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A theory is constructed for the reflection and refraction of light from the boundary of a semi-infinite 
nonlinear medium whose refractive index depends on the light intensity. It is shown that when the 
incidence angle or the intensity of the ip~ident light is varied, hysteresis jumps should be observed from 
the transmission regime to the regime of total internal reflection (TIR) and back. At small nonlinearity, 
the necessary condition for the existence of the hysteresis effect is closeness of the linear refractive indices 
of both media (linear and nonlinear) and smallness of the glancing angles; all the observed effects should 
in this case be independent of the polarization of the incident field. At a negative nonlinearity, the 
phenomenon is due to the ambiguity of the transmission regime, while at positive nonlinearity it is due to 
the ambiguity of the TIR. At a definite light intensity, complete transparentization of the boundary can 
take place for all the incident angles in the region of stability of the transmission regime; in this case 
jumps take place from total reflection to total transmission and vice versa. 

PACS numbers: 42.65.B~ 

INTRODUCTION se l f -consis tent  equat ion f o r  t he  non l inea r  r e f r a c t i o n  

1. In a p reced ing  paperc" I r e p o r t e d  t h e  poss ib i l i t y  
of obse rv ing  new e f fec t s  in the  case of a l m o s t  g lancing 
incidence of l ight  f r o m  a l i n e a r  m e d i u m  onto the  bound- 
a r y  of a non l inea r  med ium whose pe rmi t t iv i ty  &, d e -  
p e n d s  on  t h e  f ie ld  in tens i ty  and is close to t h e  p e r m i t t i v -  
i ty  E ,  of t h e  l i n e a r  medium.  T h e  p r inc ipa l  ef fect  w a s  
tha t  when the  glancing ang le  or the  incident-field inten- 
s i t y  w e r e  var ied ,  . s t r o n g  h y s t e r e s i s  j u m p s  should  be ob-  
s e r v e d  in the  r e f r a c t i v e  index and  in the  r e f l ec t ion  co- 
efficient,  f r o m  the  nonl inear  r e f l ec t ion  r e g i m e  ("trans- 
m i s s i o n  regime") to the  r e g i m e  of nonl inear  total in- 
t e r n a l  r e f l ec t ion  (TIR), and back.  A theory  of t h i s  phe- 
nomenon is cons t ruc ted  in the  p r e s e n t  pape r .  

( 5  2). In the  case of TIR, a s u r f a c e  wave  p r o p a g a t e s  
in s ide  the  r e f r a c t i v e  m e d i u m  a long  t h e  boundary,  a n d  
is l ikewise  d e s c r i b e d  by  a non l inea r  wave equa t ion  (5 3). 
T h e  se l f -consis tency of t h e s e  equa t ions  l eads ,  u n d e r  
def in i te  condi t ions ,  to t h e  a p p e a r a n c e  of s e v e r a l l y  physi -  
ca l ly  r e a l i z a b l e  so lu t ions  ( s t a t e s ) ,  some of wh ich  are 
uns tab le  a n d  t h i s  i n  f a c t  is t h e  r e a s o n  f o r  the  h y s t e r e s i s .  
T h e  t r a n s m i s s i o n  r e g i m e  b e c o m e s  ambiguous  at nega-  
tive nonl inear i ty  (A&,, < 0, 8 4), a n d  the  TIR r e g i m e  at 
psoi t ive  non l inea r i ty  (A&,, > 0, § 5). A t  a c e r t a i n  f i e ld  
in tens i ty ,  total non l inea r  t r a n s p a r e n t i z a t i o n  of t h e  
boundary takes p l a c e  at all incidence a n g l e s  (§ 21, and 
t h e  h y s t e r e s i s  j umps  t a k e  p l a c e  be tween  t h e  states of 
t h e  total t r a n s m i s s i o n  and the  total ref lec t ion,  whi le  

