2),/'(a/-a,), (2) 

where S is the magnitude of the atomic spin. Altho:ugh 
this representation is more complicated than the HP 
representation, it has a number of advantages. First 
of all, it provides a linear connection between the S ~ 
component of the spin operator and the Bose operators. 
The component Xn( k, w) of the hf susceptibility tensor 
therefore reduces in this representation to single-par­
ticle magnon Green functions. We recall that 
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. (gil.)' G (,) (k ) 
XIj(k,oo)= --- if ,00, 

v. 
(3) 

where G ~J) (k, w) is the Fourier transform of the equal­
time retarded Green function 

(4) 

S/( t) is the spin operator of the J-th atom in the Heisen­
berg representation, i, j = (x,y, z); Vo is the volume of 
the unit cell. 

The second advantage of the representation (2) is 
connected with the fact that it enables us explicitly to 
take into account the symmetry of the Hamiltonian. [12] 

When the system of coordinates is rotated through an 
angle cp around the y-axiS, which is at right angles to 
the quantization axiS, the operators a; and at trans­
form as follows: a;_at+cp(1/2SN)l raA(k), all-at 
+ cp(1/2 SN)1/2A( k) (N is the number of atoms). As the 
original Hamiltonian (1) for H = 0 is invariant under 
rotations of the system of coordinates (i. e., should be 
independent of cp) we get a number of relations (see 
Eqs. (12» for the spin wave spectrum and the ampli­
tudes of the magnon interaction. These relations guar­
antee the correct behavior of the quaSi-particle energy 
at small k to any order of perturbation theory. On the 
other hand, they enable us to control the correctness of 
the calculations in each stage. 

To find the spin wave Hamiltonian we expand Sj and 
Si in the representation (2) in terms of S-l up to terms 
in S-2: 

S+=S 1--- +i--- 1+- -+-. a a {( 1) a++a ( 1) a+a 1 (+3+ ') 
24S' (28) 'I. 4S' S 8S' 

a+3+a' a+Za+a+a' (~ _1_) a+<+a' 
+i 6S (28),,·- i 2S(2S) 'I. 3+4S 4S' 

(~+_1_) a+3a+a+a' 
+ 3 28 28' 

Substituting (2) into the Hamiltonian (1) and using the 
expansion (5) we getl) 

d6=E.+d6.+ v, 

where 

d6. = E e.a. +a.. e.=I.-I.+oo.; 

• 
v=v,+v,+v •• 

v, = _1_(/.+00.) ~ a. +a. - _1_(/.+00.) ~ (a. +a_. ++a.a_.); 
48' ~ 8S' .:. • • 

V.= L{IP(12; 34)a,+a2+aaa,6(1 +2-3-4) 
'2:U 

+ IP (123; 4) (a,+a:a.+a, + H. c.) 6 (1 + 2 + 3 - 4) 

(6) 

(7) 

(8) 

(9) 

+ IP (1234) (a,+a:a.+a" +H. c.) 6 (1 + 2 + 3 + 4)}; (10) 
v. = L {IP (123; 456) iz;:+a.+a3+a,as/lo6 (1 + 2 + 3 - 4 - 5 - 6) . 

'23 
456 

+ IP (1234; 56) (a,+a2+a.+a,+as/lo + H. c.) 6 (1 + 2 + 3 + 4 - 5 - 6) 
+ IP (12345; 6)(a,+a:a.+atas+a. +H. c.) 6 (1 +- 2 + 3 + 4 + 5 - 6) 
+ IP (123456) (a,+a:a.+atas+/lo+ + H. c.) 6 (1 +- 2 +- 3 +- 4 + 5 + 6)}. (11) 
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Here 

1jl (1234; 56) = - 48;'So {5 (/0 + wo) + I. + 16 - h-. - 11-6 

- 1 2--5 - 12_6 - 1.-. - 1.--6 + 1'--5 - 1'-6 - 1/, (/1+2+' + 11+2+4 
+ 11+8+& +1'+3-H )+ ';' (/1+2- 5 + 11+2--11 + 11+3--5 + 11+3--fl + IW-5 + II+Hl 

