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Finite amplitude Langmuir oscillations in the plasma 
resonance region 
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We consider, in the multi-fluid hydrodynamical approximation, induced Langmuir oscillations of an 
inhomogeneous plane plasma layer in an external harmonic hf field. We study the limitation of the electric 
field amplitude near the plasma resonance point as the result of a linear transformation into plasma waves, 
the self-intersection of electron trajectories, the anharmonicity of the Langmuir oscillations, and the non- 
stationarity of the plasma for various density profiles. We study numerically the generation of non-linear 
plasma waves and the acceleration of particles when resonance break down takes place which leads to an 
effective dissipation of the energy of the oscillations in the resonance region. We analyze qualitatively the 
role of the ion motion which is the result of striction forces and we indicate conditions under which 
modulational, parametric, and other instabilities which are connected with ion motion turn out to be 
unimportant. 

PACS numbers: 52.35.M~ 

1. The amplification of a n  hf field n e a r  the  p lasma 
resonance point is of g r e a t  in te res t  in connection with 
the  problem of the  anomalous absorption of electromag- 
netic waves in a non-uniform p lasma and the  generation 
of accelerated The magnitude of the  field 
a t  the resonance is determined by collisions, the l inear  
t ransformation into p lasma waves, and in s t rong  f ie lds  
by the  electron non-linearity and the change in the plas-  
m a  density under  the  influence of s t r i c t ion   force^.'^'"' 

In the presen t  paper  we  consider  the  establ ishment  of 
t h e  field in the p lasma resonance region under  conditions 

where  the modulational, pa ramet r ic ,  and other  instabili- 
ties, connected with ion motion in the self-consistent 
field, t u r n  out to be unimportant (see inequalities (68), 
(70)). 

We consider  a plane layer  of p lasma with ion density 
n, which is non-uniform in x. The p lasma is in a uni- 
f o r m  external  electric field which depends on the t ime  
as E = E, sinwt and is para l le l  to  the  inhomogeneity g r a -  
dient.  We choose the origin x =  0 at the p lasma reso-  
nance point, i. e., w= w , ( ~ =  0). We denote by s the 
ra t io  of the amplitude of the acting field to the maximum 
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value of the field in the resonance, i. e . ,  s is equal to 
the reciprocal of the magnitude of the amplification: 

We shall describe the phenomena at plasma resonance 
in the hydrodynamic approximation, neglecting colli- 
sions: 

av, au, e, - + u, - = - (E+ Eo sin o t )  
at a x  m, 

Here v i a  = Tdm,; na(x, 0) and Tar a re  the initial density 
and temperature of particles of kind a ( a  = i, e, . . . ). 
The rest  of the notation is the normally used one. 

When considering electron non-linearities in a cold 
plasma it i s  convenient to change in Eqs. (2) to (4) from 
the Euler variables x, t to the Lagrangian coordinates 
xu, t. The density of particles of kind a is equal to 

The function nao(xa) determines the connection between 
the Lagrangian and Euler variables. If we take nao(xa) 
=nu (xu, 0) we can determine the connection between x 
and x u  a s  follows: 

where x u  is the initial position and oa(xa,  t )  the dis- 
placement of an element of fluid of kind a ;  na(xa, t) 
= nao(xa)/ I 1 + a; (xu, t) I . We shall denote time deriva- 
tives by a dot and coordinate derivatives by a prime. 

It follows from Eqs. (2), (4) that 

The summation is over kinds of particles. The sub- 
script xu (or x,) means that the derivative is taken for 
constant values of xu (or x,). The values of the func- 
tions in (7) a re  evaluated for the same Euler coordinate, 
determined by Eq. (6), which we rewrite in the form of 
an equation for x,: 

x,=x,+o,(x,, t )  -o,(x, .  t ) .  (8 

We differentiate it with respect to time for constant xu.  
We find that 

Substituting this expression into (7) and using Eq. (5) 
we find the electric field: 

It follows from (6) and (8) that ~ ~ ( 0 )  =xu .  The equations 
of motion become 

xs(t) in Eqs. (lo), (11) is the solution of Eq. (8) for 
given xu. 