T h e  Snel l  f o r m u l a s  tha t  follow f r o m  the  gene ra l i zed  t h e  boundary  o p e r a t e s  as a n  idea l  "optical  flip-flop" 
boundary condi t ions  ( 5  1) f o r  t h e  r e f r a c t i o n  ang le  and  t h e  (I 5 4 , s ) .  
F r e s n e l  f o r m u l a s  f o r  t he  ampl i tudes  of t he  f i e l d s  b e -  
come coupled to one a n o t h e r  b y  v i r tue  of t h e  nonl inear i ty  2. One of t h e  m a i n  p r e m i s e s  f o r  t h e  obse rva t ion  of 
of t h e  r e f r a c t i n g  medium,  and  t h i s  l e a d s  to a s ing le  t h e  indicated effect  is t h e  ma tch ing  of t h e  op t i ca l  dens i -  
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ties of both media. The difference between their linear 
permittivities I A&, I should be smaller than o r  of the 
same order a s  the possible nonlinear increment I A&,, I ,  
for only then can the nonlinearity cause a strong self- 
consistency of the problem. This is why strong effects 
appear only at almost grazing incidence of the wave on 
the boundary. To observe the hysteresis it is necessary 
to have glancing angles # of the order of - ( I A&,, 1 /E,)"~, 
which amounts to # - 0.5" a t  I A&,, 1- - lom5; this 
pertains also to the width of the hysteresis loop relative 
to the glancing angle A#h. The smallness of r/~ and A& 
simplifies the theory and makes the phenomenon inde- 
pendent of the polarization of the incident field. When 
the requirement that I A&, I be small is not satisfied, 
only "weak" nonlinear effects proportional to A&,, re -  
main (changes in the refraction angle, in the reflection 
coefficient, and in the shift of the TIR angle, § 2), while 
the hysteresis becomes small. This may be the reason 
why hysteresis was not observed either theoretically o r  
experimentally in studies of the type, c2-51 devoted to 
harmonic generation in the reflection of light from the 
boundary of a nonlinear dielectric (see a l s ~ ~ ~ ' ~ ] ) .  

3. Hard excitation and hysteresis a re  possible in 
certain types of lasers  with nonlinear absorbers, (CG91 
see also the references inCIOsltl). A similar mechan- 
ismof hysteresisformation ispossessed also by apassive 

comprising a Fabry-Perot resonator filled 
with a resonant nonlinear absorbed with saturation. The 
bistable regimes in these systems a r e  due to the pres- 
ence of a resonance and a strong dissipative nonlinear- 
ity, and a re  in principle analogous to hard excitation in 
Thomson generators (or tuned feedback amplifiers) with 
"hard" The hysteresis effect proposed 
inc"] i s  also based on the use of a Fabry -Perot resona- 
tor filled with a transparent medium with Kerr (i. e. ,  
reactive) nonlinearity, and is in essence the analog of 
t k  hysteresis in a tank circuit with nonlinear capaci- 
tance o r  inductanceclsl (inasmuch a s  the nonlinear po- 
larization causes the natural frequency of the resonator 
to deviate from the field frequency when the intensity 
i s  changed). Thus, in all these systems the hysteresis 
is due to the presence of a resonator that provides the 
feedback (and inc8-'=I also to the resonant character of 
the medium), and this, in particular, causes them to be 
strongly selective with respect to the frequency of the 
incident field. 

In contrast to the foregoing, the nature of the effects 
considered here i s  connected with a very simple wave 
phenomenon-Fresnel reflection and absorption by a 
nonlinear boundary-and is determined by the strong 
sensitivity of this phenomenon to nonlinear variation of 
the permittivity in the case of almost grazing incidence 
of the waves. Therefore, in contrast toE8-'5s17', these 
effects are  nonresonant, can cause intensity jumps up to 
100% (in contrast to systems with dissipative nonlinear- 
ity, where the jumps constitute a small fraction of the 
input intensity, for example - In addition, they 
make it possible to obtain nonlinear refraction, and in 
particular, angular scanning and jumps of the refracted 
beam, and to observe and employ the phenomenon of 
nonlinear TIR; neither a re  possible in resonators. 

4. The selfraction effect known from nonlinear optics, 
such a s  self-focusing and self-channeling of light beams 
in substances with A&,, > 0, which were predicted inclgl 
and observed inc20*211 (see the reviewsL228231), and the 
self-bending of trajectories of asymmetrical beams in 
substances with an arbitrary sign of A&,,, which was 
predicted by us inc241, observed inc25*2e1, and investi- 
gated inc2", a r e  the consequence of the transverse in- 
homogeneity of the incident wave. Wave beams for 
these effects should have a bound cross  section and a 
definite intensity profile (bell-shaped for  self-focus- 
in&2"2s1 and wedge-shaped for ~ e l f - b e n d i n 8 ~ ~ ' ~ ~ ' ) .  In 
contrast to these, the phenomenon considered here is in 
principle not due to the inhomogeneity of the incident 
wave (although it should naturally be observed in bounded 
beams, where threshold conditions obtain, § 6). There- 
fore the principal results pertain here to the case of a 
homogeneous plane incident wave. 