+ 12+"-5 + 12+3--6 + 12+&--5 + 1 2+4_8 + 1"&--5 + I .. &-e}, 

1jl (12.14) = - 48~S {II + I. + 13 + I, - 4 (/0 + wo) - {- (/0 + wo)} , 

t -
1jl(12; 34) = - 8NS{/I-3 + h .. +/2-. + I2-&. - (II +1, + I. + I,) 

- ! (/0+ wo)} , 

1jl(123; 4) = -12~S{2 (/0 + wo) - II - I. - I. + 1& + +(/0 + wo)}. 

t 
1jl (t23; 456) = - 72N'S' {II+!-' + 11+2--5 + 11+2-6 + 11+3-1. + 11+,--5 

+ 11+3-6 + "+3-£ + 1'+3-5 + 12+3--6 + 11+2+3 - to (/0 + wo)}. 

We do not need the amplitudes !/J (12348; 8) and l/J U234D8) 
and we have not written them out. Here J" is the Fou­
rier transform of the exchange integral J If,; Wo=gJ.LoH, 
1 == klo 2 == k 2, etc. 

The interaction Va gives to first order in perturba­
tion theory the same contribution as the interaction V, 
in second order, if we classify the smallness of the 
corrections in terms of the parameter S-1. The occur­
rence of higher-order terms in S-1 in V2 and V, is 
caused by bringing the Hamiltonian (6) to the normal 
form. One verifies easily that the interaction ampli­
tudes V, and Vs for H = 0 satisfy the symmetry rela­
tions[12] : 

4¢(1230)+¢(l23; 0)=0, 3¢(023; 4)+2¢(23; 40)=0, 
6¢(t23450)+¢(t2345; 0)=0, 5¢(02345; 6)+2¢(2345; 60)=0, 

4¢(0234; 56) +3¢(234; 560) =0, 
(12) 

guaranteeing the invariance of the Hamiltonian under 
rotations. One can obtain similar relations also for 
the case of a magnetic substance with an arbitrary 
number of sub lattices with a ground state which can be 
either collinear or non-collinear. These relations 
guarantee the correct behavior of the spectra and the 
damping coefficients of quasi-particles in the small 
wavevector region. We shall consider this problem in 
detail elsewhere. 

We write part of the quadratic Hamiltonian in the 
form of the interaction (9) because we want to retain the 
parameter S-1 as the expansion parameter. Although 
the interaction (9) leads to new kinds of diagrams, all 
diagrams can in this case be classified in terms of the 
parameter S -1. 

One sees easily that the Hamiltonian (6) does not 
conserve the number of quasI-particles and the "sim­
ple" vacuum is not an eigenvector of the Hamiltonian 
(6). Using standard perturbation theory we find the 
vacuum wavefunction 4>0 up to and including terms of 
order S-2: 

<1l0 = (1- 8.4~ s.)lo) + 48S~N'" ~ak+a~klo) 

- 48;N'" (1 + 43S) ~ata.+a.+a&+jo)ll(t +2 +3+4) 

+2.61 ~"N'" ~al+a: ... a"+jO)Il(t+2+3+4+5+6) 
• I.. 12.' , .. 
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+ /''' •. ", ~ al+a2+ ... asjO)Il(I+2+3+4)1l(5+6+7+8). 
4·8. S N, 12. ___ ,. 

(13) 

The energy corresponding to this wavefunction equals 

E,=-'/,SI,N-gfJ.,HSN, (14) 

which is the same as the exact ground state energy of 
the ferromagnet. One also finds easily the average 
spin along the quantization axis 

(15) 

up to and including terms of order S·2. We note finally 
that 

(16) 

with the same accuracy. ,Here S. = S t + is:. 
Therefore, 4>0 gives all those results which are ob­

tained when we consider the Heisenberg ferromagnet 
exactly. 

3. EQUATIONS FOR THE GREEN FUNCTIONS 

We get in the representation (2) for the Xn(k, w) 
component of the hf susceptibility tensor the expression 

(17) 

and the problem thus reduces to calculating the Green 
functions, 

«a.la. +» - G(r) (k, w), (a. +Ia_. +» ... F.~) (k, w), 

«a. +Ia.» ... G(r) (-k, -w), «a.la_.» "'" F:;) (k, w). 

