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A model of a metal with dw ions as impurities is considered. The resonant scattering of the conduction 
electrons causes a restructuring of the electron spectrum to produce two quasiparticle bands separated by 
a gap. At a low impurity concentration, c( 1, the quasiparticles have an attenuation T, whereas the gap 
is proportional to r c  and hence becomes smeared out while the state density g (E)  has a peak, just as in 
Anderson's single-impurity model. In the other extreme case 1-c( 1 the quasiparticle attenuation is 
proportional to T c  and the gap to r, so that g(E)  has a dip on whose slopes the state density is higher. 
The limiting transition to the regular case c = 1 is traced. 

PACS numbers: 72.15.Qm. 71.55.D~ 

1. INTRODUCTION herent and leads to a substantial restructuring of the en- 
tire electron spectrum, wherein the localized level gives The interaction of the conduction electrons of a metal 

with magnetoactive d(f) impurity ions has been repeat- way to an energy gap that separates two new quasiparti- 

edly discussed in the literature in connection with the cle bands with dispersion  law^^^'^' 
problem of the localized moment, the Kondo effect, 
and others. In the description of this interaction ac- k" ( k )  = ' / 2 ( ~ I + i 2 * ~ r ) ,  vk2= (€A-Q)'+ 4 ~ : f f '  (2) 

count must be taken of the intra-atomic correlations of 
the  electrons, which play the decisive role in the case 
of transition d(f) metal impurities. Let, for example, 
Eml and E, be respectively the energies of the atomic 
configurations d*' and d: where n is the number of 
electrons in the ground-state configuration of the ion. If 
the transition energy 51 - E, turns out to be com- 
parable with the energy of the conduction electron (c 
electron), i. e., SZ -E,, competition sets in between two 
possible electron configurations in the metal, cdn and 
d*'. The degeneracy connectetl with the mixing (hy- 
bridization) of the cdn and d"" states i s  lifted by the in- 
teraction of-the c electrons withi the d ions, which can 
be regarded as  a reaction channel via a "compound-ion" 
stage, s+ dn d*'. This channel is due to the multiple 
absorption and emission of the conduction electron. 

The single-impurity problem in the presence of a 
single-particle c-d mixing mechanism was solved by 
Anderson. ['I Using the Hartree-Fock approximation for 
the description-of the d-electron states, he showed that 
the mixing leads to  a smearing of the localized d level. 
The d-electron state density becomes equal to 

where A,,, i s  the effective niixing constant and Em,, 
- IT,,,- 2 ~ ~ S - 2  i s  the energy gap. The state density i s  zero 
inside the gap and maximal near i ts edges-a picture 
quite the opposite of the one-impurity case. 

It must be emphasized that in both cases the Hamil- 
tonians of the system have identical operator structures. 
The difference between the results is the consequence of 
the difference in the dependence of the matrix element 
4 ( k )  of the mixing interaction on the wave vector k; this 
dependence takes the form Af(k) = A(k)e'ikf, C5 where f is 
the number of the site occupied by the d-ion. At low 
impurity concentration, when each impurity i s  indepen- 
dent, we can put f = 0, and then Af(k) = A(k) is a smooth 
function of k; in the regular case, however, the expo, 
nential factor is significant and plays the role of the co- 
herence factor. Therefore the results obtained in the 
framework of the single-impurity model cannot be used 
to describe regular d(f )metals, as was done, e. g. ,inc6? 

The purpose of the present paper is to consider the 
mixing of the electron states at a finite impurity concen- 
tration c. In two cases, c << 1 and 1 - c << 1, we obtain 
the single-particle Green's functions and the densities of 
the electronic states. We trace the limiting transition 
both to the Anderson model and to the case of a regular 
crystal. 

where SZ = E, is the energy of the localized level A is the 
c-d mixing-interaction constant, and go is the conduc- 
tion-electron state densitv. We note that in Anderson's 

2. HAMlLTONlAN AND GREEN'S FUNCTION 

model the c-electron spectrum changes little. A simi- We consider a system of band and impurity atomic 
lar broadening of the d level is obtained also when ac- electrons described by the Hamiltonian 
count is taken of the correlations. 

~=~o+n~+zc , , ,  +z ,,,,, 
In the case of a transition or  rare-earth metal, when 

the d(f) ions form a crystal lattice and the atomic level no = C ~ ~ a ~ . + a ~ . + o  C p , ~ , ~ ~ ,  
ro  

(3) 
(or the transition energy S-2) is inside the conduction f 

band, the situation is entirely different. Because of the Q Q ' 
= z p l  IF e-cfi.1 ( o ) a k o + ~ ; "  + r.1" (o)~:-h,], 

