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One-photon decay of two-hole states in atoms 
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The techniques of many-body theory are used to make calculations with Hartree-Fock wave functions of 
the probability of one-photon decay of two-hole states in the first nonvanishing approximation in the 
interaction of vacancies. Specific results are obtained for two 1s vacancies in neon, two 2 p  and 2s 
vacancies in doubly ionized argon, and two 4d vacancies in xenon. The results agree extremely well with 
recently obtained experimental data on neon and argon. An experimental study is proposed of one-photon 
decay in a process in which a two-hole state is formed as the result of an Auger process following the 
removal of an electron from an inner shell by a photon or fast electron. 

PACS numbers: 32.80.Hd 

1. There have recently appeared both experimen- 
talci-s~ and t h e o r e t i ~ a l ~ ~ ' ~ '  investigations of the mecha- 

nisms of decay of highly excited atomic states produced , 

by the removal of two electrons from an inner shell- 
two-hole states. These phenomena a r e  interesting be- 
cause their study can give additional information about 
the interaction between electrons in atoms; in the case 
of simultaneous decay of two vacancies this is the only 
information available. 

Two-hole states can decay either owing to the ordi- 
nary Auger effect, in which the two vacancies a r e  de- 
stroyed independently with the emission of two o r  more 
photons, o r  by a radiative process in which one vacancy 
decays via the Auger effect, and the other in a radiative 
transition. 

There is, however, also a different and extremely 
interesting possibility for the decay of a two-hole state, 
in which both vacancies a r e  simultaneously filled by 
electrons from the outer shells, and the energy released 

is carried away by a single electron o r  photon. In the 
case  of emission of an electron the process has received 
the name of the three-electron Auger effectc''; the other 
case, with a photon emitted, is called one-photon decay 
of a two-hole state. C2-61 Both processes a r e  possible 
only because of the existence of an interaction between 
electrons (or holes) in an atom, and consequently a r e  
essentially many-electron phenomena. Therefore in 
theoretical studies on the decay of two-hole states the 
interaction between vacancies must be taken into ac- 
count from the beginning. 

In the present paper we make an investigation of the 
one-photon decay of two-hole states in atoms by means 
of the techniques of the quantum theory of many- 
bodies. ['' The probabilities of one-photon decay a re  
calculated for two-hole states of several  atoms: ( 1 ~ ) ' ~  
in Ne, (2s)" and (2p)" in Ar++, and (4~f) '~ in Xe. A pre- 
liminary note on the theoretical interpretation and re- 
sults for this process has been published earlier.c61 
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2. In the case of radiative decay the initial and final 
states each have two vacancies, it, iz and ji, j,, respec- 
tively. The energy difference is  carried away by a 
photon with polarization e and wave vector x .  Since the 
atomic shells containing the vacancies in the initial and 
final states are  very far apart, perturbation theory in 
terms of the interaction between electrons can be used 
to calculate the probability. 

The probability is given by the expression 

a' dr((e)- '+7)=2nIMfqla8(Et-Eq+a) - 
(2nc) ' df2 do, 

where c is the speed of light and M is the amplitude for 
the process. Atomic units with R= m = c = 1 are used 
throughout. 

To determine the probability r((e)'2 - Y )  and to identify 
the transitions corresponding to the decay of the two- 
hole state, one must know how to calculate with suffi- 
cient accuracy not only the amplitude M,, of the process, 
but also the energy w of the emitted photon. 

In the one-particle Hartree-Fock approximation we 
can set w equal to the difference E,, + Ej2 - E,, - E,,, 
where E ,  and E ,  are the Hartree-Fock energies of the 
hole states i and j. However, the single-ionization po- 
tential is not equal to the Hartree-Fock energy E,,  but 
differs from it by the energy of the rearrangement that 
occurs in the atomic shell in the ionization process. 
When two electrons are removed from an atom the 
double-ionization energy differs from its Hartree-Fock 
value because of 

1) corrections owing to the energy of rearrangement 
of the atomic shells 

AE, = E:'+ E p P -  E ~ : ~  - EftHF ( 2 )  

(E;" is  the experimental value of the energy for remov- 
ing the electron i); 

2) corrections caused by the direct. interaction of the 

I 
FIG. 1. 