We shall, as usual, use the analytical continuation of 
the t~mperature-dependent Green functions G( k, iwn) 

and F (k, iwn) to evaluate the retarded Green func- , 
~ons.ct°] For the normal, "G( k, iwn), and the anomalous, 
F (k, iwn), Green functions we can get a set of equations 
which is analogous to the_ set of equations arising in the 
theory of a Bose gas. tm Diagrammatically this set of 
equations looks like: 

..!-=2+~+~) 
l" 1: zo 

(18) 

+ 

The corresponding analytical expression has the form 

[G,-'(k, iWn)-~II(k, iW n) )G(k, iw.)-l1.,(k, iw.)F .. (k, iw.)=1, (18a) 
~,,(k, iwn)G(k, iwn)+[-G,-'(-k, -iwn)+21 I1 (-k; -iw.)lF •• (k, iwn)=O. 

Bearing in mind that G;;l( k, iw,,) -= iWn - c" we get 
G(k, iw.) 

iw.+e.+l1" (-k, --iwn) 

[iwn-e.-l:1I (k, iwn») [iwn +e.+L" (-k, -iwn) I +1:.,(k, iw.)1: .. (k, iw.) 
(19) 
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F" (k, iOln) 

-l': .. (k, iOln) 

[iOln-e.-~lI (k, iOln) 1 [iOln+h+~lI (-k, -iOln ) 1 +l:" (k, iOln)l:,,(k, iOln) 

It is well known that the mass operators EI1 (1E, iWn)' 
E20( 11:, iw,,) and f02( 11:, iw,,) can be written in the form of 
a power series in the interaction, where each term in 
the expansion corresponds to a well defined Feynman 
diagram. Up to and including terms of order S-2 the 
series for ~11 (k, iw,,) is described by the diagrams 

Z:17(~,iW,,)= --- + 

+-0, +,0·+·0 + 

+.e·++ 
(20) 

By replacing in this series the external outgoing line 
by an incoming one we get the series for ~20( k, iw,,): 

Ezo(k.iw,,)=--+ lL.+l+-1+1 

+-~+·e·+·E3>· 

(21) 

As all interaction amplitudes are real one can prove 
that ~02( k, iw,,) = ~2o( k, iw,,). In the diagram series (20) 
and (21) we retained the external lines, as the analyti­
cal expression for the diagrams depends on their direc­
tions although the lines themselves do not occur in the 
analytical expression. The appearance of diagrams 
such as 

.. - (22) 

is caused by the interaction Va. 

4. HIGH-FREQUENCY MAGNETIC SUSCEPTIBILITY 
TENSOR. MAGNON SPECTRUM AND DAMPING 

By using standard methods [10 1 generalized to the in­
teractions (9) to (11) we get the following expression 
for the mass operator of the retarded Green function 
~l1(k, w)= ~l1{k, w+ i6): 

l:u (k, 00) = 4~" (J 0 + 000) + 4 ~ 1jJ (kq; kq) nq 
q 

16 ~ - T ~ 1jJ (kp; kp) 1j1 (pq; pq) nqnp (np + 1) 
P. q 

~ 2np+l -18 ~1jJ(-ppk; k)1j1(-ppq; q) nq - 2-e -
p, q P 

+8 ~ 1j1Z(12; 3k)(nl + 1)(".+ l)n.-nln.(n.+ 1) .1(1 +2- 3 -k) 
~ Ol+_-~-_+~ 

+ 18 ~ 1j1'(12k; 3) nl'"(n. + 1) - (nl + 1) (n •. + l)n • .1(1 + 2 + k _ 3) 
~ Ol+~+~-_+~ 

+6 ~ 1jJ' (123; k) (nl + 1) (". + 1)(n. + 1) -:- nln.n, A (I + 2 + 3- k) 
~ Ol-~-_-_+~ 
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+96 ~ 1j1"(123k) nln.ns-(n. + 1)(".+ 1)(n.+ 1) .1(1 +2 +3 + k) 
~ Ol+~+~+_+~ 