1. BOUNDARY CONDITIONS 

Let a plane wave with amplitude E,  be incident from 
a linear medium with permittivity E ,  at  an angle cp 
(Fig. 1) on the boundary of a nonlinear medium whose 
permittivity &, depends on the field amplitude El in the 
medium: 

where 

A&, does not depend on the field (and A&, and A&,, can 
have arbitrary signs). Neglecting here, a s  is customary 
in the investigation of self-action, C22-241 the generation 
of new frequencies, and assuming that the field depends 
on the time like e-iwt, we write down the expression for  
the wave in the linear medium in the form 

where 

k,=k. sin cp, k,=k, cos q, k,=oaO"/c, 

r is the reflection coefficient, qe, is the image of the 
vector Eo relative to the yz plane. The expression for 
the wave in a nonlinear medium is 

t 
FIG. 1. Wave diagram of the phenomenon. Ei  = EO +A&, 
+ez IE1 1 2 .  
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Calculating the magnetic field H from Maxwell's equa- 
tions 

rot H=-ieo87c, rot g = i o H / c ,  

and equating, a s  usual, the tangential values of the fields 
on the boundary, we find that kr -klr regardless of the 
direction of the plane of polarization of the incident 
wave, and in addition, if the plane of polarization is 
normal to the incidence plane (1 ), we have 

dE, (0) ~ , k ,  (1-r,) =E, (0) kt, (0) -i- l+r, = - 
Eo ' dz ' (1) 

while a t  a polarization direction parallel to the inci- 
aence plane (11) we have 

(2) 
where k,(z) = w ( & ~ ( ~ ) ) " ~ / c .  The boundary conditions in 
this form, including the derivatives of the field with re -  
spect to the coordinates, make it possible to describe 
both refraction and TIR, and remain valid for a nonlinear 
refracting medium. 

5 2. TRANSMISSION REGIME; EQUATIONS 
AND GENERAL PROPERTIES 

1. If in a nonlinear medium the field is also a plane 
homogeneous wave that goes off from the boundary a t  
the refraction angle (o, (Fig. 1): 

dE,/dz=O, k,(z) =const, k,,=k, sin cp,, k,,=k, cos (c.,, 

then the boundary condition kx = kl, leads to the usual 
Snell's formula, generalized to include the nonlinear 
case: 

sin rp, eo 

The boundary conditions (1) and (2), with allowance for 
the fact that d ~ , / d z  =0, lead to the usual Fresnel for- 
mulas, '''' which a re  also formally valid in the nonlin- 
ea r  case: 

2 sin cp, cos rp 2 sin cp, cos cp 

( E i ) ~ = E o  sin (cp,+cp) 
, (EI)II=Eo 

sin(cp,+cp)cos (cpt-cp) ' 
sin (TI-cp) tdcp-cpi) (4) 

T, = , ~ I I  = - . 
sin (cp,+cp) tg(rp+cpt) 

Substituting expression (4) for the field El in (3), we ob- 
tain an exact self-consistent equation that relates the 
angles rpl and (o a t  a given polarization and incident- 
field amplitude E,. 

2. Usually, especially in optics, the nonlinearity is 
weak, I A&,, I << cO. It is therefore clear that substantial 
deviations of the nonlinear-regime parameters from 
those of the linear regime appear likewise only if 1 A&, I 
<<E,, and consequently in the case of small glancing 
angles +=a/2 - (o and transmission angles +, =n/2 - (ol 

(Fig. 1): 

But then formulas (4) become the same for any polariza- 
tion 

Substituting formula (6) for the field El in (3), introduc- 
ing the relative intensity of the incidence field A; and 
the linear permittivity difference A:: 

(where A; and A: can have arbitrary signs), using the 
condition (5), and retaining in (3) only terms of the 
same order of smallness, we obtain the "nonlinear 
Snell's formula" for  the transmission angle ql: 

or the "nonlinear Fresnel formula" for the reflection 
coefficient Y: 

3. The fourth-order equations (8) and (9) can be 
solved in terms of radicals. Since, however, Eq. (9) 
is of f i rs t  order relative to all the given parameters of 
the problem (@, A:, and A:), the dependence of Y on 
these parameters can be easily obtained and investi- 
gated as an inverse function. 

