
The last expression with allowance for the relation, 
E!1) =-igE!1)/E:lJ between the components of the ex .. 
traordinary wave, where E:l = 1 - w: / (wZ - (2) and g = nw: / 
w(wl - 0&), reduces to the form 

. (') 1I/).'E,(')·E:1) ek.Q 

1, = 4nmClllCll,(CIll'-Q'-CIlp') 

(cf. (6» irrespective of the degeneracy and the strength 
of the magnetic field. The remaining corrections are 
then -1/.,f/8>..« 1. 

tv. N. Oraevskit and R. Z. Sagdeev, Zh. Tekh. Fiz. 32, 
1291 (1962) [Sov. Phys. Tech. Phys. 7, 955 (1963)). 

2V. N. Tsytovich and A. B. Shvartsburg, Zh. Eksp. Teor. 
Fiz. 49, 797 (1965) [Sov. Phys. JETP 22, 554 (1966)). 

3V. P. SHin, Parametricheskoe vozdeictvie izlucheniya 
bol'shor moshchnosti na plazmu (Parametric Action of High­
Power Radiation on a Plasma), Nauka, 1973. 

4Akira Hasegawa, Phys. Rev. Lett. 32, 817 (1974). 
5J. Larson and L. Stenflo, Beitrage aus der Plasmaphys. 16, 

79 (1976); 13, 169 (1973). 
6A. A. Vedenov, G. D. Myl'nikov, V. A. Roslyakov, D. N. 

Sobolenko, and A. N. Starostin, Tezisy dokl. vn Vsesoyu­
mor konf. po kogerentnoi i nelineinot optike (Abstracts of 
Papers presented at the 7th All-Union Conference on Co­
herent and Nonlinear Optics), Tashkent, 1974, p. 453. 

7L. A. BOl'shov, Yu. A. Dreizin, and A. M. Dykhne, Pis'ma 
Zh. Eksp. Teor. Fiz. 19, 288 (1974) [JETP Lett. 19, 168 
(1974)). 

BN. A. Krall and A. W. Trivelpiece, Principles of Plasma 

Physics, McGraw Hill, New York, 1972 (Russ. Trans!., 
Mir, 1975). 

&Y. V. Korneev and A. N. Starostin, Zh. Eksp. Teor. Fiz. 
63, 930 (1972) [SOY. Phys. JETP 36, 487 (1973)). 

ION. Bloembergen, Nonlinear Optics, W. A. Benjamin, New 
York, 1965 (Russ. Trans!., Mir, 1966) . 

tiD. N. Nikogosyan, Kvantovaya Elektron. (Moscow) 4, 5 
(1977) [Sov. J. Quantum Elec. 7, 1 (1977»). 

t2 H. Van Tran and C. K. N. Patel, Phys. Rev. Lett. 22, 463 
(1969). 

t3p. M. Platzman and P. A. Wolf, Waves and Interactions in 
Solid State Plasmas, Academic Press, New York, 1972 
(Russ. Trans!., Mir, 1975). 

t4A. A. Abrikosov, L. P. Gor'kov, and 1. E. Dzyaloshinskii, 
Metody kvantovot teorii polya v statisticheskot fizike (Methods 
of Quantum Field Theory in Statistical Physics), Fizmatgiz, 
1962 (Eng. Transl., Prentice-Hall, Englewood Cliffs, New 
Jersey, 1963). 

15V. V. Aleksandrov, S. 1. Anisimov, M. V. Brenner, E. P. 
Velikhov, V. D. Vikharev, V. P. Zotov, N. G. Koval'skil, 
M. I. Pergament, and A. N. Yaroslavskii, Zh. Eksp. Teor. 
Fiz. 71, 1826 (1976) [Sov. Phys. JETP 44, 958 (1976)). 

t6A. I. Avrov, V. D. Bychenkov, O. N. Krokhin, V. V. Pusto­
valov, A. A. Rupasov, V. P. SHin, G. V. Sklizkov, V. T. 
Tikhonchuk, and A. S. Shikanov, Zh. Eksp. Teor. Fiz. 72, 
970 (1977) [Sov. Phys. JETP 45, 507 (1977)). 

t7A. A. Galeevand R. Z. Sagdeev, Nelineinaya teoriya plazmy, 
vyp. 6. Voprosy teorii plazmy (Nonlinear Plasma Theory, 
No.6 in the series: Problems of Plasma Theory), edited by 
M. A. Leontovich, Atomizdat, 1973. 

tBV. N. Tsytovich, Nelinetnye Mfekty v plazme (Nonlinear 
Effects in a Plasma), Nauka, 1967 (Eng. Trans!., Plenum, 
New York, 1970). 