It i s  convenient when expanding (11) in powers of the 
non-linearity to introduce a function [,, which i s  equal 
to the difference of the Euler coordinates of elements 
of fluid of kinds a and 0 which have the same Lagrangian 
coordinates xu = xs = xo: 

One can write the electric field as a power series in 
508: 

where 

For  an electron-ion plasma the electron oscillations 
a re  in zeroth approximation considered on the back- 
ground of a given ion motion (in particular, of fixed 
ions). As the expression for the electric field acting 
on the electrons does not contain the derivatives [:,, 
the electron equations of motion will in a cold plasma 
when [ / L  << 1 be weakly non-linear up to the moment 
when the electron trajectories intersect themselves, 
i. e. , when the Jacobian I &/&, I = I 1 + a: I vanishes, 
after which these equations a re  inapplicable. 

2. We consider the plasma resonance on the back- 
ground of fixed ions in the linear approximation. We 
approximate the ion density distribution by the function 

where 

When k > 1 the resonance lies close to the maximum o r  
the point of inflection of ni (x). We study in most detail 
the case k =  1. The limitation on the field is caused in 
the linear approximation by the absorption due to colli- 
sions with a frequency v = max{v,,, v,,} o r  the transfor- 
mation into plasma waves.c3s4' The field at the reso- 
nance is determined by Eq. (1) where the parameter s 
equals 
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where Y,,= ( 3 ~ ~ / r n , w ~ ) " ~ .  The size of the region where 
the field is localized is of the order Ax= sL,  the time 
for the establishing of the field at the resonance T = s/ 
us.  It is shown in Ref. 12 that when k > 1 taking dissi- 
pation due to collisions into account leads to the width 
of the resonance turning out to be of the order of 

We study the limitations on the field a t  the resonance 
due to the linear transformation of the oscillations into 
plasma waves. For  the stationary case we write the 
field in the form 

E (2 ,  t )  ( iE ( x )  e - ' " ' t c . ~ . ) .  (19) 

Linearizing the se t  (2) to (4) we get 

We neglected here the term r t e n l ~ ' / n  in comparison 
with the other terms which can be done near the reso- 
nance. 

We formulate the boundary conditions for (20). The 
field does not penetrate the region where the density is  
larger than the critical one and in the region with a 
smaller density the field has the form of an outgoing 
wave. 

We introduce the notation: 

y=-x/Ax=- ( x / L )  (L/rD,)  2 /o+2' ,  
2 

u ( Y )  =y'"ll/(h+Z) (= Y11*2"2) , 

Here J,(x) i s  a v-th order Bessel function. We write 
the solution of Eq. (20) in the form 

where A depends on k: 

FIG. 1. Curves illustrating 
the possibility of the carry- 

- L/Z ing away of the energy of 
the oscillations from the 
plasma resonance region by 

b non-linear Langmuir waves: 

The function cp (y equals 

e z ' n ' ( k + 2 1 ~ ( y ) ,  k even 
Q (,) ={ e'"/(k+l'u ( y )  - (l-ei"/"+z' 

) u ( y ) ,  k odd 

For  symmetric plasma density profiles (even values 
of k) E ( y )  is an even function of y. I ts  asymptotic be- 
havior a s  y - * is: 

For  odd values of k we have as y - + 

As y - - w the field decreases a s  a power: 

E ( y )  %-E, (r , , /L)  -"/(h+2) I Y  (29) 

H;"(X) in Eqs. (27), (28) is a Hankel function of the 
f i r s t  kind. 

The amplification of the field at resonance can be ex- 
pressed in terms of the quantity s which in the case con- 
sidered is equal to 

The characteristic size of the field localization near 
resonance is equal to Ax= S&'~L, i. e . ,  has the same 
form as Eq. (18). 

3. At sufficiently low temperatures and r a r e  colli- 
sions (or relatively large external fields) i t  is neces- 
sary  to take into account electron non-linearitie~.~~"' 
As before we assume the ion motion to be given. 

We consider to begin with the cold plasma approxima- 
tion (vTe= 0) when we get from (11) an ordinary differ- 
ential equation for oe(xe, t). Let the ions be fixed, s o  
that ue = ce, and 

The coordinate x, occurs in Eq. (31) solely a s  a param- 
eter.  

