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A quasiclassical description of a highly excited atomic electron is used to fmd the transition cross section 
in terms of the Born amplitudes in the impact parameter representation. The amplitudes are found in the 
momentum transfer representation by means of asymptotically accurate (in respect of the principal 
quantum number n) Born amplitudes. The results are given of numerical calculations for transitions from 
the n = 10 and n = 100 states. The feasibility of comparison of these results with experiments is 
considered. 

PACS numbers: 34.S0.Hc 

1. INTRODUCTION 

Cross sections of transitions between highly excited 
atomic and ionic levels are of great interest in many 
aspects of the physics of very-Iow-density plasma. Ex­
perimental and theoretical investigations of these cross 
sections meet with serious difficulties. The cross sec­
tions of transitions between highly excited levels as a 
result of collisions with electrons have been calcu.­
lated[1-31 in the Born approximation. Calculations using 
the "normalized" theory of perturbations with a dipole 
potential are reported elsewhere. [41 The general ap­
proach which can be used to deal with highly excited 
states outside the perturbation theory framework has 
been formulated recently. [5-71 The paper by Betgman 
et al. [51 develops a correct classical approach to the 
problem of an inelastic collision between a charged par­
ticle and an excited atom, in which use is made of the 
action function of an atomic electron. Presnyakov and 
Urnov[61 propose the application of the quantum model 
of equidistant levels. Percival and Richards[7] describe 
a classical approach based on the correspondence prin­
Ciples. The equivalence of all three approaches in the 
In - n' 1« n case (n and n' are the principal quantum num­
bers of the states between which the transition takes 
place) was demonstrated by Richards. [81 

The main result of these investigations[5-71 is an ex­
pression for the amplitude of a transition in terms of the 
Born amplitudes based on the impact parameter repre­
sentation. As shown by Betgman and Urnov, [3] the di­
pole approximation is valid for transitions between neigh­
boring levels and, therefore, the calculation of the Born 
amplitudes then presents no difficulties. Calculations of 
the cross sections for transitions between neighboring 
levels, carried out within the framework of the appr~ach 
developed in the cited papers, [5,61 are reported by Beig­
man et al. [91 For transitions with In - n' I> 1 the momen­
tum interaction plays the main role and until now it has 
not been possible to describe this interaction within the 
impact parameter method used earlier. [5-71 We shall 
obtain the Born amplitude corresponding to the momen­
tum part of the interaction and we shall use the relation­
ships between the exact scattering amplitudes in the mo­
mentum and impact parameter representations[1o, 11l and 

calculate the cross sections using the approach described 
above[5-71 in the most interesting cases. 

The cross sections of transitions involving neutral 
atoms are found to decrease severalfold in the range of 
velocities of practical interest. In the case of ions the 
discrepancy betwee~ these cross sections and the Born 
values decreases rapidly with the ion charge. The con­
tribution of the transitions with In - n' I> 1 to the total 
inelastic broadening cross section for incident electrons 
of -1 eV energy is -30% (for n=10) and it is consider­
ably greater in the processes of electron diffusion be­
tween highly excited levels. The role of the transitions 
with In - n' I> 1 rises with increasing velocity of the in­
cident particle. 

We shall assume that a charged particle moves along 
a rectilinear trajectory. In the case of collisions with 
electrons this requires that the condition E» En is satis­
fied (E is the energy of an external electron and En is 
the ionization potential of an excited atomic electron). 

We shall use mainly the formulas from the paper by 
Beigman et al. [51 For brevity, we shall call these quasi­
classical formulas[51 in view of the quasiclassical de­
scription used there for a highly excited atomic electron. 

2. BORN AMPLITUDES IN THE IMPACT 
PARAMETER REPRESENTATION 

The Born amplitudes of inelastic transitions in the 
momentum transfer representation were calculated by 
Beigman and Urnov. [31 They showed that the probability 
of momentum transfer can be divided in a natural man­
ner into two terms. The first term, which dominates in 
the case of low momenta, is related to the dipole inter­
action of an external particle and the atom in question. 
The second term predominates in the range of momenta 
which satisfy the classical momentum approximation in 
which the role of the atomic nucleus in the colliSion pro­
cess is ignored. For convenience, we shall call the lat­
ter the "momentum" or "nondipole" part of the interac­
tion. Our problem will be to find expressions for both 
terms in the impact parameter representation. 