Translated by A. K. Agyei 

Nonlinear theory of the low-frequency oscillations in a 
weakly turbulent plasma 
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A theory is developed for determining the frequency shift of electromagnetic waves in a weakly turbulent 
plasma as a function of the level of the turbUlent pulsations. The case of magnetohydrodynamic waves is 
considered. It is shown that the dispersion laws for Alfven and slow magnetosonic waves change markedly 
at low values of the longitudinal (parallel to the magnetic field) component of the wave vector. Modified 
dispersion laws are obtained for them and these are taken into account in a study of relaxation processes 
of excitations in the wave spectra. 

PACS numbers: 52.35.Bj, 52.35.Dm, 52.35.Mw, 52.35.Ra 

1. INTRODUCTION 

As is well known, the interaction between particles or 
quasiparticles leads as a rule to a shift in their energies 
relative to the values of the energy corresponding to the 
free states of the particles. For example, the interac­
tion of an atomic electron with the zero-point oscilla­
tions of an electromagnetic or electron-positron field 

leads to a shift in the energy levels of the atomic elec­
tron. [1J 

A similar situation exists also for the energy spectra 
of electrons, photons and magnons in a solid (see, for 
example, Refs. 2 and 3) and for spectra of the natural 
oscillations in a plasma. In the last case, we need to 
take into account both the nonlinear interaction between 
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the plasma waves (plasmons) and the interaction between 
the plasmons and the particles. 

A large number of works have been devoted to the in­
vestigation of the nonlinear interaction of plasma waves. 
In particular, along with other problems of the nonlinear 
theory of oscillations in a turbulent plasma, the inter­
action of plasmons with oscillations at the eigenfrequen­
cies has been studied in Refs. 4-7. In these works (see 
also Refs. 8 and 9), dispersion equations are obtained 
with account of the nonlinear interactions of the plasmons. 
However, the investigation of these equations, in view of 
their complexity, has been completed only for individual 
cases, pertaining generally to isotropic plasma. Here, 
in connection with problems of the excitation and damping 
of the waves, the effect of the interaction of the waves of 
the oscillations on the imaginary part of the eigenfre­
quency has been studied. 

It was shown in Refs. 6 and 10 that account of the fre­
quency shift can manifest itself in a number of cases in 
qualitatively new effects, and therefore, the nonlinear 
correction to the frequency of the Langmuir waves has 
been found. In a recently published paper, [Ul the value 
of the nonlinear shift of the eigenfrequencies of the Lang­
muir waves, due to quadrupole resonance interaction, 
has been determined. In the case of low-frequency waves, 
of the type of magnetohydrodynamic waves (MHD), the 
determination of the shift in the frequencies is of special 
interest, since in the region of small values of the pro­
jection of the wave vector on the magnetic field this shift 
can turn out to be greater than the frequency of the free 
oscillations and the coefficient of absorption of the waves. 

The purpose of the present work is the study of the 
shift of the magnetohydrodynamic spectra of the MHD 
waves-fast (f) and slow (s) magnetohydrodynamic 
waves and the Alfven (a) wave in a weakly turbulent plas­
ma. As we shall see, account of the nonlinear shift of 
the frequencies of the MHD plasma is necessary in the 
study of the relaxation of MHD plasmons. 

In a weakly turbulent plasma, the mean intenSity of 
the waves W is small in comparison with the energy of 
the particles nT, w = W / nT «1 (n is the density of parti­
cles, T is their temperature) and a perturbation theory 
can be developed for finding the shift in the frequency, 
based on the smallness of the parameter w. Together 
with this, we shall assume that collective oscillations 
of rather high intenSity are excited in the plasma with 
random phases, and at such intensities the lifetime of 
the wave in relation to processes of interaction between 
the waves can be Significantly smaller than the wave life­
time due to interaction of the wave with the particles of 
the plasma. This leads to the inequalitiesCl2,13J 

where me" are the masses of the electron and ion, Vc 

is the frequency of Coulomb colliSions, we is the elec­
tron cyclotron frequency. 

