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The summation of optical frequencies in coherent pulsed excitation of a two-photon resonance is 
investigated. It is shown that in this case powerful ultrashort tunable pulses in the ultraviolet (including 
the vacuum ultraviolet) can be generated. It is found that principal conversion conditions for third- 
harmonic generation are the resultant &-pulse regime and the 27r-pulse regime. It is shown that Raman 
and parametric processes strongly affect the two-photon self-induced transparency effect. Cascade 
generation of higher harmonics under coherent resonant excitation is analyzed and its high efficiency is 
pointed out. Numerical estimates are given for some specific substances. 

PACS numbers: 42.65.Bp, 42.65.Cq 

1. INTRODUCTION 2. BASIC EQUATIONS 

By now the steady-state theory of resonant parametric 
processes in which the interaction of harmonic light 
waves is considered has been quite thoroughly devel- 
oped (see, e. g., Refs. 1 -4), and the basic conclusions 
of this theory concerning the effects of saturation and 
the Stark shifts of the levels have been confirmed ex- 
perimentally. [5161 However, the applicability of the 
steady-state theory to the analysis of experimental 
situations is limited to the case in which the times 
characteristic of the changes in the interacting waves 
a r e  considerably longer than the longitudinal and trans- 
verse relaxation times TI and T2 of the resonant transi- 
tion. 

To realize resonant parametric conversion it is es- 
pecially important to use intense tunable  source^^^'^^ 
(e. g., parametric light generators o r  dye lasers), 
which usually give pulsed emission with a broad spec- 
trum (AV k 1 cm"). Moreover, there i s  a tendency to 
use picosecond pulses, and in the field of such pulses 
saturation, which greatly limits the conversion in the 
steady -state case, se ts  in a t  the higher intensities. 91 

In most of these cases the steady -state theory turns out 
to be inapplicable, and it becomes urgently necessary 
to develop a nonstationary theory that would take ac- 
count of the amplitude and phase modulation of the ex- 
citing radiation. 

Let us f i rs t  consider the third-harmonic generation 
process. We shall assume that the nonlinear medium 
consists of an ensemble of atoms o r  molecules with 
eigenfrequencies w,, and that the electromagnetic field 
acting on the medium consists of plane waves of f re-  
quencies w, and w3= 3w1 with slowly varying amplitudes 
Ai(z, t) and A3(z, t) propagating in the z direction. 

We shall also assume that the frequency of the funda- 
mental radiation i s  close to the frequency for two-pho- 
ton resonance with levels 1 and 2 (20, - w,, = 6) and 
that the duration T of the pulse is short a s  compared 
with both T, and T,. Then the complete set  of equations 
for the interaction of the waves has the 

Here we have used the following notation: 

1 1 
We note that some problems in the theory of the sum- 

mation of optical frequencies in the pumping noise field 
under resonance conditions have been discussed else- and 
where, and that similar calculations have been made 
in the adiabatic-following approximation for  pulsed 1 d,,d,- 
radiation. c3s q = -c -L 

A2 wnl-O1, 

Here we present a systematic discussion of the sum- 
mation of optical frequencies in media having a center a re  the matrix elements for  the Raman and two-photon 
of inversion under two-photon resonance conditions in couplings, the a,,, =a,,, IA,,, l a r e  the field-induced 
the field of ultrashort pulses of duration r << T,, T,. As Stark shifts, Y ~ , ,  = ~ ~ T N W ~ ~ ,  t i / k i S 3  c2, N is the particle 
was shown earlier,  C33 in this case the parametric con- density, a,, is the off -diagonal element of the density 
version process turns out to be closely associated with matrix, n i s  the population difference between levels 1 
coherent resonance phenomena such a s  self-induced and 2, no i s  the equilibrium value of n, Ak = k ,  - 3k, i s  
transparency. the wave-vector mismatch of the interacting waves, 
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and the v,,, a r e  the propagation velocities of the waves 
in the unexcited medium. 

