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The cluster approximation, well known in phase-transition statistics, is used to investigate the relaxation 
properties of the Ising model. The basic properties of the dynamic generalization of the cluster model are 
illustrated by the example of a simple two-particle cluster. Expressions are obtained for the relaxation 
time T of the average spin <d) above and below the phase transition point T, for different Ising lattices. 
It is noted that the function T-'(E), where e = (T-T,)/T, is not linear. A comparison is made with 
numerical results for a plane square lattice. 

PACS numbers: 05.50. +q 

1. INTRODUCTION ment with computer calculations of the relaxation time 

The Ising model, which is a lattice of dipoles each of T of the order parameter, but will lead to a qualitatively 

which can assume only two positions, is a unique ex- new result as  compared with MFA, namely, a departure 
from linearitg of the function T"(&), where & = (T - T,)/ ample of a system exhibiting a nontrivial second-order 
Tc and Tc is the transition point. The basic properties phase transition and capable of exact solution in the two- of the dynamic generalization of the cluster methodwtll 

dimensional case. " This model i s  especially effective given in in the case of a Ising lamce. 
in the investigation of real systems such as  binary al- In Set. 3, we obtain expressions for the relaxation 
loys, ferroelectric and antiferroeledric materials, and time by analyzing different lattices in the two-particle 
certain ferromagnetic materials. The simplest method cluster approximation. 
for the theoretical description of such systems is the 
molecular field approximkion (MFA). Qi However, MFA 
is found to be unsatisfactory when the crystal contains 
strong short-period correlations. These correlations 
are taken into account in the cluster approximation 
(CA), C21 which gives good agreement with experiment in 
relation to the thermodynamics of transitions in different 
materials. c3'41 Although statistical studies of order- 
disorder-type transitions have led to a degree of under- 
standing of the microscopic picture, the nonequilibrium 
relaxation properties have not been extensively investi- 
gated. 

The simplest model describing the dynamic behavior 
of cooperative systems in the critical region is the so- 
called dynamic Ising model (DIM), proposed by Glau- 
ber. C51 It admits of an exact solution in zero magnetic 
field H in the one-dimensional case (d= I), since DIM 
with d = 1 is equivalent to the equilibrium MFA with d 
= 2. C61 

Studies of the nonequilibrium relaxation properties de- 
scribed by DIM began only recerttly. Most attention has 
been paid to problems such a s  the properties of the mod- 
el in the MFA approximation, m1 numerical calculations 
by the Monte Carlo method, D-lll high-temperature and 
(4 - d) expansions, a21131 possible generalizations of DIM 
with d=  1 to the case where H#O, u41 and so on. a5'171 

Attempts to take into account nearest-neighbor correla- 
tions were reduced to the combinatorial method, u83 
which is very laborious and difficult to generalize fur- 
ther. 

In this paper, we shall consider in detail the DIM SO- 

lution with d = l ,2 ,3 and the cluster approximation which, 
in the static case, is more accurate than MFA. This 
approach will enable us not only to improve the agree- 

2. DYNAMIC GENERALIZATION OF THE CLUSTER 
METHOD IN THE SING MODEL 

Consider a lattice (d= l,2,3) of N particles with spin 
of = o, = 1. If we introduce the distribution function 
flu,, . . . , ui, . . . , o,;>t), we can write down the equation 
of motion in the formc7' 

where w,(*o,) is the probability that the spin i will turn 
over from * o, to r o, , the other spins remaining fixed. 
In its physical properties, Eq. (1) is analogous to the 
usual Fokker-Planck equation for stochastic Markov 
processes. Ugl However, the transition probability ma- 
trix is no longer symmetric, in contrast to the latter 
processes. Owing to the interaction of the system 
with the thermostat introduced into itc5 (for example, 
vibrational degrees of freedom, and so on), the reori- 
entation of spins occurs with a change in the total en- 
ergy of the lattice and the probabilities of forward and 
reverse transitions are no longer equal. 