For the description of the low-frequency waves, we 
use the model of magnetohydrodynamics which allow us 
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to reduce the results of the theory to sip1ple specific 
formulas. 

Since the averaging is carried out over the phases of 
the waves, it is most natural to use the method of de­
scription of the OSCillatory state of the plasma in terms 
of the number of plasmons N .. (k), i. e., quasiparticles 
with different modes of oscillation (IJ. =a,j, s) with wave 
vector k. Of course, the plasma concept can be used 
only in that case in which the frequency of the oscillations 
w .. (k) is large in comparison with the reciprocal of the 
lifetime of the plasmon, w .. (kh .. (k) »1. Such a descrip­
tion is similar to the well-known description of the 
state of a solid by specifying the number of electrons and 
phonons with different quasimomenta and polarizations 
and, just as in the case of the solid, we can formulate a 
kinetic equation for N .. (k). 

Using the concept of plasmons, it is convenient to make 
use of the method of second quantization, although our 
problem is essentially P4I'ely classical. But the quan­
tum perturbation theory is much simpler than the claSsi­
cal theory; therefore, we shall first use the quantum 
description and only at the end of the calculations will 
we go over into the classical limit. 

Starting out from the structure of the Hamiltonian of 
a system that executes small oscillations, we first for­
mulate the general integral equation for finding the shift 
in the frequencies of oscillation (Sec. 2). In order to 
apply this further to the plasma, we, as has already been 
said, make use of the magnetohydrodynamical model and 
formulate the equations in Lagrangian coordinates, in 
which the oscillations of the medium are described most 
simply (Sec. 3). Based on this formulation, we find the 
modified laws of dispersion of MHD waves in the case of 
a weakly turbulent plasma (Sec. 4). The frequencies of 
the s- and a-waves with account of the nonlinear shift 
are determined by Eqs. (25) and (32). 

2. INTEGRAL EQUATION FOR THE DETERMINATION 
OF THE SHIFT IN OSCILLATION FREQUENCIES 

In order to explain the method of finding the frequency 
shift of the OSCillations, we first consider some general 
mechanical system with many degrees of freedom, in 
which oscillations are possible. The Hamiltonian of such 
a system in the case of small oscillations can be repre­
sented in the form of the sum of the Hamiltonians of the 
oscillators with natural frequencies w .. (k) (IJ. is the mode 
of OSCillation, k is the wave vector): 

(1) 

here ~ .. (k) is the spatial component of the Fourier dis­
placement vector ~ = ~(ro, t) relative to the equilibrium 
position r o, and the index IJ. serves to identify the part 
of ~k corresponding to the natural IJ.-oscillation (p is 
the density). 

If we now take into account the anharmonicity of the 
oscillations, then the Hamiltonian of the system will have 
theformH =Ho + Hlnt , where H1nt is somenonquadratic 
function ofthe displacements ~ (k). We can regard it as the 
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Hamiltonian of interaction of the oscillators or the quasi­
particles corresponding to them. Precisely these inter­
actions will lead to a change in the frequencies of the 
nOninteracting waves. The charged (modified) frequen­
cies will be denoted by w" (k), and we shall write their 
connection with w,,(k) in the form w!(k) = w!(k) + 6!(k), 
where the real quantities 6,,(k) denote the frequency 
shifts (neither the mode 11- nor the wave vector k are 
changed!) We note that such a renormalization of the 
frequency in the Hamiltonian Ho is necessary in those 
cases in which the frequency w,,(k) can vanish, since 
in this case singularities appear in the integrals of the 
perturbation-theory series (see (9». 

In order to find the quantity Ii,,(k), it is convenient first 
to renormalize the Hamiltonian Ho by introducing the 
frequency shifts into it. In other words, we rewrite the 
Hamiltenian H in the form of the sum H =Ho + HiD.t, in 
which Ho is described by the expression (1), but with 
modified frequency w,,(k). In correspondence with thiS, 
H lat =Hlat - I1Ho, where 

&H,=+p 1:6;(kH.(k)s.(-k). 
- ... t: 

(2) 

After such renormalization, the Hamiltonian of the in­
teraction of the quasiparticles Hlat no longer produces 
shifts in their frequencies. We shall use this condition 
in the derivation of the integral equation determining the 
shift in the frequencies of the oscillations. For this 
purpOse, we first transform to the quantum mechanical 
description, i. e., we shall assume the quantities ~1 
== ~"1 (k) (1 == (l1-b kt); 2 == (11-2, ka); ... ) to be operators sat­
isfying the commutation relations 