4. It is easy to show that &, > 0 the transmission re- 
gime is always single-valued, and a t  &,< 0 it is single- 
valued under the condition I A: 1 4 A 5 and doubly -valued 
under the condition I A: I > A:. In particular, f o r  nega- 
tive or  zero linear permittivity difference (A; (0) and 
at E, < 0, the transmission is doubly -valued for any 
field inside a definite range of angles. It is seen from 
(8) and (9) that at an arbitrary sign of the nonlinearity 
the plot of the transmission regime approaches the TIR 
(i. e. , - 0, Y- 1) at the following relation between the 
parameters of the problem 

which determines the critical value of any of them if the 
two others a r e  fixed. At &, < 0 the angle $ = $, is  also 
the maximal TIR angle (1 4, Sec. 21, where a jump from 
TIR to transmission takes place. 

5. In a "weak" field, i. e. , when the change of the 
transmission regime is small in comparison with the 
linear case, we have for the stable branch of the re-  
gime 

where 

a re  the values of +, and Y in the linear case. In par- 
ticular, a t  large glancing angles, fl>> I A: I + 1 A 2, 1, 
we have 
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and at small angles, $<< I A ,  I (in the case of A: >O), 
we have 

From (11) follows the criterion of the "weakness" of the 
field: 

The criterion (141, just a s  the expression (lo), confirms 
the necessity of satisfying the previously assumed con- 
dition (5) in order to observe "strong" effects. 

6. Let us examine the effective total nonlinear trans- 
parentization. From expression (9) it is seen that there 
exists an infinite-field intensity E 2  =E:,, such that 
~ A : + A & ,  =O, i.e., 

at which there is no reflection at all (Y = 0) for any 
glancing angle $. This phenomenon is not the nonlinear 
analog of the Brewster transparentization (since it does 
not depend on either the incidence angle o r  the polariza- 
tion), and i s  due to the fact that when (15) is satisfied 
the field equalizes the permittivities of the two media 
( A E ~  = - AS,,), and by the same token makes the bound- 
ary completely transparent. This is possible at any 
sign of E,, the only requirement being that E, and A&, 
be of opposite sign. It should be noted, however, that 
at &,< 0 part of the branch of the nonlinear transparent- 
ization regime (0 < $< I A ,  1 /2'12 i s  stable, and a part 
(2-'I2< $/I A, I <31i2) is one of the two stable regimes 
(see curve 4 of Fig. 4a below, and also § 4); the latter 
pertains also to the section (0 < $< I A ,  1 /Z3l2) at E,> 0 
(see curve 6 of Fig. 3a below and also B 5). 

5 3. NONLINEAR TIR; EQUATION AND BOUNDARY 
CONDITIONS 

1. In the TIR regime, a refracting medium, only a 
transverse inhomogeneous surface wave propagates along 
the interface (kl, E O), and under the condition kx = kl, 
(5 1) it is expressed in the form g1 =& El(z) exp(ikd). 
The equation for E l k )  follows from Maxwell's equa- 
tions (8 l )  and under the condition (5) its form is inde- 
pendent of the direction of the incidentfield polariza- 
tion plane 

Equation (16) i s  exact in the case when the direction of 
the polarization plane is normal to the incidence plane; 
then El =El, and the magnetic component HI, is longi- 
tudinal. When the polarization is parallel to the plane 
of incidence, it is the electric field E ,  which is longi- 
tudinal; under the condition (5) we have El,<< El,=El. 
Introducing the dimensionless amplitude of the field in 

the linear medium u and the dimensionless coordinate 
f: 

we reduce (16), with (5) taken into account, to the form 

2. At infinity ( tom) ,  by virtue of the absence of 
sources at f > 0, the solutions of (18) should satisfy the 
conditions 

u ( - )  =O and (or) du ( -~ ) /db=O.  (19) 