We discuss f i rs t  of all the self-intersection of the 
electron trajectories. For this it is sufficient to re-  
str ict  ourselves to the approximation linear in o,/L. 
The solution of Eq. (31) for zero initial conditions 
(o,(t= 0)= 0, be(t= O ) =  0) is elementary (see also Ref. 
6): 

0 
oe ( x ~ ,  t )  = (ro / ( I  - q) (sin wt - - 

U P  (xr) 
sin o p ( x e )  t )  . (32) 
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FIG. 2. Break down of the resonance in a cold plasma: a) 
wt = 1 0 . 5 ~ ;  b) wt = 1 1 ~ ;  C) wt = 1 1 . 5 8 ;  d) wt = 1 2 . 5 ~ ;  s,,, = 0 . 1 .  

Here 

ro=eEo/mcwz, op' (z . . )  =4ne2n, ( x , )  lm,.  

In the resonance point, where w = wp(xe), the amplitude 
of the oscillations increases linearly with time: u, 
=*rout  coswt, and the resonance width decreases a s  l/t.  
The moment of self-intersection when the oscillations 
have an essentially non-linear character can be found 
from the condition that the Jacobian vanishes, I dx/dx, I 
= 0, i. e . ,  a:= - 1. The ratio of the acting field to the 
field at resonance is then of the order of 

The width of the resonance is comparable with the 
amplitude of the oscillations: Ax = a,, = s ~ ~ ~ , ~ .  For a 
linear plasma profile (k= 1) s= (r0/2~) l i2= ~ ~ ~ ~ / 2 " ~ . ~ ~ ' ~ '  

As a:- - 1, the electron density (5) becomes infinite 
and the neglect of the pressure in (31) may become un- 
founded or,  what amounts to the same, the neglect of 
the plasma wave dispersion. If s,,, >>sT, the pressure 
affects the non-linear stage and the limitation on the 
f i e ld i s  connected with the carrying away of energy by 
the non-linear plasma waves. The amplification of the 
hf field is then determined by the quantity s,,, of (33). 
To illustrate this statement we give the results of a 
numerical calculation on a computer of the hydrodynam- 
ical Eqs. (2) to (4). 

We considered the fixed ion approximation, a linear 
density profile (k= I) ,  the isothermal case (y= l ) ,  s,,, 
= 0.05 and = 0.04. The initial values of a, and 6, we 
defined from the solution (32) for the cold plasma at 
time t =  12n/w when the field i s  already comparable to 
the maximum - E0/s,,, (Fig. la);  the x-dependence of 
a, has a strikingly expressed resonance character. We 
give in Fig. l b  the solution for t=  2 h / w  and it is clear 
that the amplitude of the oscillations a t  the resonance 
is somewhat diminished and in the region x < 0 there ap- 

peared non-linear plasma waves. We note that in a 
cold plasma resonance would break down at t =  18. k / U .  

One can estimate the characteristic size of the non- 
uniformity of the electric field corresponding to the 
"width of the front" of the non-linear wave I =  E,/(aE/ 
ax),. For  the isothermal case y = 1 and a linear density 
profile 1-ri,/rO. If 1 < r,,, i. e. , r o >  r,, the hydrody- 
namic description is inapplicable and the pressure can- 
not prevent the destruction of the resonance, i. e. ,  after 
a time 7 = n/~u,,, the resonance breaks down. 

In Fig. 2 we give the results of a computer simulation 
using an electrostatic codeci3' of the break-down of the 
resonance in a cold plasma on a fixed ion background." 
The upper curves depict the position of elements of the 
electron plasma in the x, v phase plane (x  in units L, v 
in units vE0/s,,,,, the heavy line connects the points 
which in the given scale blend together). The lower 
curves depict the x-dependence of s,,, E/Eo. It is clear 
that the break-down of the resonance is  expressed in 
the peaking of the line in the phase plane near x =  0 
(Fig. 2a) after which the line is deflected in the direc- 
tion of x < 0 (Fig. 2b) and, finally a group of electrons 
detaches itself from the bulk and flies to the boundary 
of the plasma (Fig. 2c). The energy of the particles is 
of order - eEoL, and the number of particles accelerated 
in a single burst of order L. 

Similar particle bursts from the resonance region oc- 
cur also in subsequent periods of the oscillations (Fig. 
2d). The field at the resonance then ceases to increase. 
One may expect that regular electron bursts (through 
the period) will continue until there is an appreciable 
energy loss due to the departure of accelerated parti- 
cles and the distortion of the plasma motion near the 
resonance by the reverse flow (after a time -s ;~~~w") .  
The total energy of the particles accelerated up to that 
time is comparable to the energy contained in the reso- 
nance (-s,,,eEo L ' ~ ) ,  and the total number of acceler- 
ated particles is of order n,,s,,,L. If these particles 
leave the plasma, the field amplitude a t  the resonance 
reaches after a time -n/ws,,, again values for which 
the self-intersection of trajectories s t a r t s  and there ap- 
pear a new se r i e s  of bursts of accelerated particles of 
length - l / w s ~ ~ ~ , .  