+ 18 ~ 1j1 (kpq; kpq) npnq. (23) 
P. q 

Similarly we have for ~20(k, w): 

1 . 24 
l:,.(k,Ol)= - 48' (/.+00.)+6 L.1j1(-kkq;q)nq- T L.1j1(-kkp;p) 

• pq 
~ 2n,+1 

~(qp; qp)nqnp(npH)-12 ~ 1j1(-kk; -pp)1j1(-ppq; q)nq--
.. 2e, 

-72 ~ 1jJ(- kk- pp)1jJ(_ ppq; q)nq 2nie+ 1 
M P 

+ 12 ~1j1(12; 3k)1j1(-kI2; 3)(n, + 1)(n.+ l)na- n,n.(n3+ 1) .1(1+2 
~ oo+_-~-~+~ 

-3-k)+12 ~ 1jJ(kI2; 3)1j1(12; 3 _ k)1ttn.(n3 +1)-(n, +1)(n.+ 1)n3 .1(1 
~. oo+~+~-_+~ 

+2+k-3)+24 ~ 1jJ(I23; k)1j1(-kl23) (nl + 1)(".+ 1)(n3+ 1)-nln.n. 
~ oo-~-_-_+~ 

xA(1+2+3-k)+24 ~1jJ(123k)1jJ(123;_kt,n.lns-(nl + 1)(".+ l)(na+ 1) 
~ Ol+~+_+_+~ 

x .1(1 + 2 + 3 + k) + 24 ~ 1jJ (- kkpq; pq) npnq. (24) 
pq 

In these formulas nil = (exp{e:/T}-lr1, and T is the 
temperature in energy units. These expressions en­
able us to find the components of the tensor x( k, w), 
the poles of which, w = w(k), determine the spin wave 
spectrum taking into account their interaction with one 
another, and also their damping coefficient. 

Using Eqs. (17) and (19) we get 

(gJ.l.)'8 
x=(k, 00)= x •• (k, 00)=--­

v, 
B k +'/,[l:lI (k, 00) + l:1I (-k, -00) 1 + l:,,(k, 00) 

x [Ol-~ •... 1:lI (k, 00) 1 [oo+e.+l:lI (-k, -00) 1 +l:,.'(k, 00) , 

1 
00 (k) = e.+l:ll (k, e.) - -~,;(k, e.), 

2e. 

or, using (23) and (24) 

x~ (Jp+/q-/p-.-I.-.) (J.+/PH-~-I.-p-/k-') 
~ I p+I.-I.-/pH- k +16 

P' 
x [(np+l) (n.+1)nk_.-q-npn.(nk_p_.+l) 1 

(25) 

(26) 

__ 1_ ~ (/.+I._p-I.-/p) (/.+/p_.-/p-I.)n.np(np+l). (26a) 
T8'N'~ .. 

We present explicit expressions for the frequency shift 
of the spin waves for a Simple cubic ferromagnet in 
two limiting cases. If wo«ct-wo«T«Tc, thent.wt 
== t.w~l) + t.w~2), 

(I) Q t('/I) ( T ) ", 
&ook =----(ek-oo.) -

8 2'n" 8f' 

(I) B ( T )" Aook =T>(e.-oo.) Tr ' 
(27) 

where I is the nearest-neighbor exchange integral, 

1;'('/,) 1 ~ ~ y-x 
B=--+--Sdxx'n(x') Sdyyn(Y')lnl--1 ..:0.9·10-', 

3·2'n' 3·2'31' y+x 
o. (27a) 

- 1 L. cos' q"a Q=I+- ; n(z)=(e'-1)-'. 
8 3 - cos q"a - cos q.a - cos q,a 

• 
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We note that the quantity Q is the same as the first two 
terms in the expansion of the Dyson factor Q(S) in terms 
of S -1. The first term in (27) is the same as that found 
in Refs. 14 and 7, while the second term is connected 
with taking processes with not merely four, but also 
six spin waves consistently into account. If wo« T 
«E t - wo« Te, we have 

(28) 

For the damping of the spin waves Eq. (26a) gives 
results which are the same as the results in a paper 
by Kashcheev and Krivoglaz. U4l 