When qf  0 and r = O ,  Eqs. (1) describe the propaga- 
tion of short pulses under two-photon resonance condi- 
tions and include the self-induced transparency effect, 
which was predicted theoretically by Belenov and 
~ o l u 6 k t o v ~ " ~  and has been observed experimentally.c'2*i33 
When q =  0 and r +  0, Eqs. (1) describe the Raman scat- 
tering of short light pulses, C14w'51 including the coherence 
effects incident to the Raman interaction (see, e.  g., 
Ref. 16). But on the whole, the interaction process is 
determined by the simultaneous development of three 
nonlinear effects: parametric generation of the third 
harmonic, two-photon absorption (or amplification) of 
the fundamental wave, and Raman interaction of the fun- 
damental wave with the third harmonic. Then, a s  is 
evident from Eqs. (I), the equations for  the density ma- 
tr ix have the f i rs t  integral 

This integral expresses the condition for  conservation 
of the length of the Bloch vector R, which is frequently 
used in analyzing coherent resonance effects. C17*181 

Now let  us make the following simplifying assump- 
tions: the frequency of the fundamental radiation satis - 
fies the condition 6 = 0 for  exact two-photon resonance; 
the effects of group delay a r e  not important, i. e. , 
v, = v, = v; and there is no mismatch of the wave vectors 
( ~ k  = 0). When gaseous media a r e  used, the last  con- 
dition can be realized in practice by adding a buffer 
gas.tig1 We shall also assume that the pumping wave 
is present a t  the entrance to the nonlinear medium, i. e. 
that A, I ,, =A,, where A,, is real, and that the third- 
harmonic wave, which i s  absent a t  the entrance 
(A, l ,, = 0), ar ises  in the medium a s  a result of the 
parametric process. 

It is evident from Eqs. (1) that under the above as -  
sumptions and with a, = a3 = 0, there is not only no phase 
modulation of the waves a t  the entrance to the nonlinear 
medium, but none ar ises  in the interaction process. It 
is not difficult to show that in this case the phases q3 
and q, of the harmonic and pumping waves have a stable 
equilibrium position: q3 - 3qi = n when q r >  0 and 
q3 - 3q1 = 0 when q r <  0. Then the interaction of the 
waves i s  described by equations for real  amplitudes 
(see Sec. 4). A similar assertion i s  also valid for the 
more general case of summation of optical frequencies 
under resonance conditions, and we shall make use of it 
below in Sec. 5. 

3. THE WEAK-RAMAN-COUPLING CASE 
(IPI=lr/q I<<I) 

If the Raman coupling is much weaker than the two- 
photon coupling, i. e., if I PI = I r/qI<< 1, one can neglect 
the effect of the harmonic field on the amplitude of the 
fundamental wave and on the parameters a,, and n char- 
acterizing the state of the medium. In this case the 
equations for A,, a,,, and n describe the two-photon 
self -induced transparency process, and their solution 
is well known. C201 It is not difficult to obtain the follow- 

ing expression for  the intensity of the harmonic: 

where 

while the evolution of the field of the fundamental wave 
is described by the formula 

If the Stark shift induced by the fundamental radia- 
tion can be neglected (kt  = 0), we have 

i. e . ,  the intensity of the harmonic is determined solely 
by the difference between the pumping amplitudes a t  the 
entrance to the nonlinear medium and a t  the point con- 
cerned. It is evident from this that a t  distances of the 
order of the two-photon absorption length I,= K" the 
harmonic pulse will split into two pulses, which move 
with different velocities. The f i rs t  pulse forms a t  the 
leading edge of the pumping pulse and propagates with 
velocity v, while the second pulse moves with the 
group velocity of the pumping wave. Now if the "area" 
0, of the pulse a t  the entrance to the medium satisfies 
the condition 

then, a s  has been shown, C201 the fundamental pul.se will 
break up into m subpulses, which increase in amplitude 
and decrease in duration. In accordance with this, the 
other (harmonic) pulse also breaks up into m subpulses 
whose peak intensity increases directly a s  z2/1i,  with 
a corresponding decrease in duration, a t  distances 
z>> l , , .  Thus, third harmonic generation under condi- 
tions of coherent two-photon resonance interaction can 
be used to produce powerful ultrashort pulses in the 
short-wave region. 

The maximum value of the conversion coefficient to 
the harmonic a t  Kz >> 1 i s  

Thus. the Stark shift increases the conversion efficiency. 