We note that the self-intersection of electron trajec- 
tories discussed here in the plasma resonance region 
in final reckoning occurs due to the non-uniformity of 
the plasma. Firstly, there is a separate region (near 
x = 0) where thk amplitude of the oscillations increases 
until it becomes comparable with the dimensions of the 
localization of the hf field. Secondly, the coordinate 
dependence of the frequency wp(xe) of the eigenoscilla- 
tions leads to an increase in the phase difference of the 
oscillations in different points and a s  a consequence to 
a decrease in the dimensions of the field non-uniformity: 

here q is the local value of the wavenumber. Self-inter- 
section of electron trajectories occurs when q-' is com- 
parable to the amplitude of the oscillations. 
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FIG. 3. ~nteraction of an hf field with a non-uniform 
cold plasma: a) curves 1-wt = 4s, curves 2-wt = 10s; b) 
w t  = 12r; snonl= 0.1. 

We consider now the problem of the effect of an hf 
field pulse of length to on a non-uniform plasma with a 
linear density profile (k = 1). Let w-' < to < T ;  T is the 
time after which the resonance would break-down in the 
case of a continuous action of the hf field. After the 
field is switched on the absolute magnitude of the deriva- 
tive ai(xe) increases proportional to the time (although 
the amplitude remains constant), and after a time 

self-intersection of electron trajectories begins. 

We simulated the behavior of the plasma after the t ra-  
jectories intersect with themselves on a computer using 
the code, employed above. We depict in Fig. 3 the x- 
dependence of the electric field E and the phase diagram 
for the problem of the interaction of an hf field pulse 
with a non-uniform plasma for s,,, = (Y~/L)"~  = 0.1, 
to = 4a/w. It is clear that the electric field which is 
weakly non-uniform at  time t =  to (Fig. 3a, curve 1) 
without changing its amplitude becomes appreciably 
more inhomogeneous (Fig. 3a, curve 2) and after that 
there appear regions of many-current flow (Fig. 3b). 
Bursts of accelerated particles appear a t  several places 
practically simultaneously. 

4. We consider now the effect of anharmonicity on 
the phenomena at plasma resonance. The anharmonicity 
of the oscillations leads to the amplitude of the forced 
oscillations (and the field E) to turn out to be finite a t  
the resonance point (up= W; see  Fig. 4). In the region 
wP(xe)> wp(x:) there a r e  three solutions for the station- 
ary  amplitude. The solution of the initial problem is 
unique. For  zero initial conditions ae(t= 0) = 0, b ( t =  0) 
= 0 the solution shown by a heavy line in Fig. 4 is es-  
tablished. 

We expand in Eq. (31) the expression for the electric 
field in powers of a, (see (13); we remember that t,, 
= a, in the case considered). Anharmonicity may play 
an important role if it becomes necessary to take it into 
account for amplitudes of the oscillations less  than the 
width of the resonance region a s  for amplitudes com- 
parable to the dimensions of the resonance the limitation 
of the field occurs due to the self-intersection of the 
trajectories. We restrict  ourselves therefore in the 
expansion (13) merely to terms up to third order in a,. 
We get 

eEo 
a,+oP2(x,)a,=-ua,2-pa,3 - - sin ot, 

m. 

where 

The method for solving such equations is well 
We find the magnitude of the amplitude of the 

oscillations at resonance a,,, from the equation 

When k =  1 the maximum value of the field Em at the 
resonance a s  a result of the limitation due to anharmonic 
effects should be determined in the expression (15) for 
ni(xe) by the ratio E,, /(~~/L)~'~,  but this is preceded by 
self-intersection of the trajectories (for Em = Eo(ro/ 
L)"~). This is connected with the vanishing of the cubic 
non-linearity for k= 1 while the quadratic non-linearity 
does in first  order in ae/L not contribute to the frequen- 
cy shift (see also Ref. 5). If k > 1 anharmonic effects 
lead to a limitation of the field for values determined 
by the parameter sA= (ro/~)k"k'" and the width of the 
resonance is of order s"~L, i. e. ,  effects of anharmo- 
nicity and of the self-intersection of trajectories turn 
for k >  1 to be of the same order of magnitude. 