FIG. 2. 

holes ii and i2: 

(V is the potential of the Coulomb interaction between 
electrons). The order of magnitude of the quantity AE, 
can be estimated as  follows: 

(7- is the average distance between shells, n is the prin- 
cipal quantum number i i  (or i,), and Z is  the effective 
charge acting on the electrons of these shells), 

3) corrections associated with virtual excitation of 
other hole states. For inner shells it can be ex- 
pressedts1 in terms of the static monopole polarizabili- 
ties a:'' of the atomic shells outside i: 

where i G F indicates summation over occupied states, 
and p >F that over empty states. 

In the language of Feynman diagrams the corrections 
to the double-ionization potential of an atom are deter- 
mined by the matrix elements represented in Fig. 1, 
where a circle denotes the real component of the proper- 
energy part of the one-particle Green's function, a 
wavy line denotes the Coulomb interaction, and lines 
with arrows to right or left respectively denote particle 
or hole states. The values of the various corrections 
will be derived further on. 

In first order in the interelectronic interaction the 
amplitude Mj, for one-photon decay of a two-hole state 
is determined by the diagrams shown in Fig. 2 .  Be- 
sides 'the diagrams shown in Fig. 2  we must consider 
the corresponding exchange diagrams. Using the rules 
of graphic correspondence, we get the expression for 
the amplitude 
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The expressions MI-M4 correspond to the diagrams Fig. 
2 a-d and can be written 

<ki,IUljJ,) (i,l (de) lk) 
M'=& E . + E , , - E , , - E ,  ' (8) 

In these equations the summation over k is taken over 
both hole states and particle states, since the emission 
of the photon can occur either before or  after the inter- 
action between the vacancies; d is the dipole moment 
operator for the electron; and 

is the difference of the direct and exchange Coulomb 
matrix elements. 

Let us consider some properties of the amplitude for 
the process. In diagrams c and d the energy denomina- 
tor is equal to zero for a certain value 

of the energy of the virtual state of the electron. In this 
case the virtual state can become a real state and the 
one-photon decay process can occur in two stages: f i rs t  
the Auger decay of one vacancy, and then the recom- 
bination of the other one. If we neglect the real part of 
the amplitude M,, the contribution of this so r t  of mech- 
anism to the total width r((e)',- y) can be expressed in 
terms of the partial width of the corresponding Auger 
transition i, - ji j2k and the partial cross  section uizk  
for the photoionization: 

There is an interesting situation when the condition 

is satisfied; here E, is the energy of some internal 
vacancy of the atom in question. In this case the main 
contribution comes from diagrams a and b in Fig. 2, 
since they can have a small energy denominator. Since 
the states (il)-'(i2)-i and ( j,)-'(k)" have nearly equal en- 
ergies, a mixing of these configurations ar ises  if for ac- 
cidental reasons the matrix element (j,kI VI i1i2) is not 
small. In the limit of strong configuration mixing, a 
unique complex is formed which decays just a s  fast, 
actually, a s  a one-hole state. In this case the one-pho- 
ton decay of the two vacancies is a process of resonance 
type, in the sense that its'probability is 1/c2, where c 
= E, + E,, - Eil - E,, appears a s  the resonance defect. 
If c is very small, i t  is necessary to take into account 
the width of the "k"th level. The process can be re- 
garded a s  occurring in two stages: transition of the 
vacancies il, i2 into j,, k, and subsequent radiative decay 

of the "k9'th hole. When the width of the hole level is 
taken into account, the contribution of this mechanism 
to the total probability of one-photon decay of the two- 
hole state is given by the following expression: 

where W, is the radiation width of the "k"th vacancy. 

We now obtain the expression for the total probability 
I'((e)-2 - y )  by summing over the polarizations and inte- 
grating over the angles of emission of the photon, and 
also averaging and summing over the orbital and spin 
magnetic quantum numbers. We find from Eq. (1) 

where a! is the fine-structure constant, and the square 
of the amplitude is given by the expression 

The diagonal terms I Mil are  of the form 

the expressions for I Mz 1 and I M41 a r e  found from 
Eqs. (15) and (16) by the exchanges il=i2, jt=jz, and 
Ria= Rib (i = 1, 2,3,4). We do not present here the ex- 
pressions for the nondiagonal matrix elements, which 
a r e  much more cumbersome. 