4. THE GENERAL CASE; THE EFFECT OF THE 
RAMAN PROCESS 

Let us consider synchronous third-harmonic genera- 
tion for  arbitrary values of the ratio r/q. We shall 
assume for  simplicity that the Stark shifts of the levels 
can be neglected, i. e. , that a, =a, = 0. Then we obtain 
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the following expressions for  the density-matrix ele- 
ments from Eqs. (1): 

o,,='l,in, sin Y ,  n-no cos y, (8) 

where 

is the "rotation angle" for  the variables specifying the 
state of the medium. Then the equations for the field 
amplitudes take the form 

5'4, 
-=- 

dA3 - - 7(2qA,-rA,)s in  Y ,  --- - 
az  0 z :lyrA, sin Y .  (1 0) 

The following generalized "energy theorem, " analo- 
gous to the "energy theorem" given by Polue'ktov 
e t  al. [''I for two-photon self-induced transparency, 
follows from Eqs. (10): 

Thus, when .9= 2rm the sum of the energies of the 
pumping and harmonic waves is conserved during prop- 
agation, although energy exchange between the pulses 
can take place. 

In seeking the basic interaction regimes it is con- 
venient to express the amplitude A3 of the harmonic in 
the form 

pending on the ratio @ of the Raman and two-photon in- 
teraction constants. 

A. Production of On pulses. In this regime the am- 
plitude ratio 

becomes established a t  distances z >> 1,. Thus, the in- 
tegrand in Eq. (9) vanishes throughout the pulse, and 
.9= 0. Physically, this means that two-photon excita- 
tion of the resonance transition is suppressed by the 
Raman interaction of the waves Ai and As, which is in 
phase opposition to the two-photon interaction. This i s  
the principal difference between the On pulses consid- 
ered here and the On pulses arising in one-photon self - 
induced transparency, in which the null rotation of the 
Bloch vector is due to phase shifts within the pulse. 
It is evident from Eqs. (14) and (15) that in this regime 
the fundamental and harmonic pulses have the same 
shape a s  the initial pumping pulse. The harmonic-con- 
version factor is given by 

When 181 << 1, we have p = (9/4)@, in agreement with the 
estimate given in the preceding section (see Eq. (17). 

The On-pulse regime exists fo r  all values of /3 and, 
a s  is easily shown, is stable. 

B. The "proportional" regime. This regime is pos- 
sible only when I @I< l / G a n d  is characterized by the 
relation 

The function f(z, 11) satisfies the following equation: 

af/az=-7 ( r f  -2qf+3r)sin Y. (13) 

It is not difficult to show that the relation between the 
amplitudes of the interacting waves is given by the 
equations 

It is evident from Eq. (13) that in this case the ampli- 
tude ratio f does not change with distance, even though 
@ may still~depend on q and z. The amplitudes A, and 
A, evolve according to identical equations, which have 
the same form a s  the equations for  two-photon self- 
induced transparency, Ci8*201 but with the substitution 

A,' 1 , IpI <--, 
1'3 

in which ai,, = q f (q2 - 3,/2)'12. Formulas analogous to 
Eqs. (14) have been obtained by Afanas'ev and ~ a n ~ k i n ~ ' ]  
for third-harmonic generation by two-photon resonance 
under steady-state conditions. It is easily seen that for 
the case of weak Raman coupling ( I  @ I  << I) ,  Eqs. (14) 
reduce to Eq. (5). 

The following interaction regimes a re  possible, de- 

Consequently, .2n pulses, whose peak intensity increases 
with distance and whose duration decreases in propor- 
tion to (K,z)', can be formed in the "proportional" re-  
gime. 

The "proportional" regime can be realized by feeding 
both pumping and harmonic pulses, satisfying the con- 
dition AS, = f,,, A,,, into the nonlinear medium. Nu- 
merical solution of Eqs. (10) on a computer shows that 
this regime can also be realized under ordinary condi- 
tions, when AS0 = 0; in this case f = F i ( l  - (1 - 3@2)i'2). 
In this regime the two-photon and Raman processes 
contribute proportionally to the excitation of the two- 
photon transition. The equations for Ai,, admit a soli- 
ton solution having the Lorentz shape, which is anal- 
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ogous to the soliton solution for two-photon self -induced 
transparency with the appropriate substitution (18). 

The development of the interaction process in the 
case I PI < l/fi presents the following over-all appear- 

. ance: at the leading edge of the fundamental pulse 
there arises a harmonic pulse, which moves with ve- 
locity v ,  and the resultant On pulse discussed above i s  
formed at distances z >> I , .  

If the initial pulse A,,(q) satisfies the condition 

the trailing parts of the pulse reach the "proportional" 
regime. Formula (19) i s  actually the condition for the 
existence of 2r pulses in the process under considera- 
tion. 