It is well known (see, e. g., Ref. 15) that non-linear- 
ity of oscillations not only changes resonance effects 
near up=  W, but also leads to the acpearance of new 
resonances. We restrict  our study to resonances at 
frequencies wp(0) = + W  and wp(0) = 20. 

Let the plasma profile be given by Eq. (15). We con- 
sider f i r s t  the multiple resonance wp(0)= 2w. We find 
the function oe(xo) from the equation 

Here & =  o - wp(xe)/2, and the other notation is a s  be- 
fore. It is necessary to add to Eq. (37) the condition 

I a; I < 1 which takes into account the effect of the self- 
intersection of the electron trajectories. Estimates for 
the maximum field amplitude and for the width of the 
resonance at the double frequency for k >  1 are  a s  fol- 
lows: 

FIG. 4. Limitation of the field at resonance due to the an- 
harmonicity of the oscillations. 
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If k =  1 there is no field amplification. In that case 
there is self-intersection of electron trajectories when 
E - Eo in the region of width ro near the point w = $up. 

For resonance a t  half the frequency ~ ~ ( 0 )  = Qw the 
possible values of the field amplitude and the resonance 
width can be found from the equation 

where E = w - 2wp(x,). We get for the resonance width 

The condition la: l < 1 leads to the fact that for not too 
large k Em- Eo, i. e. , there is no field amplification 
and, hence, no resonance w,(o) = iw. 

5. Under actual experimental conditions the ion den- 
sity is a s  a rule a function both of the spatial and of the 
time coordinate. Recently papers have appeared de- 
voted to experimental studies and numerical simulation 
of plasma resonance under non-stationary condi- 
t i ~ n s . ~ ' ~ ~ ' ~ ~ ~ ~ '  In this connection it is of interest to ob- 
tain analytical expressions and characteristic param- 
e ters  for the field a t  resonance in a deformed plasma. 

We consider firstly the cold plasma approximation 
(T,= T,=O). If we neglect, a s  before, the effect of the 
self-consistent electric field on the ion motion (zeroth 
approximation in m,/mi) we get for the ion and electron 
displacements in Lagrangian variables 

ai (x , ,  t )  = 0, oL ( t o ,  t )  = - L(E (x, ,  t )  + E, sin o t )  . 
m 

(41) 

We give the initial conditions in the form 

i. e . ,  there a re  no currents and there is no charge sepa- 
ration a t  t= 0. 

We subtract the first  of Eqs. (41) from the second and 
use  the expansion (13) of the electric field E in powers 
of 5 = tei, assuming that 6 << L. In the approximation 
which is linear in 5 we retain, however, the electron 
non-linearities of the self-intersection of electron t ra-  
jectories type, and we have 

where 

We fix the value xo. Let a t  some time ti(xo) the plas- 
ma frequency wp(xO, t) pass through the value which is 
equal to the frequency of the external field. In that vol- 
ume element oscillations a r e  then excited. If w,(xo, t) 
is a slowly varying function of the time i. e. ,  2nh,,/oi 

<<I, we get by writing the time dependence of w, near 
ti a s  

near the resonance region ( I w,(xo, t) - w l << w) 

I-, ,  
0 rT I c a  ( w t ,  + -f[ ( t - t , ) 2 - r z ]  b ( 5 0 ,  t )  - 

-11 

The excitation of oscillations near t =  ti occurs during 
a time At= &iV2, and if ti >>At the amplitude of the os- 
cillations after the excitation is equal to 

where 

s,= ( 2  1 ;,I / a Z ) ' "  I t - , , .  (49) 

The further evolution of the oscillations is described by 
the solution of the homogeneous equation 

i. e . ,  the amplitude to of the oscillations is proportional 
to ~ ; " ~ ( x ~ ,  t), and the electric field E a w:I2(xo, t). The 
moment when self-intersection of electronic trajectories 
ar ises  can be found from the condition2' 

One verifies easily that the breakdown of the oscilla- 
tions for sy >>s,~, occurs for times which a re  larger 
than l/syw, i. e . ,  outside the region of excitation. 

