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A parametric equation of state, valid both near a second-order phase transition and at the tricritical point, 
is obtained on the basis of the renormalization-group method. The obtained equation of state describes, in 
particular, crossover phenomena that occur in the system as an isolated transition point is approached. 
The smgularities of various thermodynamic quantities are calculated at the transcritical point. It is shown 
(with the heat capacity as an example) that these singularities can be different at T> T, and T< T,(T, is 
the transition point.) 

PACS numbers: 05.70.G. 05.70.Jk 

1. The Landau theory of phase transitionsc" has a 
high degree of universality, allowing us, at various val- 
ues of i ts  parameters, to describe both first  order and 
second order phase transitions. Modern representa- 
tionsCel connect the second order phase transition (in 
contrast with first  order) with the appearance in the sys- 
tem of fluctuations of certain thermodynamic quantities, 
which increase a s  the critical point is approached. How- 
ever, it turns out that in many cases, near first  order 
transition points, explicit signs of strongly developed 
fluctuations a re  observed, and manifest themselves, 
in particular, in the anomalous increase in the specific 
heat, susceptibility and so on, in the vicinity of these 
points. It can therefore be thought that there exists a 
rather wide class of transitions of f i rs t  order (with a 
significant heat of transition), similar in their essential 
features at the ordinary critical points and admitting of 
a common description with them, but on the base of fluc- 
tuation theory. 

In this connection, there is great interest in the study 
of the Landau critical points (the tricritical points), a t  
which the curve of transitions of second order undergoes 
a transition into the curve of transitions of first  order. 

of higher order from the critical points is discussed in 
the case of multi-component mixtures. 

2. A s  has been shown in Ref. 6, the effective Hamil- 
tonian of the two-component system near the X line takes 
the following form at a fixed value of the chemical po- 
tential p of the impurity: 

Here r (p)  = [T  - T,(p)]/T,(p) is the dimensionless de- 
parture of the temperature from the critical T,(p); u(p) 
is the effective bare constant of the quaternary interac- 
tion, which changes its sign at  some value p = pt, which 
also corresponds to the tricritical point; h is the field 
thermodynamically conjugate to the order parameter 
(which orders the field). In the case of a 1 transition in 
the He3-He4 system, the atoms of ~ e '  play the role of 
an equilibrium impurity; the field h in this system does 
not have a direct physical meaning. 

It is known that the fixed point of a renormalization group We transform in (1) to the new variable: 
corresponding to the ordinary critical point is unstable 
if the constant of the quaternary interaction u in the q ( k )  =q(k)+ao6(k). 

Hamiltonian of the many-body system becomes lessthan The effective Hamiltonian in this case takes the form 
zero. The vanishing of this constant leads to the ap- 
pearance of the tricritical point. Just such a situation 
occurs in the He3-He4 solution. r4'5' = ~ [ ( + a ~ + o +  " ) Iq (k ) i2  

We have previouslyC61 proposed a model with two order 
parameters cpl and cp,, which describes the phase tran- +- 3! u a Q + ~ 0 2 ) f i q ( k J 6 ( ~ k . )  6 

sitions in this system. In the present work, we have 3-1 I-L 

constructed a phase diagram of the mixture He3-He4 
within the framework of the proposed model. The pos- +- 4 !  ( u+-ao" ; ) h 1 ( k t ) 6  (24) 
sibility is shown of a unified (universal) description of ,-I 1-1 

this system in the entire region, including the tricritical 
point and the region of first  order transitions. An equa- T t a o f i n i x , ) 6  = I  ( i k i )  ,-I + ; f i q w . ) 6 ( i k 5 ) ]  ,-.I I-, 
tion is constructed of the state of the He3-He4 solution, 
which, in particular, describes the transition from crit- - ( h-I a. - L o o s  3! - 4 a! aQs) q (k-0) +H (ao). 

ical to tricritical behavior as the tricritical point is 
approached. A comparison of the results with experi- We choose uo so  that the cubic term in (2) vanishes. As 
ment is carried out. The difference in the criticalpoints a result, the Hamiltonian (2) takes a form that is iso- 
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morphic to the ~amiltonian of the system near the sec- 
ond-order transition point. The lines of the second or- 
der transitions are  determined from the equations 

At u > 0, we obtain the X line: 

The equation of state is obtained from the conditionCs' 

At u< 0, the solutions of the system (3) describe two 
second-order transition lines: 

Averaging in (9) i s  carried out over the distribution 
function with the Hamiltonian (7). Expanding (9) in a 
series in AH and carrying out partial summation, we 
obtain At the point u = 0, thus, three lines of second-order 

phase transition converge. Near these lines, the free 
energy of the system is of the form 

The critical exponents @,, 4, y, in Eq. (6) characterize 
the behavior of the specific heat, the co-existence curve 
and the susceptibility near second-order transition 
points. 