The dipole part of the Born amplitude of a transition 
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FIG. 1. Approximation of the momentum part of the amplitude 
of the 100-104 transition by Eq. (8); the continuous curve 
represents Eq. (7) and the dashed curve-Eq. (8). 

from a state n to a state n' can be written in the formL4,9J 

IA (k) I' 4 [nZ/.~ •. k'] R' 
• = Z'k'(r'+r.')v· (n+n') (nn') 

X [K,'(M+K,'(~)], 

r=Zpla,n', r,=Zp,!a,n', v=VIZv" n'=n+k, 
(1) 

~=k P. ("'+r.') '\ p. = ~ (1- + ~) , 
n ~ n n 

where ao=O. 53X10·8 cm and vo=2.18x108 cm/sec are 
the atomic units of length and velocity; Z is the spec­
troscopic symbol of the ion; P is the impact parameter; 
V is the velocity of an external charged particle; fn-n' 
is the oscillator strength of an n - n' transition; Ko and 
Kl are the Macdonald functions; Po is the regularization 
parameters. 1) The expression containing the Macdonald 
functions can be approximated, with an error not exceed­
ing 10%, by the formula 

(2) 

USing the Kramers approximation for the oscillator 
strength and applying the approximation (2), we find that 
Eq. (1) gives 

(3) 

We have ignored the difference between n and n' in Eq. 
(3). In general, Eq. (3) is valid if k» 1. A calculation 
carried out using a more rigorous formula[12J gives La 
=0.6 for k =1. 

We shall describe the nondipole part of the interaction 
in terms of the impact parameter representation em­
ploying the relationship between the amplitudes in the 
momentum and impact parameter representations. The 
nondipole part of cross section of an n - n' transition 
will be represented in the form 

8na.· 1 (nn') """",S dq F,() 
a,,~ft' ---- - - q, 

v' n' k q 
(4) 

..... 

where q=(nn')p/Zpo; Po=2x10·19 g.cm.sec·1; p is the 
momentum transferred to an atom in a collision. 

Following Vinogradov and Vainshteln, tlOJ we shall de­
scribe the amplitude A,(r) by 

A ( ) - 2 1 S d' -,.'p(q) 
, r - 2nv k¥' qe q' (5) 
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where the integral is taken over the plane in which the 
vector q satisfies the condition w +Z(q 'v)/(nn') =0 (w is 
the frequency of the n-n' transition). We shall use qll 

and qJ, for the components of the vector q parallel and 
perpendicular to the vector v. Integrating Eq. (5) over 
the angles between the vectors q and r, we obtain 

A () 2 1 S· I. (q.Lr)F(q) d 
• r .... V k'" q q.L q.L' 

• (6) 

q ..... ql.+q.L.. qg .... : (n;'). 

Following Beigman and Urnov, t3J we find that the function 
F( q) is described by 

2 1 k· k(qlk)' 
F'(q)-g Z' 7! dg [H(glk)']' 

{ q' ( . 12k') • ( 1/ ( q ) .) ( 12k' ) 
X, q'+k' 1+'n'+k' I, kV 1+ k. - 1- k'+q' 

X[/"(kYHC! )')]'} . (7) 

The expreSSion (7) is too complex to calculate the inte­
gral (6). However, an analysis of this expression shows 
that (7) has a maximum at q - k and the main "functional" 
part of this expreSSion is q 2 + k 2. Therefore, we shall 
apprOximate F(q) by 

F( q)= f (k:", ) [ (2CZ-1)!~qlq .. k)']~· (8) 

The expression (8) has a maximum at q =kq", and its 
value at the maximum is fo; a is a free parameter. The 
quality of this approximation is illustrated in Fig. 1 for 
the example of the amplitude of the 100-104 transition. 
Using Eq. (8), we find that the amplitude A,(r) is given 
by 

A ( )_ 2/. (2czq",') m 
• r vZk"'g .. 

X (g,kr) m_' K~_, (q,kr) 
(g,) "m-"2m-'r(cz-1) • (9) 

g.'=g .. '(2cz-1) + (p.lv) '. 

. For a half-integer value of a the expression (9) can be 
represented in terms of elementary functions 

A, (r) =.!t!. ( 2czq;' ) m q,' 
vZ q, q .. 

e-' ~ (2z)' (2j-i) 1 jl 
X 2 (cz-1) ~ -i'-(2;)"I (j-i) 1 

1=0 

j=a-'/" z=q,kr. (10) 

It follows from Fig. 1 that fo = 0.33 and q", = 1. 1; it is 
also clear from Fig. 1 that the value of a has little ef­
fect on the results. We shall assume that O! = 3.5. Us­
ing Eqs. (3) and (9), we can calculate the Born cross 
sections and compare them with the calculations of 
Belgman and Urnov[SJ carried out in the momentum ap­
proximation. For the parameter ro = 3, the results 
agree ~!J within 10-20%. 