The principle of detailed balancingm1 shows that, in 
(11, 

where Po is the distribution function in the state of equi- 
librium, given by 

P,=Z-' exp (-p%), Z=Sp exp (-p%), p=1/T. (3) 
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I£ we write the energy of the spin system in the form 

where H is the magnetic field, we find from (2) and (3) 
that the transition probability wi(ui) is given by 

The quantity TO in (5) can be interpreted physically as 
the relaxation time associated with the interaction of the 
spin system with the thermostat. Clearly, TO is a very 
slow function of temperature, so that we shall hence- 
forth, assume that it is a constant and set it equal to 
unity for simplicity. We now irltroduce the average 

so that, using (I), (5), and (6), we obtain the following 
equation of motion: 

"(fiat)= - f, [(fi a3)-((flat)th(i%))]. (7) 
.-I ,-I 2-1 if, 

We must now consider this equation in the cluster ap- 
proximation. Let us take the simplest two-particle clus- 
ter with the ~amiltonian"~ 

where cp is the field due to the a - 1 external spins which, 
in equilibrium, is determined from the self-consistency 
conditiont21: the average spin calculated with the Hamil- 
tonian X2 is equal to the average spin determined with 
the molecular-field Hamiltonian 

Using (7)-(9), we can write the equations for the mean 
spin (u2) = gl(t) in the form 

-gr=(l-al)gl-a* 
(lea) 

-b-gl-fi (.cpS), (lob) 

where k= dg(t)/dt, ai are given by 

and m=l - l / n ,  y=tanh(&r). We note that (10) and (11) 
lead to the usual thermodynamic relationsc2' [K 
= exp(-2@), a! = 2/n] 

The zero index on g, and cp indicates the state of equi- 
librium. Equations (10) and (11) form a closed system 

defining the quantity gl(t). The solution is difficult for 
arbitrary n but, in the two-dimensional case, when n = 2, 
Eq. (10a) can be reduced to the form 

and, if we eliminate cp with the aid of (lob) from (13), we 
obtain 

This equation is identical with the result given by Glau- 
ber, i. e., a s  in the d =  1 statistics, 12' the cluster ap- 
proximation gives an exact result. It follows from (14) 
that, in the average- spin approximation, the relaxation 
time T is given byt5' 

Let us now consider the case of arbitrary n. We shall 
suppose that the deviations from the position of equilib- 
rium are small (v << 1): 

and taJlhEbcp(t)]- ~ v r p ( t ) .  If we linearize (lo), we obtain 
the following expressions (&I - cp): 

where a,, = tanh(mcpo). Eliminating cp from (17a) with 
the aid of (17b), and taking into account the self-consis- 
tency conditions (12), we obtain the equation analogous 
to (14) with the relaxation time T given by 

where, for simplicity, we have substituted 

Equation (18) is valid both above and below T,. Thus, 
for T > T,, where g: = cpO = 0, Eq. (18) simplifies and as- 
sumes the form 

To investigate the T < T, region, we must substitute in 
(18) the equilibrium values g!, found from the free en- 
ergy F with the Hamiltonian (8): 

where cpo is calculated from (18b). 
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FIG. 1. Reciprocal of relaxation time a s  a function of reduced 
temperature: 1-n = 4; 2 1 2  = 6; 3-n = 8; 4 1 2  = 12; 5-molecu- 
lar-field approximation; points correspond to a numerical 
result (n =4). 'a-131 

The expressions given by (18)-(20) solve the problem, 
since they give the relaxation time 7 in terms of the in- 
teraction constant J and the type of lattice n. 

3. CONSEQUENCES OF THE ABOVE RESULTS 

Equations (18)-(20) can be used to investigate the re- 
laxation time for different Ising lattices, and to compare 
these results with numerical computations. C8'1S' The 
dependence of 7-I on a is shown in Fig. 1 for the follow- 
ing Ising lattices: n = 4 (curve 1, square lattice), n = 6 
(curve 2, simple cubic lattice), n = 8 (curve 3, body- 
centered cubic lattice), and n = 12 (curve 4, body-cen- 
tered cubic lattice). For comparison, the figure also 
shows the MFA data (curve 5) and the numerical results 
reported by different  author^^^"^' for the n =  4 case. It 
is clear from the figure that the cluster approximation 
is in better agreement with the numerical results than 
the molecular-field approximation. Moreover, as  in 
statistics (see, for example, the specific heat datac2'), 
the cluster approximation provides a better description 
of the region above Tc than that below Tc. We note also 
that there is a deviation A from the linear law T-'(E) in 
this model, which is particularly appreciable for T < T,. 
Thus, for T < Tc (n = 4) and a - 0.07, this deviation is A - 2% and, for E - 0.14, the deviation is A -14%. For T 
> T,, these deviations are  much smaller and, for & - 0.14 
(n= 4), amount to only about 1%. This is easily under- 
stood if we write 

+ = A  (T) (T-T,) , (21) 

where, according to (18), the coefficient A is a function 
of temperature. Moreover, a s  l a 1 increases, this de- 
pendence becomes sharper. Although the above analysis 
is valid for values of a for which hg/g1 << 1 (16), one 
hopes that the proposed model provides a correct quali- 
tative description of the behavior of 7. It is, therefore, 
interesting to compare the experimental results for 
7-'(a) with the expressions given by (18)-(20). In many 
crystals, for example, NH4C1, DKDP, "11 and for 
some alums, an analogous deviation from linearity 

has beenobservedfor both T < T, and T > Tc, InMaSeD, ceel 
for example, the deviation for T > T,, E - 0.06 is A - 15%. 
It does not seem possible to describe this behavior of 7 

in the molecular-field approximation o r  the various"os- 
cillator " models. 