Here the lines with a point at the end denote q,,, lines 
without the point denote the bare Green's function; G(k) 
= [?(l.r) + k2]". The sixfold vertices entering into (10) 
are  equal to 5 = 

It is seen from the expression (6) that in the plane h 
= 0, there also exists a first order transition line, de- 
termined by the condition he,, = 0. 

We have considered the "symmetric" case, when 
there is the symmetry ql - - q1 relative to one of the 
order parameters. It can be shown that there is no such 
symmetry. Such a situation i s  realized, for example, 
in multi-component mixtures. Here, together with the 
individual lines of critical points, there will be a single 
critical surface, bounded by the lines of final critical 
points. The point of intersection of the lines of final 
critical points is a critical point of higher order. ''I 

This is a single isolated point on the critical surface. 
The basic differences of this point from the symmetric 
tricritical point considered above are  the following: 
there are no three separate lines of critical points, it 
is impossible to separate the critical and noncritical 
order parameters, i. e., the singularities of all the cor- 
responding thermodynamic quantities relating to the 
different order parameters are  the same. 

The four vertices in Eq. (10) turn out to be of two 
types u and u': 

while the bare fourfold vertex is determined by the 
combination 

where B is the part of the integral Iddk~(k)  that is in- 
dependent of the closeness to the critical point. The 
first equation (12) determines the total fourfold vertex. 
Far from the tricritical point, the presence of vertices 
of the two types is unimportant, since the vertex de- 
termined by the equation similar to the second equation 
of (12), is eliminated by the elementary  substitution^^ 
=u&. Near the tricritical point, such a substitution is 
inconvenient, since u vanishes. We therefore transform 
to the equation of state in the variables X, qO. We add 
to the relations (10)-(12) the equation for the suscepti- 
bility X, which is found by direct differentiation of Eq. 
(10) with respect to qO: 

3. We now find the singularities of behavior of the 
thermodynamic quantities near the tricritical point. 
For this purpose, as  will be shown below, it is conve- 
nient to make use of an equation of state in parametric 
form, proposed by Migdal. We separate in the Ham- 
iltonian (1) those terms corresponding to the average 
value of the order parameter = cp(k = 0). Then the 
Hamiltonian takes the form 

(7 

where 
We have written down only the most characteristic 
graphs in first and second order in the constants of four 
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and six interactions. The first three graphs are  ob- 
tained upon differentiation of the corresponding terms 
of Eq. (10) with respect to cp,, connected with external 
ends, while the last graph is obtained by differentiation 
of the internal G functions with respect to Po. Elimi- 
nating the quantity 3 p )  from Eqs. (10) and (14), we ob- 
tain the equation of state h = hk, qo), in which only the 
complete fourfold and sixfold vertices appear: 

Equation (15) is valid both near the critical point and 
the tricritical point. The quantities E and 5 change upon 
approach to the transition point, each tending to its 
limiting value. At small but non-vanishing values of the 
bare four vertex, Eqs. ( l l ) ,  (12) and (15) describe the 
transition from the tricritical to the critical point (cross- 
over). As is seen from ( l l ) ,  the terms which are  pro- 
portional to the quantity v, reduce in this case to ac- 
count of higher orders in the constant of four interac- 
tion. 

To find the equation of state in explicit form, it i s  
necessary to find the functions 2 and 5 that enter into 
(15), i. e., to sum the series (11) and (12). For this 
purpose, the expansion is somewhat inconvenient, since 
it i s  connected with the expansion in a series in the small 
departure of the dimensionality of the space d from a 
dimensionality for which the fluctuations are Gaussian. 
In our case, there are  two fixed points, one of which is 
Gaussian at d = 4 (the critical point), and the other at 
d =  3 (tricritical point). We make use therefore of the 
method suggested by S. L. Ginzburg. clol This method 
allows us to calculate the critical exponents directly in 
three-dimensional space. 