For a non-stationary plasma with a non-vanishing 
temperature T, we restrict  ourselves to the linear ap- 
proximation in the electric field amplitude. The ion 
density n, will be assumed to be a given function of x 
and t. We denote the velocity with which the resonance 
point shifts relative to the ions by vR: 

We discuss the case when the resonance region does 
not lie close to the extrema of n, and v,, i. e . ,  at the 
resonance n;/ni" l /L, v;  " 1 / ~ ,  where L and T a r e  char- 
acteristic length and time scales for the change in the 
ion density which a r e  much larger than the correspond- 
ing scales for the field E. To fix the ideas we put v;, 
2> v i  and n; > 0. The latter corresponds to an expansion 
of the plasma in the resonance region when VR > 0 and to 
a compression when v, < 0. 

We change to a system of coordinates moving with the 
resonance point. Close to the resonance region we can 
write (for y = 3) 

3u,,2~"+ 2 u , . k - ~ - d ( i + x / L )  =co2Ep sin o t .  (53) 

As v, and L a r e  slowly changing quantities we can as-  
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where 

The group velocity of the propagation of the oscillations 
is equal to4' 

The x-dependence of I E l and q i s  shown in Fig. 5. 
The heavy line shows the propagation of the oscillations 
after they a r e  excited near x =  0, and the arrows indi- 
cate the direction of the group velocity. 

FIG. 5. x-dependence of the amplitude and of the local value 
of the wavenumber in the plasma resonance region: a) in con- 
tracting plasma; b) in an expanding plasma. 

We have everywhere, except in the vicinity of the 
points x = 0, x =xv,  for the amplitude u ( x )  

sume them to be constant when solving Eq. (53) (and de- 
pending on the time merely a s  a parameter). Writing 
the field in the form (19) we then get for the stationary 
complex amplitude 

When vR < 0 this expression refers  to any of the two 
branches of oscillations (see (60) and Fig. 5a). 

If VR < 0 the wave undergoes reflection near xv (Fig. 
5). In that region the solution of the homogeneous equa- 
tion can, apart from a phase constant, be expressed in 
t e rms  of the Airy function Ai(z): 

Here w:=w2(1+x/L). 

If the quantity 

is much smaller than sT= ( Y ~ ~ / L ) ~ ' ~  we can neglect the 
velocity 21, and we get the solution of the linear theory 
with fixed ions.[3' We consider the opposite case s, 
> sp3) 

We have thus for vR < 0 in the region of the reflection 
point x, a resonance amplification of the field (see Fig. 
5a): 

In the region I x l << L V ~ / V ~ ,  the solution has the form 

a s  for VR = 0 and with the same resonance width Az - sTL. The velocity vR leads in this case only to the 
fact that the excitation points and the points of the reso- 
nance amplification turn out to be spatially separated. 

where 

If VR > 0, the wave propagates immediately after its 
excitation (Fig. 5b) into the region of lower density and 
the group velocity increases. Near the excitation point 
the amplitude is then a maximum and determined by Eq. 
(58). The width of the region in which the amplitude is 
comparable to the maximum is of the order x,, i. e . ,  
much larger than the width of the excitation region. 

The width of the region of excitation is of order s,L and 
the field amplitude is of order Eo/sv. When v,<O to the 
right of the excitation region (with VR> 0 to the left) the 
field amplitude is  equal to 

Above we considered potential oscillations near the 
plasma resonance in the zeroth approximation in m,/m,, 
i. e., we neglected the effect of the self-consistent field 
on the ion motion. However, it is well known that under 
certain conditions the effect of striction forces may have 
to be taken into a ~ c o u n t . [ ~ ' ' ~ ~  

Outside the excitation region the propagation of the 
oscillations is described by the solution of the homoge- 
neous equation. We write the complex amplitude of the 
field in the form 

We write down the equation for the electrons and ions 
in the Lagrangian form, restricting ourselves to the 
quadratic terms in the expansion (13) of the field E in 
powers of 5 and assume that 

E-u exp ( l J  q d x )  , (59) 

where u(x) is a real amplitude and q(x)  the local value 
of the wavenumber. Putting u" <<q2u, we get 
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Separating the fast-oscillating part  (with frequency " w,) 
of the electron displacement 5 from the slowly varying 
part, we get for f and a, (for y = 1) 

where a/ap= ni,$3/axo, the horizontal bar indicates time 
averaging, and n, = nio/(l + a;). 