5. ASYMPTOTIC PROPERTIES OF X(k, w) 

We remember the asymptotic properties of the mag­
netic susceptibility tensor of a Heisenberg ferromag­
net. Bearing in mind that the exchange Hamiltonian 
commutes with the total spin of the system one checks 
easily (see, e. g., Ref. 15) that 

(gl!,)' <S,) { 1 
Xu (0,oo)=X,.(0,oo)=----2- + +'0 1 t, (29) 

oo-oo,+iO J Vo (J) 000 £ 

where (S.) is the average value of the spin along the 
quantization axis. If w = 0 and the wavevector k suf­
ficiently small we have from Bogolyubov' s theorem 
about the singularities of the correlation functions at 
small ktl8l 

X(k,O);;'constlk'. (30) 

We show that the components X:u( k, w) and Xy y( k, w), 
for which we found general expressions in the preceding 
section, satisfy both condition (29) and condition (30). 
We consider first the case k = 0 with w arbitrary. Ex­
panding (25) in a series in 8"1 we get 

(gl!o) , 1 { 1 ~ 
x,,(O.oo)=x,,(O,oo)=---·- S--N 4.l n, 

v, 2 
• 

- N,1TS ~ (Jo+J.-.-J.-J.)nQn.(n.+l)}( 1. /-J 00+6),+.0 
•• 

We used the analytical expressions (23) and (24) for 
~11 (k, w) and ~2o(k, w) for k= O. 

We show in the Appendix that the quantity inside the 
braces is the average value of the spin along the quan­
tization axis, evaluated up to and including terms of or· 
der S-1. Hence, Eq. (31) and (29) are the same. 

When w = 0 we get for Xx x( k, 0) = Xy y( k, 0) the expres­
sion 

(k 0)= _ (gJL,)' s 
x= , v, e.+:E,,(k,O)-:E,,(k,O) 

One can easily check by USing Eqs. (23) and (24) that 
as the wavevector k tends to zero, ~11 (k, 0) - ~20( k, 0) 
~ const· k 2• Therefore, when H = 0 

x=(k, 0) =X .. (k, 0) ;;'const/k'. 
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6. COMPARISON WITH OTHER METHODS 

We noted in Section 2 that the ground state energy 
Eo, the average value of the spin along the quantization 
axis (S.), and the correlation function {S; S;>, found 
when using the representation of Ref. 8, within the ap­
proximation considered are the same as the corre­
sponding exact values for those quantities. It is usefUl 
also to compare the results obtained in the representa­
tion of Ref. 8 with the results obtained in the HP and 
DM representations. 

It is for the same reason as the one given for the 
case of the Hamiltonian (6) necessary in the HP repre­
sentation to calculate up to terms which describe pro­
cesses involving six particles and to include corrections 
arising from the non-commutativity of the operators. 
We have[11l 

where Eo and 3'62 are given by Eqs. (14) and (8), while 

::If. = L'" (12; 34) ata,ta3a,tl(1 + 2 - 3 - 4), 
t234 

11>(12; 34)= 8~S {(Jt +J2+J.+J,)(1+ 8~)-h-a-h",-h-a-h ... } 
(32) 

::If. = ~ 11> (123; 456) attL!~a3+a,a.a.A (1 + 2 + 3 - 4 - 5 - 6), 
12, ...• 8 

1 { 2 11> (123; 456) = 96S'Nt Jt + J2 + J3 + J, + J5 + J. - '3(JI+1-4 + JI+2-6 

+ J I+2-6 + Jt+3-4 + J I+3-5 + J1+3-6 + J2+1-i + J2+3-5 + J2+H)}' (33) 

Up to and including terms of order S-a the series for 
the mass operator ~HP(k, w) is shown below: 

z:HP(k,iw.)= ~ + -1- + • e + --8-- (34) 