[~h ~,1=ip-'&(1-2) 

(Planck's constant is set equal to unity, 11(1-2) is the 
Kronecker symbol). These operators can be expressed 
in terms of quasiparticle creation (ei> and annihilation 
(el) operators satisfying the conditions [Cb c;] = 11(1-2): 

• 1 1 
t =---C ----(c+c +). 
'0' (2pOO.) 'I.' (2pOO.) 'I. ' -, , 

(3) 

finally, we express the Hamiltonians Ho and Hlat in terms 
of the operators Cl and c~ • 

The Hamiltonian Ho is obviously represented in the 
form 

B.- .Eoo,(N,+'/,), 
• 

(4) 

where Nl =C~Cl is the operator of the number of quasi­
particles 11-1, kt whose eigenvalues are Nl =0,1,2, •.•• 
So far as the Hamiltonian Hlat is concerned, it is first 
necessary to expand Hlat in a series in powers of the 
variables ~,,(k). As a result, we obtain 

B ••• =H.+H.+ . .. -&H .. (5) 

where 

H.=.E V(1,2,3)C,C,c,&(k,+k,+k,), 
1,2,3 
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H. = 1: V (1,2,3,4) C,C,C,C.& (k.+k,+k.+k.), (6) 
1,2,3,4 

and where V(l, 2, ••• , n) are certain symmetrized func­
tions of the wave vectors and modes of the oscillations 
(kh 11-1; ka, 11-2; ••• ; It,., I1-n) having the meaning of the am­
plitudes of the interaction of the quasiparticles. 

We shall now show how to find the shift in the frequen­
cies of the interacting quasiparticles. For this purpose, 
we recall that the energy of the system with the Hamil­
tonian H=HO+Hlat is not equal to the sum of the energies 
of the individual quasiparticles and will be a function of 
their distribution function. It is natural to determine 
the frequency of the quasiparticle Wn as the variational 
derivative of the total energy E f in the state Ii) (the 
state Ii) is determined by the set of the occupation num­
bers Ii) = I{Nn }»: 

IJ).=6E;l6N •. (7) 

We can show that we achieve this same result if we 
use the Green's function formalism in the calculation of 
the real part of the self-energy of the quasiparticles. [141 

In the problem considered by us, the Hamiltonian of 
the system has the form H =Ho +R,at• We shall choose 
the Hamiltonian Ho so that the Hamiltonian Hlat does not 
produce a change in the real part wn of the frequency. 
Therefore the integral equation for finding the quantity 
6,,(k) 

Re (6!. (E,-E .. ) )=0, (8) 

should hold, where EOf is the eigenvalue of the energy 
of the Hamiltonian Ho; 

B.li> =E .. li>, E •• = .Eoo.(N.+'/.). 
• 

In the Green's function formalism, this means that the 
real part of the self-energy of the already renormalized 
quasiparticles vanishes. The imaginary part of the self­
energy describes the damping of the quasiparticles and 
in the case of small damping is equal to the reCiprocal 
of their lifetime. [15] 

Omitting the calculations, we give the integral equa­
tion for the determination of lin, limiting ourselves to 
the second approximation of perturbation theory: 

6.'=4800 • .E V(1, n, 1, n)N,+72OO.9".E lV(n, 1,2) I' 
t i,I 

x [ j. (k.-k,-k,) N. _ t. (k.+k,-k,) (N.-N,) ]. 
iii.-OO,-OO, 00.+00.-00, ' 

(9) 

where the symbol g> denotes the principal value of the 
sum. 

3. THE MAGNETOHYDRODYNAMIC 
APPROXIMATION 

We now apply the general integral equation (9) to find 
the frequency shifts of the low-frequency oscillations in 
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a plasma. With this aim, we shall make use of the mag­
netohydrodynamic approximation, i. e., we shall use the 
equations of magnetohydrodynamics for the description 
of the low-frequency oscillations. This allows us to find 
the specific form of the amplitude of the interaction of 
the plasmons V(l, 2, 3), V(l, 2, 3, 4), which enter into the 
Hamiltonians H3, H, which are in turn defined by the for­
mulas (6). In order to stay within the framework of the 
general scheme of Sec. 2, we must introduce the quan­
tity ~'" (k). Such a quantity will be the displacement of 
an element of the medium E(ro, t) =r(ro, t) - r o, where r 
is the location of the element at the instant of time t , 
ro is its location at the time t =0, i. e., ro is the La­
grangian coordinate of the medium. 