3. QUASICLASSICAL TRANSITION AMPLITUDES 

We shall consider an atom with a set of quantum num­
bers y = (n, l, m) which undergoes a transition y- y' as 
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FIG. 2. Probabilities of the 100-101, 100-102, and 100-104 
transitions. The continuous curves represent a quasiclassica! 
approximation and the dashed curves the perturbation theory; 
the impact parameter is in units of aon2 (ao = O. 53 X 10-8 cm). 

a result of a collision. For high quantum numbers the 
transition amplitude is[Sl 

1 I. 

a.,T' - (2n) , S d'u exp [- ik • u - is('Y, u)] , 
. I 

(11) 

where the vector is given by k = (n' - n, l' -1, m' - m); 
for S« n, we have S(y, u) = ~At exp(- ik' u). 

The function S in Eq. (11) is a modified form of the 
classical action function for a collision expressed in 
terms of the action variables and the corresponding 
phase variables u = (Ub ~, ~). If the perturbation theory 
is valid (i. e., if the increase in the action is small), it 
follows from Eq. (11) that 

aT-+T,=-iArr.. 

Thus, the coefficients At are equal to the Born transi­
tion amplitudes apart from the phase factor. 

The probability of an n-n' transition, summed over 
the orbital quantum numbers of the initial and final states 
[(n 2W(n-n'», is readily found from Eq. (11): 

n'W ••• , = L, laT.T,I' 
I.m 

l',m' 1.... I 

- L, (2n)' Hdu.du, 1 S du. exp[-ik.u.-iS(oy, u)] I· (12) 
I,.. 0 0 

If the function S is independent of the variables Uz and 
~ (and, consequently, also independent of 1 and m), Eq. 
(12) reduces to the one-dimensional expressionZ) 

1 .. I 

w···,-I2nSduexp[iku-iS(oy,U)] ,. (13) 
I 

We shall now use Eq. (13). Since, in general, the 
problem is not one-dimensional, the use of Eq. (13) 
automatically implies some averaging procedure. We 
shall define this procedure as follows: 

910 

S(1I, u)= L, A.e-"·, 

A." - !, L, IA.I'-A.'+A,', 
I.m 

I',.' 
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~ (14) 

where the amplitudes Ad and A, are given by Eqs. (3) 
and (9). We can show that Eqs. (13) and (14) are exact 
in anyone of the following three cases: 1) if the pertur­
bation theory is valid; 2) if the matrix elements of the 
interaction potential vanish in all cases except for 1 = 1 ' 
and m =m'; 3) if the matrix elements vanish in all cases 
with the exception of n' =n±rl, l' =l±rz, m' =m±ra, 
where rh ra, and ra are positive integers. 

By way of illustration, Fig. 2 gives the probabilities 
W(r) for the 100 -101, 100 -102, and 100 -104 transi­
tions as a function of the impact parameter r. The prob­
ability of a tranSition between neighboring levels (k = 1) 
has a wide maximum in the range of impact parameters 
which are between six and eight times as large as the 
characteristic size of an atomic orbit. The maximum 
probability is - 0.3. For transitions with k > 1, the prin­
cipal maximum becomes flatter and shifts toward lower 
values of r. In the case of these transitions with k > 1 
we find, in contrast to the usual situation, that W(r) is 
greater than the Born value in a wide range of the im­
pact parameters. This means that at these velocities 
the "step" excitation plays an important role. In the 
case of small impact parameters the value of W(r) be­
gins to OSCillate. The question whether these oscillations 
are associated with the adopted averaging procedure re­
quires further study. The oscillation region makes a 
relatively small contribution to the total transition cross 
section. In contrast to the OSCillations, the shift of the 
principal maximum follows[51 from the general structure 
of Eqs. (11)-(14) and may, in prinCiple, be detected ex­
perimentally by analyzing the corresponding differential 
cross sections. 

4. TRANSITION CROSS SECTIONS 

The cross section is found from Eq. (13) by integra­
tion over the impact parameter. The Born cross sec­
tion is proportional to the factor Z -4n -a (nn' /k)a so that 
we obtain the following expression for the cross section: 

} (15) -
l1 ••• ,=2k'Z' S W ••• , (r)rdr, 

• 

where the probability Wn_",(r) is given by Eq. (13). 