We emphasize that all the interior G functions in Eqs. 
(11) and (12) can be assumed to be renormalized and 
equal to G(k) = (# + r:)", where r, is the correlation 
radius. Differentiating Eq. (12) with respect to r: for 
example, we obtain 

The wavy line in (12') denotes differentiation of the 
Green's function with respect to ri2. It can be shown by 
direct summation that the complete four and six vertices 
enter into the right side of (12'). The resultant equa- 
tion represents the Ward identity for the fourfold ver- 
tex. 

In obtaining the first equation (12), we have neglected 
the index q (the critical exponent which characterizes 
the departure of the correlation function from the Or- 
stein-Zernike function). We have, within the frame- 
work of this approximation: 

(where A is a constant). The relation (16) means that 
the values of the ratio does not change (with accu- 
racy to within the index q)  in the transition from the 
tricritical to the critical region. This allows us below 

to simplify the equation of state (15) by eliminating the 
strong dependence on the susceptibility in it. It is es- 
sential that this dependence be the same for both the 
tricritical and the critical regions. 

In analytic notation, Eq. (12') takes the following 
form in principal order in ii and A 

In complete analogy, by differentiating (11) with respect 
to r:, we obtain an equation for the swold  vertex B: 

In Eqs. (17), (18), the coefficients a, and b, depend 
on the number of components n of the order parameter 
cp and the dimensionality of the space d. In particular, 
for the case d= 3, these coefficients are  equal to 

The relations (15, (17) and (18) completely specify 
the equation of state of the system, both near the criti- 
cal and near the tricritical points. The tricritical point 
is obtained in the case in which the bare fourfold verte 
(13) vanishes. By virtue of the relation (16), the ver- 
tices ii and t, can be regarded as  functions that depend 
only on x (which a re  obtained simply by the substitution 
r2 - x-l). 

Equations (17) and (18) represent the set of nonlinear 
differential equations relative to il and 5, the solutionof 
which is very difficult in general form. Putting the 
functions ii(x) and ?J&) in (17) and (18) in the form 

we obtain 

The functions p) and h(g, p) in (20) are  equal to 
the following: 

The set of equations (20) is analogous to the equations 
of the renormalization group for complete fourfold and 
sixfold vertices. The vanishing of the functions h ( g ,  @) 
and h (g ,  p) determines the fixed points of the initial 
Hamiltonian. Solving the equations & = = 0, we find 
the fixed points - 

1) g.=8,=0, (22) 

The first of these equations corresponds to the tricriti- 
cal and the second, to the critical point. 
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It is not difficult to see that the solution (22) is stable 
only in the region g<<p. Neglecting all terms containing 
g in this region in Eqs. (21), we obtain 

where m, is the first root of the equation 

In the tricritical region, neglecting the term in (15) 
that is proportional to m3 and replacing b(x) by the ex- 
pression (24), we find 

In the case gzp, the solution (23) turns out to be 
stable. We emphasize that PC in this case (and, conse- 
quently $ also) is of the order of c2 (in the case d- 3). 
In other words, the term proportional to rpi in Eq. (15), 
appears only in second order in C, which agrees with 
the result obtained earlier by Avdeeva.'"' 

We make the change of variable 

4. We return to the equation of state (15). We im- 
mediately consider the case d = 3. Substituting E(x) in 
the form (19) in Eq. (15), and taking (16) into account, 
we obtain 

Then the expressions (26), (25') and (27) take the form 

% - l a x  = Q1 ( 0 )  -1 
ae ( 8 )  -* / ,e - l / ,  ~ n - I  %[a, ( e )  -el ' 

where @(O) = O - 405/5! bl. Equation (31) differs from the 
corresponding equation of the work of ~ i ~ d a l ' ~ '  by the 
term proportional to ln-5 in the denominator of theright 
side. 

The new variable 

is introduced in Eq. (25), and g(x) and % ( X )  are  the solu- 
tions of Eqs. (20). The expression (25) is entirely anal- 
ogous to the parametric equation of state proposed by 
Migdal, with only the difference that the coefficients 
in (26) are  singular functions of X. We emphasize that 
(25) is valid both near the critical and near the tricriti- 
cal points. 