The boundary conditions (1) and (2) for  El also coincide 
if (5) is satisfied. Recognizing that k,=O in the case of 
TIR, they reduce, in the notation of (7) and (l7), to the 
form 

It is seen f rom this, in particular, that I r I =1, as ex- 
pected. Writing now u and Y in the form u =eib I u(k) I 
and Y =ei6,,  we obtain the boundary condition for the 
real  amplitude of the wave I : 

and a formula for  the phases of the surface (6) and re- 
flected (6,) waves: 

8=6, /2=rarc  cos I u ( 0 ) / A E (  =Tare cos 1 2E1 (O)lE, 1 ,  (22) 

where the upper sign corresponds to I u 1 (0) < 0 and the "' 

lower to I u l;(O)> 0. 

3. In 5 2 and here we have obtained equations,for only 
two types of waves in the nonlinear medium: a) a plane 
homogeneous wave (transition regime) and b) inhomoge- 
neous surface waves (TIR regime). It can be shown, 
however, that a t  E,. 0 there can be no other wave re-  
gimes. At &, < 0, in addition to these regimes, solu- 
tions of (18) can exist also in the form of nonlinear 
traveling waves of complicated structure in plasma 
electrodynamics (see, e. g., C291 ). It follows from the 
exact solutions that the region of existence of these 
waves is bounded precisely by the zone of the purely 
nonlinear TIR. They require a special analysis, 
in which account is taken, in particular, of the tran- 
sient behavior in time. However, owing to the localiza- 
tion of these solutions in the hysteresis zone only, and 
by virtue of the definite limitations on their amplitude, 
the region where they exist is such that the hysteresis 
is preserved even for solutions that lie on the boundary 
of this region. 

$ 4. HYSTERESES AT NEGATIVE NONLINEARITY 
( E z  < 0 )  

1. We investigate f i rs t  the transmission regime. 
We consider refraction and reflection (8) and (9) in the 
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case A:< 0 for different signs of the linear mismatch 
~ 5 ( 7 ) .  

We note beforehand that whereas in the case of am- 
biguity of the transmission regime (which takes place 
only at &,< 0) the points where they jump from the TIR 
to stable transmission takes place a r e  determined by 
relation (lo), the backward jump (from transmission 
to TIR) occurs at those points where the dependence of 
JI, O r  of Y on J, or  on A; has a vertical tangent. It fol- 
lows from (8) that the geometric locus of these points is 

.Thus, the points J, = $,,, where dJIl/dJI = m ,  a r e  deter- 
mined by eliminating $, from (8) and (23). For  Y(+) the 
corresponding curve is obtained by substituting (23) in 
(6), and for  Y(A:) it is determined from (9) by the for- 
mula 

The geometric loci of the point a t  which d&/d+=m or 
dJI l /d~ = 00 are  shown in all the diagrams a s  thick 
dashed lines. 

1A. If the linear optical densities of both media a r e  
equal (A: =O), i.e., if the boundary is completely trans- 
parent to the weak wave (Fig. 2a, curve I), then in a 
strong field (curve 2) the functions +,(J,) o r  Y($) become 
doubly valued at +,, < J, < J,,, where +, = I As I = ?Eo( l cz I /  
c,)"~ and $c,=4+0/33/2. The width of the hysteresis loop 
in terms of the glancing angle i s  here 

FIG. 2. Dependence of the reflection coefficient r and of the 
transmission angle $l on the glancing angle $ on a fixed value 
of the relative intensity of the incident light A; (a) and on A; 
at a fixed value of $ (b), in the case of exwt equality of the 
linear permittivities of both media (A = 0). a) line 1-linear 
case, and b) curves: 2-transmission regime at negative 
nonlinearity (c2 < 0); 3-TIR regime; 4-transmission at posi- 
tive nonlinearity (c2 > 0). Here and in the figures that follow 
the thin dashed lines represent the unstable branches of the 
regime and the arrows indicate the directions of the jumps. 