The value of 0' is plotted in Fig. 3 as a function of the 
velocity for the transitions 10-11, 10-12, and 10-14. 

FIG. 3. Cross sections of the 10 -11, 10 -12, and 10 -14 
transitions. The continuous curves represent the quasiclassi­
cal approximation and the dashed curves give the perturbation 
theory results (vo= 2.18 x 108 cm/sec). 
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TABLE I. Values of Kn for calculation of in­
elastic width [see Eq. (20»). 

kT/Z'Hy I z_! I z~~r z_~·1 z=! I 
n=100 

Z=2 

0.02 1.91 3.55 19.8 21.4 28.4 
0.04 2.61 4.7 20.83 23.14 30.15 
0.08 3.45 5.92 20.11 23.04 29.3~ 
0.16 4.34 6.99 18.02 21.3 26.64 
0.32 5.13 7.63 15.25 18.8 22.64 
0.64 5.62 7.67 12.41 16.0 18.27 
1.28 5.69 7.18 n.8S 13.36 15.24 

*The case Z: 00 corresponds to the Born 
approximation. 

76.43 
65.15 
52.62 
40.91 
31.06 
23.36 
17.5~ 

For the transitions with k = 1 the cross section has a 
maximum at the velocities v - 0.3 and it is much smaller 
than the Born value. The results obtained for k = 1 differ 
little from those reported earlier[4] where the perturba­
tion theory is used for the large impact parameters and 
the transition probability for small values of r is as­
sumed to be 1/2. This provides a further confirmation 
that in the case of the k = 1 transitions the main contribu­
tion is due to the large impact parameters to which the 
dipole approximation can be applied. The situation is 
very different for the transitions with k > 1. The main 
contribution to the cross section is then made by the 
momentum part of the interaction. In the range of ve­
locities under consideration the cross section rises 
monotonically on reduction of the velocity but remains 
smaller than the Born value. It should be noted that 
quantities of the k 8un~n+k type govern the rate of diffu­
sion of atomic electrons between highly excited levels. 
It is clear from Fig. 3 that at low energies of the inci­
dent particles the diffusion processes are dominated by 
the transitions with k> 1. In the case of the 100 -101, 
100-102, and 100-103 transitions the calculated cross 
sections agree to within -15-20% with the "control" 
pOints obtained by Gee et al. [13] from "classical" calcu­
lations. 

5. INELASTIC BROADENING CROSS SECTION 

The Stark broadening of n + k - n lines is governed, 
for sufficiently large values of n, by inelastic collisions 
between excited atoms and electrons. [14,15] In accordance 
with these results, the Stark width of an n +k - n line 
with k «n is given by 

6fil=N.[ <Vo.>+<Vo.H »), <Va.) = E <Vo.~.+.). (16) 
0'" 

The angular brackets in Eq. (16) denote averaging over 
the Maxwellian electron velocity distribution and Ne is 
the density of electrons which should be summed over 
all the possible values of k *0. In fact, the sum is domi­
nated by the terms with small values of k. We shall now 
obtain an expreSSion for the inelastic broadening cross 
section and we shall give some numerical results. 

It follows from Eq. (15) that the total cross section 
un is 

na.' 4_ ~ On=z.-nOn, 

6.= E 6i~i:' =2z,jrdrEW.~.+.(r). 
11. .. 0 0 l+O 

(17) 
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If we use the property 

l-+-E e,"(U-u')=6(u-u') 
1I. __ o:J 

in the interval 0-271', we find from Eqs. (13) and (17) 
that 

(18) 

The expression (18) eases greatly the calculation of 
(Vun ), which can be expressed conveniently in the form 

<Vo.)=1O-'n'Z-'K. (cm3 /sec) , l 
K - 2.fS S· _B1or( E )_ dE kT (19) 
'---e;;- e Z'Ry 0'. Z'Ry' e-'Z'Ry' 

• 
The quantities Kn are weak functions of the temperature 
and quantum number. T~e data for the charges Z = 1, 2, 
and 00 and for the quantum numbers n = 10 and 100 are 
given in Table I. 