It corresponds to the analytical expression 

:EHP(k, (0) = 4 ~ ",(kq; kq)nq - ~ ~ '" (kp; kp)1Jl(pq;pq)nqnp(np + 1) 
q pq 

+8 ~ "'"(12; 3k) (nt + 1)(n. + 1) n.-ntn.!n3 + 1) .1(1 +2 _ 3 _ k) 
~ oo+~-_-_+~ 

+ 18 ~ '" (kpq; kpq) npnq. (35) 
pq 

The Hamiltonian of the ferromagnet in the DM represen­
tation is 

where 

:H. = 4!S L (JI + J 2 - J t -3 - J.-3) al+tL!+aaa,A (1 + 2 - 3 - 4). 
I23i 

(36) 

while Eo and Jl','2 are, respectively, given by (14) and (8). 
The counterpart to Eq. (35) for the mass operator 
~DM( k, w) is described by the diagrams 

(37) 
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These diagrams correspond to the analytical expres­
sionts] 

DM ~ 16~ 1:- (k. 00) = 4 ~ IjJ (kq; kq) nq - T ~ IjJ (kp; kp).p (pq; pq) nqnp (np + 1) 
q pq 

+8 ~ IjJ (12; 3k)1jJ (k3; 12) (lit + 1) (112 + 1) na -lIt1i2(na + 1) 
w oo+_-~-_+~ 

x6(t+2-3-k). (38) 

Comparing Eqs. (23), (24) with (35) and (38) we see 
that the mass operators in the HP and OM formalisms 
differ from those calculated in the present paper. 
Nonetheless, one can easily check that the poles of the 
Green functions are the same in all three representa­
tions and are given by Eq. (26a). For the spectrum of 
the ferromagnet, for the temperature corrections to 
the spectrum, for the ground state energy, for the 
average value of the spin along the quantization axis, 
and-as is shown in the Appendix -for the thermodynam­
ic potential, the results obtained for the spin operator 
Green functions in the formalism of the HP and OM 
representatiOns are the same as those obtained in the 
representation of Ref. 8. As far as the high-frequency 
properties of the magnetic substance are concerned, 
the situation here turns out to be more complicated. 
The components of the hf susceptibility tensor found 
in Ref. 9, USing the OM formalism, have the correct 
asymptotic properties. Indeed, it follOWS from Eqs. 
(36), (38) that ~D~O, w)= 0, ~(k, 0) ex:: k 2 which also 
guarantees that conditions (29), (30) are satisfied as 
according to Ref. 9 X •• (k, w) reduces to a single-parti­
cle Green function. However, although in the case of 
a ferromagnet the OM representation also leads to cor­
rect results, the possibility of the occurrence of un­
controlled errors in other more complicated cases, due 
to the non-Hermiticity of the representation, makes 
its practical application complicated. 

The main difficulty in calculating the hf susceptibil­
ity tensor in the HP representation are the infinite 
series through which the spin operators are expressed 
in terms of the Bose operators. For instance, we have 
for the Green function «S; IS;», and thus also for 
X+.(k, w) the series 

(Sk+1 Sk-} = 2S {<ak+ I ak} - is r. !(ak+ I al+t1!aa} 6 (t - 2 - 3 - k) 
123 

+ (a.+t1!+aa/ a.}6 (t + 2 - 3 - k)] + 161S1 L <a.+t1!+aa/ al'+t1!·aa) 6 (t + '! 
123 

1'2'3' 

- 3 - k)6(t' - 2' - 3' - k)+ .. .}. (39) 

For the calculation of the components of the tensor 
X +.( k, w) we cannot restrict the calculation to evaluat­
ing the single-particle Green function «a;la t » assum· 
ing the other terms in the series (39) to be corrections. 
This is due to the fact, as one can check easily, that 
the mass operator (35) does not vanish for k= 0 and 
arbitrary wand, hence, the single-particle HP Green 
function does not have the correct structure (29). To 
calculate in the HP representation the components of 
the tensor x( k, w) we must therefore know the n-parti­
cle Green functions and we have to remove series such 
as (39). 
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One can avoid the difficulties mentioned here by using 
the representation proposed in Ref. 8. 