Introducing the notation 

OoL=4! b , ,  

it is not difficult to find the solution of Eq. (31): 

The transition phenomena are determined by solutions 
of Eqs. (20) for g(x) and 6 ( ~ ) ,  in contrast with the work 
of Riedel and Wegner, where these phenomena were 
studied on the basis of phenomenological interpolation 
equations. The susceptibility in (25) must be regarded 
a s  a function of the parameter m. Generally speaking, 
this function can be found directly from the expression 
for the susceptibility (14). However, it i s  simpler for 
us to do it by starting out from Eqs. (25) and (26). Ac- 
tually, substituting Eqs. (25) and (26) in the determina- 
tion of the susceptibility x"= 8h/8po, we find: 

where yo= y (8 = 0). In the last equation of the expression 
(32), we used the expansion of the incomplete gamma 
function in y-i = ln-'X << 1, which is always valid close to 
the phase transition points. 

Returning again to the susceptibility, we find, by tak- 
ing into account the smallness of the parameter n: 

where Y =  (T - T,)/T, is the departure from the tricriti- 
cal temperature, X(% 0) = b/r, b is a constant. This 
equation determines the behavior of the susceptibility 
near the tricritical point in the nonzero ordering field. 

We proceed to the calculation of the singular part of 
the free energy. We write down the free energy F in 
the form 

hh 

F= j cpa dh+F (ha, T) . (34) 
h 

The function F(h,, T) does not have a singularity as r 
-0. The singular part of the free energy F, is deter- 
mined by the value of the integral in (34) at the lower 
iimit. The free energy then is of the form 

In Eq. (27), the derivative of tihe susceptibility with re-  
spect to the variable m is denoted by x'. 

In the asymptotic critical region, we must replacethe 
quantities g and 6 by their values at the critical fixed 
point, g, and 5,. For the critical exponent of the sus- 
ceptibility y,, we obtain the following expression in the 
usual f as hioncs1: 
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- 
Substituting the found solution (32) in place of B(y) and 
changing over under the integral sign to the variable 

we obtain 

Using the smallness of U, we write 

Since the basic part of the free energy F, is determined 
by the value of the integral in (36) at the lower limit, we 
can replace the upper limit by zero. Here F, is ex- 
pressed in terms of the hypergeometric function: 

We investigate in detail the case of a zero ordering 
field. At Y > 0, i. e., above the tricritical point, h = 0 
corresponds to z = 1. The principal part of the free en- 
ergy is equal to 

At r <  0, i. e., below the tricritical point, z = - and F, 
is equal to 

where 

We now find the principal part of the specific heat C, 
of the system HeS-He4 at constant chemical potential: 

As a result, we get 

Thus, there are logarithmic corrections to the specif- 
ic heat both above and below the tricritical point, and 
they are  different: at r>  0, the singularity is weaker 
than square root, while at Y <  0, it is stronger. 

The expressions (41) and (42) differ both from the re- 
sults of Ref. 13, in which the logarithmic corrections 

appear only for an interaction constant that differsfrom 
zero, and from the results of Ref. 14, in which the log- 
arithmic corrections to the specific heat at r >  0 are 
lacking. 

We note that, without account of the logarithmic terms 
in (29), and (30) (which correspond to the approximation 
U =  0 in Eq. (36)), the principal part of the specific heat 
vanishes above the transition point. This result agrees 
with the result of the self-consistent field theory. 

The ratio of the coefficients at the singularities of the 
specific heat below and above the tricritical point is uni- 
versal and is equal to 6 / x r  = 3.56. It can be shown 
that the singularity of the quantity 8x/8p (x i s  the Hes 
concentration) in the HeS-He4 mixture has the same 
form as  does the singularity of the specific heat. Thanks 
to the existence of a non-vanishing principal part of 8x1 
8p  above T,, the line of phase transitions T,(x) has a 
node a t  the tricritical point, in correspondence to the 
experimental data. 

The experimental values of the tricritical indices 
agree with the theoretical; however, the accuracy of the 
experiments is insufficient for calculation of the loga- 
rithmic corrections to the behavior of the thermodynam- 
ic quantities. 'lB1 Comparison of theory with experiment 
is made more difficult by one fact. It is shown that the 
size of the tricritical region is quite insignificant on the 
side of the ordered phase in the Hes-He4 mixture. 
This does not allow us to determine the coefficients in 
singularities at T < T,. 

In conclusion, the authors thank M. A. Anisimov, A. 
T. Berestov and A. A. Migdal for useful discussions. 
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