When the Raman coupling i s  weak (1 81 << 1) the 2n- 
pulse threshold i s  slightly higher than in the case of 
"pure" two-photon interaction: 8, a 2n(l+ (9/4)/3 '). 
The 6, threshold increases with increasing 1 PI and be- 
comes infinite at I /3l = 1/6, Thus, when I /3I 2 1 / 6  
the formation of 2n pulses (the "proportional" regime) 
is not possible at ally initial-pulse intensities: equi- 
librium between the two-photon and Raman interac- 
tions i s  always reached and On pulses a re  formed at 
distances z >> 1,. A fraction of the energy Wo of the 
initial pulse, given by 

FIG. 2. Evolution of the pumping and third-harmonic pulses 
at tJO=2. 2r and Ip I=0.5: 1-pulses at the entrance; 2, 3- 
pulses at z = l ,  and z =21,. 

trailing edge; the resultant O r  pulse i s  formed at the 
leading edge. 

When 1/31 < 1 / 6 ,  however, and condition (19) is not 
satisfied, the formation of short pulses at the pumping 
and harmonic frequencies, which begins at short dis- 
tances, subsequently ceases ( ~ i g ,  2). When I BI 21/6, 
on the other hand, no short pulses a re  formed at the 
trailing edge at all (Fig, 3). Separate intensity pulsa- 
tions can arise during the formation of the On pulse. 

In concluding this section we note that the effects dis- 
cussed can also occur when Ak+ 0, but for this it i s  
necessary that the synchronous interaction length be 
considerably greater than the two-photon absorption 
length, i. e. , that Akl, << 1. 

5. SUMMATION OF OPTICAL FREQUENCIES 

Let us briefly consider the more general case in which 
which there a re  two pulses of frequencies wl and w, and 
real amplitudes A&) and AZ0(q) at the entrance to the 
nonlinear medium, the frequency wi satisfying the con- 
dition 6 = 0 for exact two -photon resonance. In this 
case resonance polarization arises at both the third- 

i s  absorbed by the medium during the process. 

Numerical solution of Eqs. (10) on a computer con- 
firms the results of the above analysis. Figure 1.shows 
the evolution of the pulses when condition (19) i s  satis- 
fied. It i s  evident that short pulses, which increase in 
intensity and decrease in duration, a r e  formed at the 

FIG. 3. Evolution of the pump- 
ing and third-harmonic pulses 
at tJ0=2.2* and lpl=2: 1- 
pumping pulse at the entrance; 

FIG. 1. Evolution of the pumping and third-harmonic pulses 
at tJ =2.2a and IpI=0.06: 1-pumping pulse at the entrance; 
2, 3-pulses at z = I ,  and z =21,. 
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harmonic frequency and the summation frequency 
w4= 20, + w2. To simplify the problem we shall assume 
that the condition for synchronism is satisfied only for 
the summation frequency (k4 = 2k1 + kz), while the wave- 
vector mismatch for third-harmonic generation is 
large (hkl,,>> 1). Then we need consider only the inter- 
actions of three waves with amplitudes A,, A,, and A4, 
where A4 is the amplitude of the wave a t  the summa- 
tion frequency. Neglecting the Stark shifts of the levels, 
we can write the equations for this interaction in the 
form 

aA,laz=-2yqA, sin Y1, aA21az=yZrZAI sin Y,, 

dA4/az=-y,r2A2 sin '4 ,, 
(21) 

where 

An "energy theorem" analogous to (11) follows from 
Eqs. (21): 

d - ( W , + W 2 + W , ) = - 2 y ( l - c o s  O,), O,=Y,(z, -) 
dz 

From this it is evident that when 4 = 2rm (m = 0, 
1,2, . . . ) the total energy of the pulses does not change 
with distance, although the pulses may exchange energy 
with each other. 

The first and second integrals of Eqs. (21) agree in 
form with the integrals obtained by Butylkin et al. 
for the steady-state interaction: 

It is evident from Eqs. (21)-(25) that at small distances 
z<< I ,  the first pulse interacts with the medium almost 
independently of the presence of the second pulse. 
With the appearance of the wave at the summation fre- 
quency the Raman process comes into play; then the 
"overlap integral" of pulses A, and A, (see Eq. (22)) 
increases and may considerably affect the "rotation 
angle" q, of the variables specifying the state of the 
medium and thereby affect the entire process af co- 
herent interaction of the waves with the medium. 