The quantities R,, and Rib  in Eqs. (15) and (16) a re  
determined from the direct and exchange components of 
the expressions (5)-(8), where we have only to replace 
the matrix elements of the Coulomb and dipole opera- 
tors by their reduced matrix elements ((iliz 11 vt 11 j 1  j2) 
and (i II d ll k) defined in the usual way. C9*101 

3. The calculations have been carried out for two 1s 
vacancies in Ne and for two 2s and 2p holes in Ar". 
This choice of the f i rs t  two atoms is due to the fact that 
experimental work has recently been reported on the 
one-photon decay of the two-hole states ( 1 ~ ) ' ~  in ~ e ' " ]  
and ( 2 ~ ) ~ ~  in Ar" . We also studied the decay of the 
rearrangement of the shells and for direct and virtual 
interaction between the vacancies, according to Eqs. 
(2)-(4). As an example we give the values of AE, (i 
= 1,2,3) for the transition ( 2 ~ ) ~ ' -  (3~)"(3p)-' in Ar": 

AE,=lO.S eV, AE,=6O eV, AE,=9.3 eV. 

It can be seen that the corrections amount to about 16 
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TABLE I. 

*Al", is equal to zero, since the Coster-Kronig transition (2s)-' 
+ (3s)-'(3p)-' is energy-forbidden. 

percent of the total energy. 

The energies of the transitions a r e  given in Table I. 
The summation over intermediate states included inte- 
gration over the continuous spectrum and was done nu- 
merically. The infinite upper limit was replaced with 
a finite one. Its value was determined by the behavior 
of the product of the matrix elements of the Coulomb and 
dipole operators. Where the energy denominator van- 
ishes in diagrams c and d the numerical integration was 
accomplished with procedures suggested by Bloch. 
In the sums over particle states the part from discrete 
levels is rather large. Ordinarily the contributions 
from the two o r  three lowest states were included, since 
the contribution of the discrete levels falls off rapidly 
with increasing quantum number. All of the necessary 
wave functions and matrix elements were computed with 
special programs. The computing was done with a 
B ~ S M - 6  computer. 

4. The results obtained for the widths of one-photon 
decays of two-hole states a re  shown in the table. In the 
cases considered no state (4d)'2 in Xe, in which the en- 
ergy of the two 4d vacancies is rather close to that of 
the deeper shell 4p and the energy denominator becomes 
small in diagrams a and b of Fig. 2. Owing to this the 
one-photon decay of the (4d)'2 states may be a process 
of resonance type. 

The calculations were made with the Hartree-Fock 
functions for the hole and electron states. The wave 
functions for the hole states were found by solving a sys- 
tem of coupled Hartree-Fock equations, except in the 
case of the decay of two equivalent s-holes, where it 
turned out to be impossible to determine the wave func- 
tion simultaneously with those of the other hole states, 
since the electrons of this subshell a re  lacking from the 
atom core. In this case the wave function of the empty 
s-shell was determined a s  an excited function in the 
frozen field of the other hole states. The wave functions 
of the electronic states were determined in the field of 
a core in which the two electrons it and i2 a re  absent. 

For the decay of two 2p or  4d vacancies we used Har- 
tree-Fock functions averaged over the terms of the 
given configuration. C121 In the case of the decay of an s 
subshell the other shells a re  closed and there is no need 
to average over terms. The calculation of the energy 
of the photon emitted included the corrections for par- 
ticular decay mechanism was distinguished a s  making a 
contribution much larger than the others. Therefore it 
is necessary to consider all of the various mechanisms 
represented by the diagrams of Fig. 2. The nondiago- 

nal terms Mi,  make a very important contribution to 
I MI ', and neglecting them would lead to a large error .  
This means that the influence on each other of the vari- 
ous decay channels is rather large, and the probability 
of one-photon decay cannot be regarded a s  a simple 
sum of contributions from the various decay mecha- 
nisms, s o  that we could write 

It is worth while to compare our values of the widths 
of one-photon decays of two vacancies with twice the 
widths of one-hole states-the radiative width W and the 
Auger width rA -which appear when the two vacancies 
decay independently. Accordingly we calculated these 
quantities by the formulas 

in which the energy is measured in Rydbergs. The val- 
ues s o  found for the ratios r((e)-2- y)/2rA and r((e)-2 - y)/2W a r e  shown in the table. We note that there i s  a 
rather large spread (from thousandths to tenths) in the 
ratios I'((e)-2- y ) / 2 ~ ,  depending on the atom and the 
initial vacancies i1 and i2. 