APPENDIX 

We study the thermodynamic properties of a ferro­
magnet using the representation (2), To find all 
thermodynamic quantities it is sufficient to know the 
thermodynamic potential Q of the system. In the low­
temperature region one may assume that the thermo­
dynamic potential consists of the thermodynamic po­
tential of a perfect magnon gas 

Q.=E.+T ~ In(l-exp{-BoIT}), 

• (A. 1) 

where ~o is given by Eq. (7) of the main text, and cor­
rections due to the interaction of magnons with one 
another, ~Q. 

The diagrams contributing to ~Q, up to and including 
terms of order S-Z have the form 

-~g= 8 +0 + G>+g+g 

+~+~+OC::X> 
+ oc::x> + 0:::::::::0 + Jv 

These diagrams are constructed using the Hamiltonian 
(6). As a result we get for the thermodynamic poten­
tial Q: 

Q=E.-T ~ In(Hn.)-_1_ ~ (J.+Jo_.-I.-J.)non. 
~ 2SN~ 

• o. 
J ~ (J.+J.-J. __ -J._.) (J.+J ... _.-J._.-J._.) (2 +1) 

--- n,nq n1r, 4S'N' I.+J.-I_-I ... __ 
-.. 

___ 1 _ ~ (J.+J._.-J_-J.) (Jo+J._.-J.-J.)n_n.n.(n.+1), (A. 2) 
8TS'N' "=i 

'" 
where Eo is the exact ground state energy (14) of the 
ferromagnet. 

Using the Hamiltonians (32), (33), and (36) we can 
find expressions for ~Q in the HP and OM representa­
tions. The corresponding diagrams are of the form 

-4S2HP = ~ + g. ~- 0:::=:::0 + ~ • 

-.UPM= ~+ g+~ 

Associating analytical expreSSions to these diagrams 
one checks easily that QHP is equal to QDM and n given 
by Eq. (A.2). This means that also all thermodynamic 
properties of the ferromagnet, considered in the repre­
sentation of Ref. 8 will be the same as the results ob­
tained in the HP and OM representations. In particular, 
we get for the equilibrium magnetic moment density 

Vo 1 IIQ : ~ 
-M(T,H)=-----=S-- .:....n_-

gJ-lo N II (gJ-loH) N. 
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- TS~ 1: {J,+J._.-J.-J.}n.n.(n.+1) .. 
__ 1_ ~ (J,+J.-J,_.-J._k) (I.+JI+.-k-J.-.-J.-.) 

4S'N'Ti..J J,+J.-J.-J'H-' k., 
xn.n.[2n.(n.+n.+n.+3) + (n.+n.+2) 1- 8T';'N,1: (J,+J._.-J.-J.) 

'" x(J.+J ._,-J .-J.)1I.1I.n. (n.+1) (2n.+2n.+3) (A. 3) 

up to and including terms of order S-a. 

In conclusion we give the corrections to the thermo­
dynamic potential and the magnetization in the low­
temperature region: 

~!J.M= 
CI!. 

where 

Q 3~('/,)~(3/,) T • C, ( T ) ./. 
S 2'n' (Sd -8' ST . 

1 00 Z 00 Z+II. 

C, = 2'n' J dx J dy J dz J dt xyzn(x')n(y')n(z') 
o 0 0 #_y 

2z'+2zt+t'-x'-y' 
x(t'-x'-y')'ln "" 3,8·10-', 

2z'-2zt+t'-x'-y' 

(A. 4) 

1"" Z _"'+11 

C,= 2'n' Jdx JdY Jdz J dtxyzn(x')n(y')n(z')[n(x')+n(y')+n(z')+31 
o 0 0 z-y 

2 '+2 t+t' x' • ( ' , ')' 1 z z - -y 4 10-' X t -x -y n "". . 
2z'-2zt+t'-x'-y' . 

The first terms are the well known corrections found 
by Dyson. [4] The second terms are due to taking the 
interaction processes of four and six magnons into ac­
count. 

In conclusion the authors express their gratitude to 
1. E. Dzyaloshinskil for a discussion of this work and 
to T. M. E remenko for his help with the evaluation of 
integrals. 
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IlFor the sake of convenience in constructing a perturbation 
theory we have changed here from the exchange integral!ff • 
to the parameter Jff• through the relation Jff,=S!ff" 
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