If we assume that o; = (nio - n,)/n, << 1 and w,E <CUT,, 
these equations go over into the well known equations 
for the high-frequency potential and the amplitude vari- 
ation in the ion 

We consider now qualitatively the consequences of 
taking into account the displacement of the ions under 
the action of striction forces over the time of the estab- 
lishment of the resonance ?-*/us. We discuss two 
characteristic cases: the subsonic (stationary) regime 
when we can neglect in Eq. (67) the time derivative, and 
the supersonic regime in which case the term with the 
thermal pressure is small in (67). The relative change 
in the ion density in the resonance region turns out to 
be unimportant if it is less  than the characteristic pa- 
rameter s = E, /E ,  which determines the structure of 
the field in the resonance. In the quasi-stationary re-  
gime ((me/m,)"2vTe >> s 2 w ~ )  we can neglect the change 
in the plasma density under the action of striction 
forces, provided (see Refs. 7,8) 

One sees  easily that in the case when the field a t  the 
resonance is limited by the linear transformation into 
Langmuir waves (s = ( Y ~ , / L ) ~ / ~ )  inequality (68) corre- 
sponds to the condition under which there is no modula- 
tional instability: q'i- Ax - sL.  

In the supersonic regime ((me/mi)lnvTe< S ~ W L )  the 
displacement of the ions due to the striction forces does 
not appear during the time when the field increases a t  
the resonance, provided 

For a cold plasma when s = s,,, one can write this 
condition as 

Satisfying inequality (70) guarantees the relative 
smallness of the growth rate of the parametric instabil- 
ity y" ~ , ( r n ~ / r n , ) ' / ~ , ~ ~ ~ ~  i. e., during the characteristic 
time for establishing the resonance the parametric in- 
stability does not succeed in developing. 

Inequalities (68), (70) indicate the limits of the appli- 
cability of the results obtained above. In other words, 
these results a r e  valid for a plasma resonance either in 
weak external fields o r  if the pumping field is sufficient- 
ly large. However, in the lat ter  case, only during a 
limited period t< y". Nonetheless dui-ing that period 

such an interesting effect a s  a burst of accelerated par- 
ticles with energies of the order of eEoL can develop 
in the plasma resonance region. 

6. The results  obtained in this paper give a picture 
of the role of various effects a t  plasma resonance: lin- 
e a r  transformation for various plasma density profiles, 
self-intersection of electron trajectories, anharmonicity 
of the non-linear oscillations, and non-stationarity of 
the ion density. These effects do not, of course, ex- 
haust al l  possibilities for limiting the hf field in the 
plasma resonance region. For  instance, in Ref. 7 we 
considered the influence of relativistic effects and in 
Ref. 21 the dissipation of the oscillations due to the de- 
velopment of the modulational instability was considered. 
We note that taking the effect of the modulational insta- 
bility into account a s  well a s  other non-linear effects 
connected with the ion motion on the phenomena in the 
plasma resonance region is a complicated problem 
which is very far  from having been completed. Numeri- 
cal experimentsc221 show that the break down of the plas- 
ma density profile occurring due to strictional forces 
may lead to the occurrence of modulational and ion- 
acoustic decay instabilities which indicates the neces- 
sity for observing well-known caution in transferring 
results obtained for a uniform plasma to the plasma 
resonance region in a non-uniform plasma. 

We give some numerical estimates. Let w = 101° s-', 
Eo = 1 kV/cm, L = 2 cm, Te= 1 eV. For  those param- 
e te r s  s,,, = 0. 1; S T =  3 x lom2, (me/4mi)i'3= 0.05 (hydro- 
gen ~ l a s m a ) ;  ~ ~ , ( m , / m , ) " ~  < s 2 w ~  (supersonic regime). 
The maximum field amplitude a t  resonance is deter- 
mined by the self-intersection of the electron trajec- 
tories. 

If W =  2 xloiO s-', Eo= 10 ~ / c m ,  L = 5 cm, Te= 1 eV, 
we have s,,,, = 3 X lo", ST = S, = 5 X and the ac- 
tion of the striction forces is the determining factor. 

For the given values of the plasma parameters s, 
(i. e., the effect of collisions) is negligibly small. 

')A similar study of the break down of the waves and of the ac- 
celeration of particles has been given earlier in Refs. 14, 
23. To the same extent in which the statement of the problem 
was the same a s  that given here the results turn out to be 
identical. 

2)As 8[/8xo is a fast changing function of the time, it follows 
from condition (51) that the break down of the electron oscil- 
lations  precede^ the occurrence of the self-intersection of 
ion trajectories (1 + a: = 0).  