11ro 
N 

regular arrangement of the d(f) ions, the mixing is co- 
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Here a;,(a,) are  the operators of creation (annihila- 
tion) of c electrons with quasimomentum k, spin projec- 
tion 0, and energy t, reckoned from the Fermi energy 
p, and = I  p)(ql are Hubbard operators, where I p) 
and I q) are atomic states: I 2)-configuration dm' with 
spin S =0, 1 0)-configuration dn  with spin $ and its pro- 
jectionu;q(u)=il a t a = i $ ; p , = l  if  f is a site with an 
impurity atom and pf = 0 in the opposite case. The con- 
stant Q of the "direct" mixing of the states is governed 
by the crystal field, so that in transition and rare-earth 
metals Q is much smaller than the constants V and J of 
the intra-atomic Coulomb and exchange c-d interac- 
tions. The Hamiltonian X,, describes the system of 
non-interacting c and d electrons; w = - 1 

The equations for the Green's functions 

are obtained in the generalized Hartree-Fock approxi- 
mationc8' and are of the form 

( E - ~ ) F ; *  ( E )  - n , p , A , , ' ( p ) ~ : ~ . ( E )  =O. 
P 

Here 

where 

In the paramagnetic state, which will be considered 
from now on, we have 

The angle brackets denote Gibbs averaging with the 
Hamiltonian (3). Similar equations .connect the func- 
tions 

b '  E )  a (0) x D;, ( E )  = ( a )  x;" I q ( a )  x::-"))E, 

namely: 

In the derivation of these equations we have neglected the 
correction that must be introduced in the transition en- 
ergy .S2 because of the direct mixing Q"]: 

8 
QZgoln--< QG2-p, 

Q 

and also the Hartree-Fock corrections to the electron 
energy 5,. 

From the system (4) we readily obtain integral equa- 
tions for the functions G,,,(E) and 

1 
G.,. ( E )  = G ~ ~ ( E ) ~ ~ ~ ~ + G ~ ' ( E ) D ~ ( E ) ~ ~ ~ ~ ~ , I A , I ~ ~ - ~ ~ ~ - ~ ' G  P* ' (E) ,  (54  

t P  

where 

Do ( E )  = (E-.< ' -I, Gao ( E )  = (E-Ea) -I. 

Equations (5) are the basis for the study of two limiting 
cases: c<< 1, 1-c << 1, c = (l/N)zfpf, where c is the im- 
purity concentration; we proceed now to investigate 
these cases. 

3. LOW IMPURITY CONCENTRATION 

To average the Green's functions over the positions of 
the impurities we use a diagram technique. C'O1 At c << 1 
the average distance between the impurity atoms is much 
larger than the lattice period, so that the averaging can 
be carried out in volumes having dimensions much larger 
than a. If the impurity distribution is uniform, this av- 
eraging restores the translational invariance: 

G*r, ( E )  =GA(E)  6 r r . .  

Solving Eqs. (5a) and (5b) by iteration, we obtain Gand 
D a s  sums of infinite series in which each term is dia- 
grammed in accordance with the following  rule^^'^^ the 
solid line i s  G ~ ( E ) ,  the cross is  the bare interadion 

V, (k -p ,  E )  = I A;[ 'n1D0(E)  exp [-if ( k - p )  l=u,O(E) exp [--if (k-P) 1, 

the dashed line joins identical points, and the averaging 
rule i s  

where, in view of the identity of the impurity atoms, all 
the single-point characteristics Zf are assumed to be . 
independent off. 

In the approximation linear in the impurity concentra- 
tion it is necessary to retain the following diagrams: 

and to discard diagrams of the type 

,-,.--, 
-L-L&-k- 

In contrast to the problem,of potential scattering by im- 
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purities, ''01 we retain diagrams of type a and d, inas- 
much as the effective interaction v;(E) contains the res- 
onant factor DO(E). We note also the summation of dia- 
grams of type a only leads to the appearance of the spec- 
trum of the type (2). '"' As a result the total Green's 
function G, is obtained from the following system of 
equations: 

Solution of Eq. (7) yields the effective interaction 

u , (k -p )=~ ,e""~-p ' ,  v t=IAf  lZn i / (E-o , ' I ,  ot=o+ IAt12nl(G(E)  ). 

(8) 
Substituting (8) in (6) we obtain 

vo and v a re  the values of vy and vf averaged over the 
impurity positions, and (G(E)) is obtained from the equa- 
tion 

The integral in (10) can be calculated and a transcenden- 
tal equation is obtained for (G(E)); a numerical solution 
of this equation shows that 1m(G) - -ngo and R.e(G)/Im(G) - lo*, we therefore neglect R~(G') (just as both in An- 
derson's solutionc") and in the case of potential scatter- 
ing by the impurity''0'), and then (G(E)) - -ingo. Thus 

From (5b) we obtain similarly 

The Green's functions (11) and (12) differ from the 
regular casec8' in that the level acquires a width r, s o  
that the quasiparticles (2) a re  attenuated and their spec- 
trum is of the form 

E* ( k )  =Ef  ( k )  *ir ( E F - o ) / v , ,  

FIG. 1. Density of states 
ai: low impurity concentra- 
tion; 1) c = O. 01; 2) c = O. 1 
for A=O.l W. 

where P ( k )  is defined in (2). On the edges of the gap 
between the subband E' and T the attenuation equals r 
and is independent of c, whereas the gap is E, - ~~~~c - r c  << r, so that attenuation leads to complete vanishing 
of the gap (see Fig. 1). For this reason, our previous 
analysis of this question, C1ll where we neglected the at- 
tenuation of the quasiparticles, is incorrect. 