We formulate the equations of magnetohydrodynamics 
in Lagrangian coordinates. In Eulerian variables, the 
equations of magnetohydrodynamics are well known. U6] 

In order to transform to Lagrangian variables, we note 
that 

(10) 

where (A-1)u are the elements of the matrix inverse to 
the matrix A = IIVOi rj tJ. We can show (see the Appendix) 
that 

(11) 

where D=DetA = (1/6)(Sf -3S1 S2 +2S3); Sk=SpAk and lis 
the unit matrix. Introducing the displacement E(ro, t), 
we obtain 

A-II(V,,~)+Ilijll, (12) 
D=1+d,+'/, (d,'-d,) +'/. (d,'-3d,d,+2d,) , (13) 

Uij= (1+d,+'/,d.'-'"d,) 6'j-(1-d,) (V.1;,)+(V •• ;,) (Vo;~.), (14) 

where 

d,-(V.~), d,-(V'I;,)(V"~I)' 
d,,,,(V.I;.) (V .. ;,) (V .. M· 

It is clear that in the Lagrangian variables p=U1po, 
where po = p(ro, 0) and p =P(U1po). 

From the condition of freezing-in of the lines of force 
of the magnetic field, we can showU7] that 

B (ro, t) =D-'B, (b+d), 

where 

B.=Bo(ro,O), b=BoIB., d=(bVo)'. 

Noting that the particle velocity of the medium is given 
by v = E, we can rewrite the equation of motion of the 
particles in the form 

Po~=-(iiVo) (p+'/,Bo'D-' (1 +2(bd) +d') 
+D-'Bo(b+d) (u v 0) (D-'Bo(b+d». (15) 

The energy of the magnetohydrodynamic medium in 
Lagrangian coordinates is determined by the formula 

1 f . E =,- Po[,'+D-' V",'(1+2 (bd) + d')+ejdVo, (16) 
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where VA =Bo/-fPo is the Alfv~n velocity and E is the in­
ternal energy density. 

The expression for the energy E (16) includes the en­
ergy Eo of the medium at rest; therefore the Hamilto­
nian of the medium must be defined as the difference E 
- Eo. This Hamiltonian can be expanded in powers of 
the displacement E: H =Ho +H3 +H, + .•. , where Ho is a 
quadratic form in E and Hn is a form which contains E 
in the power n (n=3, 4, 5 ••• ): 

1 J . Ho = 2 po dVo[~' + (Vs'+ V A')d,'+V A'(d'-2d, (bd» 1, 

H,=..!.... JpodVo [(Vs'-Po 8Vs')d"_(Vs'+VA')d,d, 
2 8~ . 

+ VA' (d.'(bd) + d, (bd) - d,d") ], 

1 J [(V' V '+ ,8'V s' ) d ' H,= 24 podVo .. +. po ~ , 

+(V .. '+Vs')d,(3d,d,+8d,)-12 (Va'-po 8Vs')d"d, 
8po 

+12VA'(d.'+d.)d"-8VA'(bd) (d"+3d,d.+2d,)] 

(17) 

(18) 

(19) 

(V s = (8p/8po) 1/2s is the sound velocity). All these ex­
pressions are valid both for homogeneous and for inhomo­
geneous plasma. (We note that Ho is usually employed 
for the study of the stability of an inhomogeneous plas­
ma. U8]) 

In what follows, we shall conSider a weakly turbulent 
plasma and limit ourselves in the expansion of H to only 
the first three terms. The Hamiltonians H3 and H, de­
scribe the interaction between the third and four plas­
mons. Account of H, is necessary since the change in 
the dispersion of the magnetohydrodynamic waves is 
determined both by H3 and H,. Moreover, account of H, 
is also necessary in the study of the relaxation of Alf­
vlin waves. For the study of low-frequency waves in a 
cold, weakly turbulent plasma, the components Hn with 
n>4 are unimportant. 