We conclude with a methodological remark in relation 
to the possibility of several relaxation times in a sys- 
tem. "I If we extend the cluster in the model (8) up to 
the k-particle system, the set  of closed equations given 
by (10a) will consist of k - 1 equations in the quantities 
(ul) (t), (ulu& (t), (q), . . . , (uk-l) (t), where each average has 
its own effective relaxation time 7,. The dispersion of 
permittivity can then be represented by 

where a, and 7, are  functions of J and T. The increase 
in the size of the cluster in the model described by (8) 
may lead not only to a slow increase in inaccuracy but, 
occasionally, even to its deterioration. " In some sys- 
tems, on the other hand, especially in real systems, an 
increase in size is necessary for the adequate descrip- 
tion of order phenomena. This analysis is, therefore, 
more conveniently carried out for particular crystals 
such a s  DKDP, NHJ, and so on, for which a model has 
been chosen and correctly reflects the thermodynamic 
properties. Moreover, the three-dimensional cluster 
will probably also increase the accuracy of the analysis 
in a similar way to what happens a s  a result of transi- 
tion from d =  2 to d = 3 statistics. Studies of this kind, 
based on the above methods, will be carried out in fu- 
ture. 

We thank V. G. Vaks and N. E. ~ e z n  for useful dis- 
cussions. 
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The stationary shape of an electron-hole drops (EHD) in a constant magnetic field is calculated in the 
hydrodynamic approximation with allowance for the recombination magnetization and the surface tension. 

PACS numbers: 71.35. +z 

It was previously shownu1 that in electron-hole drops 
(EHD) application of an external magnetic field should 
produce circular currents that lead to recombination 
magnetization of the drops. This phenomenon was used 
in a number of papersc24' to explain the magnetostric- 
tion of the EHD. It was assumed in these papers that the 
drops are ellipsoids of revolution. In the present paper 
the drop shape is determined by solving a differential 
equation obtained from the EHD equilibrium conditions. 

Consider an EHD in a magnetic field under conditions 
of stationary photoexcitation. The carrier recombina- 
tion in the drop leads to the appearance of electron and 
hole fluxes from the surface to the interior of the EHD. 
We assume that the carrier densities n vary little inside 
the drops. In this case the carrier fluxes are  given by 

where p(0) is the pressure on the z axis, c = a3u~I12/  
8 f f 8 ~  is a dimensionless parameter, f f  is the surface- 
tension coefficient, and a is the value of p on the EHD 
equator. 

At equilibrium, the pressure p at each point of the 
EHD drop should equal - 2 f f k  (k is the average curvature 
of the surface). For the curve z = af (u), rotationaround 
the z-axis of which describes the surface of the drop, 
this condition can be written in the form 

The solution of (5) with allowance for the boundary con- 
ditions f '(0) = 0 on the poles of the EHD and f (1) = 0 and 
f '(1) = - - on the equator, can be represented in the form 

div v=-lit. (1) 
K d t  

f ( u ' = j w l  1 

I 

Here Y is the velocity of the carrier flux and 7 is the ~ ( t )  =- p  ( a )  u  du. 
EHD lifetime. The solution of (I)  in a cylindrical co- at o 

ordinate frame (p, q, z I1 H) is 

BP (1-2B)z 
u ---, vz=--, v,=CI, c- (2) 

t 
1 

where B is a constant that specifies the distribution of 
the fluxes in the drop. 

The distribution of the pressure p in the EHD is de- 
scribed by the equationc5' I 

grad p= X HI /c. (3) 

Here j +AX H/c is the current density, u is the con- 
ductivity, and c is the speed of light. From (3), with 
account taken of (2), we obtain the following expression I 

for the pressure: FIG. 1. Shape of the intersection of the EHD with the plane 
4as P passing through the z axis, a s  calculated f rom formulas (6) for 

p=p(0)+au2,  u = - ,  
a (4) different values of E .  
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