FIG. 3. Dependence of the reflection r qi of the transrnis- 
sion angle Jil on the glancing angle Ji at different intensities 
A:(a) and on A: at different Ji (b) in the case of a negative 
linear mismatch of the permittivities (A: < 0). Curves: 1- 
linear case; 2-transmission at e2 < 0; 3-7-transmission at 
E 2 > 0  (~-o<A;< IAfl, 4-A2- I A ;  1, 5 - 1 < A ~ / l ~ f l < 4 ,  
6-A; =4 IA: I ,  7-A; 2 4  /A$): 8-TIR regime, b) Curve 
2-transmission at c2 < 0; curves 1 and 3 to 7-transmission 
at c2>0 (I -$> IAI I, 3-Ji=IAII, 4 - - 1 > $ / I ~ ~ 1 > 1 / 2 f i ,  
5-$= \ A l  1/2fi, 6-$< \A1 1 /2a ,  7-$<< \ A I \ ) ;  8-TIR 
regime. 

In particular, for the CdS crystal, where n, (=2- '&,~, ' /~)  
=-lo-'' cgsesu, C271 in a field E,-  lo6 ~ / c m  at &:/'- 2.5, 
we obtain q0- 3.6"; I),,,,- 2.75"; A+,,- 0.85". The inten- 
sity hysteresis zone (Fig. 2b) is given by f < I A; 1 
< @. We note that a t  the point bf breakaway to the 
TIR we have = +,,/2 and r = 1 /3. 

It is easy to conclude from qualitative considera- 
tions that the smallest of all the possible values of the 
field amplitude in the nonlinear medium El is always 
stable, a s  is consequently also the maximum value of 
the transmission angle (Figs. 2-4, where the thin 
dashed lines represent the unstable regimes). 

1B. If the refractive medium in the linear case is 
optically l e ss  dense than the medium bordering on it 
(upper medium in Fig. I), i.e., A f  <o, then hysteresis 
exists also a t  any intensity of the incident field (Fig. 3). 
Here, however, in a relatively weak field (I A; I 
<< I A; I ) ,  the width of the hysteresis loop is very 
small: 

(4, is determined from (lo), and +,,from the simultane- 
ous solutions of (8) and (23)), i.e., A$,, is proportional 
to E:. In a sufficiently strong field (I A: I >> 1 A; 1 ) the 
value of A&, is proportional to E, and approaches (25). 

1C. If the refractive medium in the linear case is 
optically denser than the upper medium, i.e., A:> 0, 
then hysteresis appears only in a sufficiently strong 
field, I A ~  I > hf  (Fig. 4). At A:< IA; I < 4 ~ :  a mini- 
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FIG. 4. Dependence of the reflection r and of the transmission 
angle JIi on the glancing angle JI at different intensities A: (a) 
and on A; at different J, (b) i n  the case of positive linear mis- 
match of the permittivities (A: > 0). a) Curves: 1-linear 
case, 2-tranmission at E, >O; curves 3 to 5-transmission at 
e 2 < 0  (3-/A$ I <  4Af, 4-IA; 1 > 4 ~ : ) ;  6-TLRregime. b) 
Curves: 1 to 3-transmission at e2 < 0  (1-JI < A 1 / ~  2-1) 

A,/fi, 3-J, >&,/a; 4-TIR regime; 5-transmission at 
Q >o.  

mum appears on the stable branch of the transmission 
regime I),(+) (Fig. 4a, solid curve 3), and simultaneous- 
ly there appears a nonstable branch of this regime 
(dashed curve 3), a s  well a s  an isolated stable TIR sec- 
tion (curve 6). It i s  possible to land on the lat ter  only 
in the following manner: the glancing angle is fixed at 
$J< ~ , 3 ~ / ~ ,  the intensity i s  increased until a jump into 
the TIR regime takes place (curve 1 o r  2 of Fig. 4b), 
and the intensity i s  then decreased to a value somewhat 
higher than I A; I,,, for  the given angle +. The ex- 
trema of the &(+) curves lie in this on the @ = &(A: 
- 8) curve, and the jump from the TIR to refraction 
occurs at J1,(10). 