Transforming to the Fourier components of the dis­
placement vector we get (after diagonalization) the Hamil­
tonian Ho in the form (1), where IJ. denotes the type of 
plasmon IJ. =a, s,! and w",(k) are the frequencies of the 
noninteracting magnetohydrodynamic waves: 

ro.=!kll!V .. , 
rof .• =k[ (VA'+Vs'+2VAV,XII)'f,±(V A'+Vs'-2V AV,XII) 'f,P'; (20) 

where kll = (k 'b), x =k/k, x II = (x ·b). 

Choosing Ho as the basic Hamiltonian and introducing 
the operators C1 and ci, we obtain Ho in the form (4) 
and Hlnt in the form (6). The interaction amplitudes in 
these expreSSions have the following form: 

. VA' k,k,k, F( 2 3) 
V(l,2,3)=l12(2p)'h (00,00,00,)'1, 1" , (21) 

. VA' k,k,k,k, 
V(1,2,3,4)= 96 ( )" F(l,2,3,4), 

p 00,00,00,00,' 

where F(l, 2,3) and F(l, 2, 3, 4) are certain dimensionless 
functions of the angles between the wave vectors and the 
magnetic field (their specific form is found in Ref. 15; 
the normalized volume in Eq. (21) should be equal to 
unity). 
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We now make the assumption that the gas of plasmons 
is found in the equilibrium state with temperature T * . 
Then the number of plasmons will be determined by the 
Ray~eigh-Jeans distribution 

(22) 

(Boltzmann's constant, as also Planck's constant, is 
taken to be unity) and Eq. (9) for the determination of 
6,.(k) takes the form 

6' = rovA ' k' ~ ~[2F(i n i n)+.9' ~ k,'VA 'IF(1,2,n) I' 
• 4p 11 ~ 00/' " 1 , ~ GhZ 

x( tlj,L\(k.-k,-k,) + (tlj,-tlj,)L\(k.+k,-k.»)]. (23) 
Ill.-Glt-m. m.+m,-m, 

4. MODIFICATION OF THE DISPERSION LAWS OF 
MAGNETOHVDRODVNAMIC WAVES 

The change in the dispersion laws of magnetohydro­
dynamic waves is important for a- and s-waves in the 
region of small values of kl! =0. Therefore, in the cal­
culation of the frequency shifts 60 and 6s , we need to 
take into account in (23) only the terms that differ from 
zero at kl! =0. 

We shall also consider the case of a plasma of low 
pressure, when the relation v~ /v~ «1 holds. We first 
consider the s-wave; for it, it is necessary to take into 
account scattering processes of fourth order: 

and processes of third order 

In Eq. (23), the indices 1, 2, and n for these processes 
denote 1 = Ckt, a), 1 = (kh I) and 2 = (ka, I), n = (k, s). 

Making use of the expressions for F(l, n, 1, n) and 
F(l, 2, n) from Ref. 15, and making the transition from 
summation to integration in the space of kt and ka, we 
get 

6.'=a.kL ·Vs'w.. w.=W/pV.', (24) 

where W = T * r is the energy density of the turbulent 
pulsations, r is the phase volume, occupied by the 
waves,U2.13.19] Q s is a numerical coefficient of the order 
of 0.1. 

Thus, the modified dispersion law for slow magneto­
sonic waves has the form 

(25) 

We see that the correction to the ordinary dispersion 
law for the s-wave is different from zero at kl! =0 and is 
proportional to the square root of the level of the turbu­
lent pulsations W. 

We conSider the a-waves further. In the calculation 
of 60 , singularities develop in the integrals in the region 
of small kl! for processes with participation of the s­
wavesa+s:::a+s, a=s+/(n=(k,a), l=Ckt,s), 2={ks,/)) 
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and also for the processes a+a:a+a and a:a+1 (1 
= Ckt, a), 2 = <ka, I)). The singularities for the first group 
of processes are removed if we take into account the 
modified dispersion law for the s-waves (25). As a re­
sult, it turns out that the contribution from these pro­
cesses to Ii: is equal to k,~ v! ~ with accuracy to with­
in a numerical factor. Since this contribution is propor­
tiOnal to k ~, it is unimportant. The principal contribu­
t~on to lio is made by the second group of processes. 