The relative width of an n + 1 - n line is found from 
Eqs. (16) and (19): 

(20) 

Exact data on the broadening of n + 1 - n lines in the n 
-100 range are of exceptional interest for the diagnostic 
of plasmas in planetary nebulusY8,17l 

Direct experimental information on the cross sections 
of transitions between highly excited levels are laCking 
and it would be very difficult to obtain them at present. 
Indirect data, which are the inelastic scattering cross 
sections averaged over the Maxwellian distribution, can 
be obtained for fairly high values of n from the labora­
tory data on the widths of n + 1-n lines. The first such 
experiment on a decaying hydrogen plasma was described 
by LaSalle et aZ. [18] According to this experiment, the 
relative width of the 13-12 line is liw/w =0. 75.10-18 N •. 
The electron temperature deduced from the HB , H." and 
Ho Balmer lines is very low: -0.15-0.17 eV. At this 
very low temperature the contribution of the inelastic 
transitions with k:;;.l is negligible. According to LaSalle 
et aZ., [18] elastic transitions make a contribution to the 
line width which is 2.5 times smaller than the experi­
mental value. However, the ratio of the line intensities 
to the intenSity of the continuous spectrum does not cor­
respond to Te -0.15 eV. LaSalle et aZY8] concluded that 
the excess of the radiation in the continuous spectrum 
may be due to bremsstrahlung in a field of neutral atoms. 
It should be pOinted out that the assumption of a local 
thermodynamic equilibrium, used in the determination 
of the temperature from the Balmer lines, is not fully 
justified for a nonstationary plasma. The ratio of the 
line intensities to the continuous spectrum corresponds 
to -1 eV, which seems to be very reasonable for this 
type of plasma. In this case the expression (20) and the 
theory given above for the calculation of the cross sec­
tions give a width which is half the experimental value. 
The Born cross sections overestimate the result by a 
factor of 2. 
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In view of this situation it would be interesting to de­
termine experimentally the widths of n + 1 - n lines in 
hydrogen and hydrogen-like plasmas and at the same 
time to determine independently the temperature and 
density. It would be very desirable to measure the 
widths of several lines in the same experiment which 
would make it possible to separate the contribution of 
elastic transitions to the width, which may still be 
large for n -10. 

liThe pole potential is used in this case. [41 The regulariza­
tion parameter introduced in Eq. (1) will be defined later so 
that the cross sections calculated using Eq. (1) are identical 
with the Born values. [31 

2)We shall omit the index 1 of the components kl and ul of the 
vectors k and u, denoting them simply by k and u. As in the 
preceding sections, we shall use again one-dimensional ex­
preSSions and, therefore, such Simplification of the notation 
should cause no confusion. 
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Coherence transfer in metastability exchange in the mixture 
of the isotopes He3 and He4 

R. A. Zhitnikov, v. A. Kartoshkin, and G. V. Klement'ev 

A. F. Ioffe Physicotechnical Institute. USSR Academy of Sciences 
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We consider coherence transfer in the exchange of metastability in a mixture of He3 and He·. It is shown 
that this process results in appreciable shifts of the magnetic-resonance frequency in the 2 3S1 states of the 
He3 and He4 atoms. The appearance of these shifts, which has been predicted theoretically, is confirmed 
by experiments on the optical orientation and magnetic resonance of 2 3SI-metastable helium atoms. The 
dependences of these shifts on the temperature, pressure, and concentration of the helium isotopes in the 
He3_He4 mixture are determined. 

PACS numbers: 32.70.Jz, 32.90.+a 

INTRODUCTION 

In experiments on optical orientation of atoms, the 
Circulation of the coherence between the ground and 
resonantly excited states leads to the well known optical 
shift of the magnetic-resonance frequency on account of 
real optical transitions. [11 The magnitude of this shift 
is small and is much less than the magnetic-resonance 
line Width, since the light intensity is usually such that 
the atoms remain in the excited state only a negligible 
part of the time in comparison with the time of their 
stay in the ground state. 

A similar situation obtains for the helium isotope Hes 

when exchange of metastability takes place between two 

atoms, one of which is in the ground state 11So and the 
other in the metastable 2 SSI. In this case the atom goes 
from the ground to the metastable state, and returns to 
the ground state after a time T. Coherence is trans­
ferred thereby from the ground to the metastable state 
and back. Since the precession in the metastable state 
is much faster (the gyromagnetic states for the 2 3S1 

and 11So levelS, Ym and Y" differ by three orders of 
magnitude), it follows that an increase of the resonance 
frequency, comparable in magnitude with the resonance­
line width, takes place in the ground state. In view of 
the practical importance of this question, for example 
for quantum magnetometers and gyroscopes, this fre­
quency shift had been discussed in many papers.[Z-41 
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