3)~ogether  with the condition v$e >v$ this gives s$> S$ > s$. 
4 ) ~ s  the propagation of the oscillations from the point x = 0 

along the region X/L << 1 with the group velocity (62) occurs 
during a time much smaller than T, the stationary state of 
the field will, in the region considered, be established much 
faster than the gradients of n, and v,  will be able to change 
appreciably, i. e . ,  one can indeed assume that in Eq. (53) v~ 
and L depend on the time a s  on a parameter. 
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Bremsstrahlung of relativistic electrons in a plasma in a 
strong magnetic field 

A. V. Akopyan and V. N. Tsytovich 
Institute of Radiophysics and Electronics, Armenian Academy of Sciences 
(Submitted October 19, 1976) 
Zh. Eksp. Teor. Fiz. 72, 1824-1832 (May 1977) 

The bremsstrahlung of relativistic electrons in a plasma in a strong magnetic field is considered, with 
effects of dynamic screening and of a new mechanism of transition bremsstrahlung [A. V. Akopyan and V. 
N. Tsytovich, Zh. Eksp. Teor. Fiz. 71, 166 (1976) [Sov. Phys. JETP 44, 87 (1977)l taken into account. 
It is shown that in a strong magnetic field the effects of dynamic screening strongly diminish the intensity 
of ordinary bremsstrahlung at high frequencies o < o,,,; here om,, = 2S20*, where w* = w,c/v,, w, is 
the electronic plasma frequency, S/ = e/m,c2, e is the energy of the relativistic electron, and v,, is the 
mean thermal velocity of the plasma electrons (v,(c). The angular. distribution of the bremsstrahlung 
spectral intensity and the total intensity are studied in detail, both for the usual bremsstrahlung 
mechanism and for transition bremsstrahlung. 

PACS numbers: 52.25.P~ 

1. INTRODUCTION: GENERAL STATEMENT OF THE 
PROBLEM 

B r e m s s t r a h l u n g  i n  a plasma which  is i n  a v e r y  s t r o n g  
magne t i c  f i e ld  h a s  r e c e n t l y  b e e n  in tens ively  s tud ied  i n  
connect ion wi th  t h e  problem of i n t e r p r e t i n g  t h e  r ad ia -  
t i on  of pulsars. '"" Actually,  as w i l l  be s e e n  f r o m  
what  follows, b r e m s s t r a h l u n g  is a l t e r e d  b y  a magne t i c  
f i e ld  even  at re l a t ive ly  small f i e ld  s t r e n g t h s  (but f o r  
sufficiently small f r equenc ie s ) .  T h e r e f o r e  b r e m s s t r a h -  
lung  i n  a magne t i c  f i e l d  is also of i m m e d i a t e  i n t e r s s t  
f o r  l a b o r a t o r y  experiments on  the  magne t i c  conta inment  
of a plasma. 

I n  t h e  papers a l r e a d y  r e f e r r e d  to, C1-6' and  also inc7*'l, 

t h e  inf luence of a magnetic f i e ld  on  b r e r n s s t r a h l u n g  was 
not ana lyzed  complete ly ,  a t t en t ion  be ing  given mainly  
to t h e  case of nonre l a t iv i s t i c  particles in a quant iz ing 
magne t i c  field.  At t h e  same time, as w e  s h a l l  show, 
t h e  e f f ec t  of a plasma on  b r e m s s t r a h l u n g  is more im- 
p o r t a n t  i n  a s t r o n g  magne t i c  f i e ld  than  wi th  no field.  
T h e  results w e  s h a l l  g ive  p r o p e r l y  apply not only to 
plasmas, b u t  to o t h e r  m e d i a  as wel l ,  namely  in  all 
cases i n  wh ich  t h e  plasma approx ima t ion  c a n  be u s e d  f o r  
t h e  d i e l e c t r i c  constant .  

In  cons t ruc t ing  a more or less complete theory  of 
b r e m s s t r a h l u n g  i n  a nonequi l ibr ium magnetoact ive  
plasma it is n e c e s s a r y  to t a k e  in to  account  at least four  
ef fects :  1) s c r e e n i n g  by  t h e  plasma of t h e  f i e lds  of col- 
l id ing  particles, 2) e f f ec t s  of t h e  plasma on  t h e  propa- 
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