It can be seen from the table that Eq. (10) gives not 
more than 10 percent of the total width, except in the 
case of the transition ( 2 ~ ) - ~ -  (3s)-'(3p)-l in Ax-'+. Con- 
sequently, one-photon decay of two vacancies does not 
go via two successive steps, Auger effect and recom- 
bination, but is a single process going through virtual 
states. In the study of the decay of two 4d vacancies in 
Xe it is found that the contribution of the intermediate 
5p hole state is of the same order a s  that of the 4p state, 
despite the fact that 2E4,- E4, + E,,. The reason is that 
the matrix element (5s I I  d 11 5p) is much larger than 
(5s II d 11 4p) (by a factor 8), while the Coulomb matrix- 
elements (4d4d I I  V1 1 1 4 ~ 5 ~ )  and (4d4d II V1 II 5p5p) a re  
roughly equal. This means that the one-photon decay of 
the (4d)-2 state in Xe is of nonresonance nature. How- 
ever, in the production of two vacancies in an inner sub- 
shell by the collision of two heavy particles there is a 
possibility that the energy levels will be shifted for par- 
ticular values of the collision parameters2' s o  a s  to 
make 2E4,=E,, +E5,. In such a case one should expect 
a sharp increase of the probability of one-photon decay 
of the ( 4 ~ i ) ' ~  two-hole state. 

To make possible a direct comparison with experi- 
ment, the calculations for Ari+ were carried out for  
a configuration in which two further electrons were re- 
moved from the outer 3p subshell. We studied the de- 
cays of the ( 2 ~ ) ' ~  and states. It can be seen from 
the table that the width of the one-photon decay (2s)" - (2p)''(3s)-' is very large in comparison with the widths 
of the decays ( 2 ~ ) - ~ -  (3s)"(3p)-' and ( 2 ~ ) ' ~ -  (3s)"(3p)". 
In the case of the decay of two 2p vacancies the calcu- 
lated value of the ratio r((e)'2- y)/2rA is 1.8 

228 Sov. Phys. JETP 46(2), Aug. 1977 M. Ya. Amus'ya and I. S. Li 228 



whereas the experimental value lies in the range (1.7- 
4.3) 10'~. The spread of the experimental data is ex- 
plained by the uncertainty about the charge of the ions 
produced in collisions.c21 In the neon atom, our value for 
the width of the one-photon decay of the two-hole state 
( l ~ ) - ~  is 13.14 eV. It agrees well with the experi- 
mental value fromt1'l, which is 14 lom6 eV, and differs 
widely from the value found incT1, 32 * loq6 eV. This can 
be explained by the fact that the many-electron nature of 
the one-photon decay process was not taken into account 
in[ TI 

On the basis of these data we can conclude that the 
mechanism that we have assumed satisfactorily de- 
scribes the phenomenon of one-photon decay of two-hole 
states. 

In the current e ~ ~ e r i r n e n t s ~ ~ ' ~ '  two-hole states a re  
formed a s  the result of collisions between two heavy 
particles. There can be electrons knocked out from 
outer shells, a s  in the case of Ar'+, and this makes 
comparison with theoretical calculations somewhat dif- 
ficult. We propose an experiment in which the two-hole 
state is formed not in the collision of heavy particles, 
but a s  a consequence of the production of a deep vacancy 
by photoionization of inelastic scattering of fast elec- 
trons. The one-hole state so  produced decays by an 
Auger effect, forming two vacancies in a different sub- 
shell. The process is quite feasible for observation, 
since the cross  section of photoionization of the 1s shell 
in Ar, for example, is lo"$ cm2, the Auger width of the 
1s  vacancy i s  0.6  eV, and the partial width of the Auger 
process is about 90 percent. 

In conclusion the writers express their thanks to Yu. 
S. Gordeev and A. N. Zinov'ev for helpful discussions, 
and to V. K. Ivanov and A. N. Cherepkov for help in 
obtaining the results. 
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