Using expressions (11) and (12), we obtain the state 
density 

here 

( W + E ) [ ( E - o ) " + 2 ] - A 2 ( E - o )  + arctg 
A 2 r  

c r  A Y E  - a )  In [ ( W -  E )  ( E  - o)+  A 2 ] 2 + r Z ( W -  E)' 
t ~ g O { -  [ ( E - o ) ' + F 2 ] '  [ ( W + E ) ( E - a ) - Y 1 2 + I Y ( W + E ) '  

A' [ ( E - m ) 2 - r 2 ]  ( W - E ) [ ( E - o ) ' + r Z ] + A ' ( E - o )  + -. [arc. r [ ( E - u ) ~ + ~ ~ I ~  ~~r 
( W + E ) [ ( E - o ) 2 + r z ] - A 2 ( E - o )  + arctg , 

A'F 

A plot of g(E) is shown in Fig. 1. 

4. LOW HOLE DENSITY 

In the case 1 - c<< 1, it is more convenient to change 
to the hole representation with the aid of the projection 
operator hf = 1 - pf, and then c, = 1 - c << 1 and we can av- 
erage over the hole positions. In contrast to the pre- 
ceding section, the null functions are  here the Green's 
functions of the regular crystal with mixing. Indeed, 
Eqs. (5) can be rewritten in the form 

1 
G,,. ( E )  = 6,,G,O(E) - G:(E)  Do ( E )  Nz IA,lZn,h,e-'l(k-p'G me ( E l ,  

f P  

D,. ( E )  =D: ( E )  [L- - - (13) 
, 

- D ~ Q ( E )  +C IP lA,lznfh&.o(E) e-2flk-p)Dpkr ( E ) ,  

where 

E - o  ( E -  Ek)n 
e; ( E )  = (E - ) E - 1 - A D 1 l O ( E ) =  ( E  - g k )  ( E  - W )  - A~ 

are the Green's functions of the regular problem. 
These equations are  averaged in analogy with Eqs. (5), 
and a s  a result we obtain 

- ( E  - o ) 6 u .  
Gkhv = 
- ( E  - Ek) n6,. 

(14) 
Dm. ( E )  = - 

( E  - S r )  ( E  - o)  - A z ( l  - ch) + i r m  

In this case the gap in the spectrum is E, - ~ ~ ~ ~ ( 1 -  c,) 
- I' >> rc,, i. e. , much larger than the quasiparticle at- 
tenuation. 

From (14) we obtain the state density 
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-100 

FIG. 2. State density at low 
60 hole concentration: 1) c 

=0.001; 2) c=O.1 for A=0.1 
W. 

( w +  E ) [ ( E - u ) ' +  r 2 ] - ~ z [ ( E - ~ ) ( 1 - ~ h ) + r ' / ( E - 0 ) ]  + arctg 
rAZch 

[ ( E  - O )  ( E  + W )  - b2 (E)  1' + bi'(E) 
[ ( E  - o )  ( E  - W )  - b2 (E) ] '  + b,'(E) 

2 ( E -  o ) [ E + ( -  1 ) " W l -  b2 (E)  + V ( E )  C (- 1)"arctg 
, 3 = ,  

b t Z ( E )  1 1  

where 

r c h i l y E  - o )  
b iz  ( E )  = 

( E - o ) ' + I n .  

A plot of g(E) is shown in Fig. 2, from which it is 
seen that, in accordance with the g e n e r a  theorems on 
the spectrum of a disordered system, the gap gives 
way to a pseudogap, and a s  the hole density increases 
the number of states inside the gap increases. 

CONCLUSION 

The difference between the state densities in the single- 
impurity (c << 1) and almost-regular (1 - c << 1) states 
demonstrates once more the importance of the coherence 
factor in the investigation of impurity systems withc-d 
mixing 

The single-particle Green's functions obtained in this 
paper, besides providing information on the state den- 
sity, can be used to analyze the properties of spin 
glasses. Thus, for example, by the method of irreduc- 
ible Green's functionsc1s1 we can obtain from the corre- 
lation part of (TG,,& also the effective spin Hamiltoni- 
an, 1141 which in our case takes the form 

where, owing to c-d mixing, 8, is the effective-spin 
Hamiltonian whose magnitude within the framework of 
the considered model is Set, =S(1- (Xe3), and the ex- 
change-interaction integral is 

Expression (15) is a generalization of a number of par- 
ticular cases: in a regular metal, quasiparticles with 
spectrum (2) produce indirect exchange between the ef - 
fective spins, and the result is magnetic ordering; in 
the case of "nonfl~ctuat in~" spin, when the atomic level 
12) is absent o r  SZ >> p (s-d model), (15) goes over into 
the known Ruderman-Kittel integral. A more detailed 
investigation of the magnetic properties of the consid- 
ered model will be reported in another paper. 

The authors thank G. M. ~aslavskiT for useful dis- 
cussions of the results. 
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