Taking into account the nonvanishing terms in the ex­
pressions for F(a, a, a, a) and F(a, a, I) in the case kl! 
= 0, [18] we obtain 

/l '(k)= 9T·V .... ' ~ (k[k,b])' 
• 8p"""", tlj,'kL'k'L' • 

The solution of this integral equation for 60 must be 
sought in the form 

(26) 

(27) 

where c is a certain constant. Actually, making the 
transition in (26) from the sum to the integral, we ob­
tain the following equation for the determination of c: 

(28) 

After integration, this equation takes the form 

27 (1 ,i ) c'=-w. 1--1n(1+c)+2c"arctg- . 
2' c C 

(29) 

Since the level of the turbulent pulsations is assumed to 
be small, then the constant c will be small and therefore 
the expression in the parentheses can be expanded in a 
series in powers of c, keeping only the prinCipal term in 
it, equaUo rrVc. As a result, we undergo transition to 
the following expression for c: 

C=a.w.~·, w.=Wlp.VA ', d.-i. (30) 

Thus 

/l.' (k) =a.kL'V A'W."· (31) 

and the frequency of the Alfv~n plasmons will be equal 
to 

(32) 

We see that the frequency of the a-waves at kl! =0 dif­
fers from zero and is equal to 

i. e., the dispersion law for the a-waves changes sig­
nificantly in the region of small kl! . 

For the I-wave, the account of the nonlinear interac­
tions of the waves leads only to an unimportant renor­
malization of its phase velOCity: 

(33) 

In finding the frequency shifts, we took into account 
only the Hamiltonian H3 and H4• It can be shown that 
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account of the Hamiltonians at n>4 leads only to a small 
additional correction just as in the higher terms of per­
turbation theory. 

5. RELAXATION IN A GAS OF 
MAGNETOHYDRODYNAMIC PLASMONS 

The relaxation times of plasmons was calculated in 
Ref. 15 with account of triple processes only, described 
by the Hamiltonian Hs. Account of four processes, de­
scribed by the Hamiltonian H~, leads, as can be shown, 
to diverging expressions for the probabilities of relaxa­
tion of the plasmons, if we do not take the modifications 
of the dispersion laws of magnetohydrodynamic into 
account. It is therefore of interest to consider the role 
of four processes, and to take into account in this case 
the shift of the frequencies of the magnetohydrodynamic 
waves. It can be shown that such an account leads to a 
removal of the divergences, and it turns out that the 
contribution of the four processes to the probability of 
relaxation of the a-waves will be of the same order as 
the contribution of the triple processes. For the re­
laxation process of magnetosonic waves, account of four 
processes leads only to small corre~tions. 

USing the well known expressionU5 ] for the relaxation 
times of plasmons T ,,(k), we can show that the relaxa­
tion time of an a-plasmon due the four scattering pro­
cesses a +a = a +a is determined by the formula 

(34) 

while the relaxation time of an a-plasmon due to four 
processes of interaction with 5-plasmon a +a=a +5 
and a +5 =a +5-by the formula 

(35) 

We now turn our attention to the fact that these ex­
preSSions, just as in the corresponding expressions for 
the reCiprocal relaxation times 1/ T a (k) of plasmons due 
to triple processes, are proportional to the level of tur­
bulent pulsations W. 

In the calculation of the relaxation times of excitations 
in the spectrum ofs -waves due to the processes 5 = 5 + 5, 
divergent expressions also appear if we do not take into 
account the frequency shifts of the 5-plasmons. In Ref. 
20, these divergences are removed by the inclusion of 
dissipation processes. At small damping of the waves, 
the interaction between the 5 -waves led to a very rapid 
relaxation. 

If we use the modified dispersion laws of magnetohy­
drodynamic waves, then the divergences are eliminated, 
the relaxation time does not depend on the damping of 
the waves and is of the same order as the relaxation time 
calculated with account of the other types of three-wave 
interactions: 

11T. (k) -w.ku'V s/km~. (36) 

APPENDIX 

We now explain how to obtain Eq. (11) for the inverse 
matrix. 
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If A = Ilaf~ II is some matrix of order n, then for the 
calculation of the inverse matrix A -1, we must use the 
method of Leverieu, according to which the matrix A-1 

is determined by the expression 

1 
A -I = -(A n-l_ptA n-2 - ... - PnI) 

pn 

(see Ref. 21). The coefficients Pn are found from the 
recurrence relations according to the Newton formulas 

kp.=S.-PtS'_t-···-P._IS. (k=1, 2, ... , n), 
Pn=(-1)n-IDetA, S.=SpA·. 

At n =3, we obtain the formula (11). 
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