If the condition 

is satisfied within the limits of the pumping pulse Ato(r]), 
the Raman process will have virtually no effect on the 
propagation of the first pulse, which in this case will 
evolve in accordance with Eq. (4). Then if 8, > 2r, 
powerful ultrashort pulses, similar to those discussed 
above, will be formed at frequencies wi and w,; as a 

rule, moreover, there will be more subpulses at the 
converted frequency than a t  the fundamental frequency 
w,. In fact, when 1 & I < <  1, it follows from Eq. (25) 
that 

If the pulse at frequency o completely '%overs" the 
pumping pulse, the maxima of the converted radiation 
will actually coincide with the extrema of At. In this 
case we shall have 

at large distances z >> 1,. 

On the whole, the frequency -summation process is 
much more complicated than the process of third har- 
monic generation. Nevertheless, it is very important 
to investigate the summation process, first, because 
in this case ultrashort frequency -tunable pulses can be 
generated in the ultraviolet and the vacuum ultraviolet, 
and second, because the pulses at frequency o2 can be 
used a s  probe pulses to investigate the effects of two- 
photon self -induced transparency. For example, if 
condition (26) is  satisfied and 7, $7, where 7, is the 
duration of the second pulse, then, if the pulse of con- 
verted radiation can be detected, it will be possible to 
obtain virtually complete information about the evolu- 
tion of the pumping pulse (see Eqs. (25) and (27)) by 
varying the time delay of the second pulse with respect 
to the first one. We note that just such a setup has been 
employedc211 in experiments on the coherent superposi- 
tion of quantum states under two-photon resonance con- 
ditions. 

6. HIGHER-HARMONIC GENERATION 

Coherent two-photon resonant excitation can also be 
used to generate higher harmonics. Here cascade pro- 
cesses of the type 

which are strongly suppressed by the saturation effect 
in a field of long pulses, may prove to be effective. 

It is not difficult to show that the nonlinear resonant 
polarization at the fifth-harmonic frequency has the 
form 

where 

Under conditions of spatial synchronism (hk= 0 and 
k, + 2k, = k,) the amplitude of the fifth harmonic is given 
by 
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On neglecting the effect of the Raman process, we 
easily find that 

in which A, is given by Eq. (4). Consequently, ultra- 
short pulses analogous to those obtained in third-har- 
monic generation, which increase in intensity and de- 
crease in duration, can be generated a t  the fifth-har- 
monic frequency. The maximum intensity 1, of 
these pulses at z >> 1, is given by 

In conclusion, we note that nondegenerate cascade 
processes of the type 

a re  also effective in coherent excitation and make it 
possible to obtain ultrashort tunable pulses in the ultra- 
violet and the vacuum ultraviolet. 

7. CONCLUSION 

Now let us present a few numerical estimates for 
specific substances. For the 3s-4s transition in sodium 
we haveq=-4.5.104, r = - 2 . 7 -  lo3, andai=9.104 
(cgs esu), and according to Eq. (2) a c!nversion coef- 
ficient to the third harmonic (A, - 2590 A) of - 1.5% can 
be achieved. With N z l ~ ' % m - ~ ,  effective narrowing 
of the pulses takes place in lengths of 10-20 cm. 

Similarly, for  two-photon resonance with the 2s-5s 
transition in lithium we have q = 3.8 lo3, r = 7 lo2 ,  
and r, s 1.2 10, (cgs esu), and the conversion to the 
third harmonic (x,= 1730 A) under coherent interaction 
amounts to - 8%, and the conversion to the fifth har- 
monic (kg= 1040 A) may accordingly reach - 1%. 

We note that four-photon parametric processes under 
conditions of coherent two-photon excitation may also 
prove to be useful for generating frequency-tunable 
pulses in the infrared. Raman scattering from transi- 
tions excited by a two-photon process when two pulses 
with frequencies wi and w, satisfying the conditions 
2wi - w,, = 0 and w, > w,, a r e  fed into the nonlinear medi- 
um would seem to be promising for  this purpose. In 
this case the resultant frequency w4=2wi - W? may lie 
in the far  infrared. We note that this process has been 
examined by Venkin et al. C221 for the steady -state case 
without allowance for population changes. 

The authors a r e  deeply grateful to S. A. Akhmanov 
for his interest in the work and fo r  valuable discussions. 
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