Let us examine the optical flip-flop. When the 
equality (15) is satisfied, total linear transparentiza- 
tion of the boundary takes place in the transmission re-  
gime for  all angles $> ?& = ~ , / 2 ~ / ~  (line 4 of Fig. 4a). 
Therefore at the instant of the hysteresis jumps a break- 
away is observed from total transmission of the wave to 
total reflection (curve 6 of Fig. 4a) and back. The 
"blocking" of the boundary (the jump from r = 0 to r = 1) 
occurs if the glancing angle goes through the value 11, 
= @, as it decreases (at a fixed intensity I A i l  ,,=4A; ), 
o r  else if the intensity goes through the value 4 ~ 5  a s  
it increases (at a fixed angle + =+,,)-Fig. 4a, curve 2. 
(The course of the second branch of the transmission 
regime &(+) and Y(+), which contains also stable and 
unstable sections (curve 4 of Fig. 4a) is determined by 
a cubic equation that follows from (8) and (9) and is 
written for in the form + JI)' = + 3+), and for  
Y in the form A;(l+r),(2 + r )  =4@.) The return jump, 
which leads to the total "opening" of the boundary (from 
Y = 1 to r = 0), occurs at z) = 3112~1 (Fig. 4a) o r  at 1 A; 1 
=$A: (Fig. 4b). ~t n,- -10-lo cgsesu, no- 2.5, and 
A&, - lo-' we have E,,- 4 x105 ~ / c m .  

Thus, at this setting the system constitutes an ideal 
optical "flip-flop" of sorts, which affords in optics a 

r a r e  opportunity of an abrupt reversal  of a high-power 
energy flux with small 10sses.~'  At other settings the 
jumps of the reflection a r e  also large. For  example, 
in the case A: = 0 (Sec. 1A) the jump from transmission 
( r  = 1/31 to TIR (I r 1 = 1) produces a change of power re- 
flection AR = 1 -b - 890/0, and the return jump (from I r 1 
= 1 to r -  ) produces a change AR - 99.6%. Withfurther 
increase of the intensity ( I A: I > 4 ~ ; ) ,  the functions 
h(+) and r(+) have already two hysteresis loops (curve 
5 of Fig. 4b), while the intensity dependences of 4% 
always have one loop (Fig. 4b). At 14% 1 = 4 ~ !  the 
width of the loop in terms of the glancing angle is AJI, 
= 0.5 l A, I (approximately twice a s  large than the value 
obtained in (25)) and tends to the value obtained in (25) 
with increasing I A i I . 

2. We consider the TIR regime. Equation (18) at 
E ,< 0 has a solution that satisfies the conditions (19) 
and (21): 

where =(- t+@ - AJ) ' /~ ,  u0z Iu(0)I is the amplitude of the 
field a t  the boundary: 

[ (A~'+2$21AE21)'"-IA1211'" for A l 2 < 0 ,  $ ' < ~ A I Z ~ ,  
lL"=ltLto)l={ [$ 

~(?IAc'l-2AlZ-,+a)"+AlZl'" for OC$l+A1'<lAE'l,  

(28) 
where + = qbTm = (I A; I - Af)l/' is the maximum angle 
a t  which nonlinear TIR exists (jump to  the transmis- 
sion regime). Comparison with relation (10) yields & 
= ~ T I R  

The f i r s t  of the solutions (27) is the nonlinear analog 
of the surface wave of the linear TIR, which is realized 
under the same conditions (A: < 0, @ 4 I A ;  I). As z - m, it attenuated exponentially - eBY4 ,  just a s  in the 
linear case, but the depth of penetration of the field in 
the medium (at the half-intensity level), L,,, decreases 
in comparison with the linear penetration, L, = ln21/2/3toy: 

In a weak field we have L,, - L,, and in a strong field 
(u:>> g), which is equivalent to the condition 1 A: 1 
>> 11; I ( I A ;  I/+'-I) ,  we have L,,=O.G~L,/U~<<L,.  

The second, transition, solution (27) corresponds to 
the boundary of the linear TIR (when El = const = 2E0, 
which is valid also for  the boundary of the nonlinear 
TIR, the fourth of the solutions (27)). The third of 
the solutions (27) corresponds already to those glancing 
angles #, at which the linear TIR does not exist a t  all, 
i.e., a t  IA, I < + < + T m ,  i f A f < O ,  a n d a t O < + < +  ,,,, 
if A: >O. As z -  m it tends to a constant ly l =(q2 
that is independent of the intensity A; (in particular, at 
A:=O we have ly I =+). 

The phases of the waves a r e  obtained by substituting 
(28) in (22), where it is necessary to take only the up- 
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per sign, inasmuch a s  a t  0 we always have lu l'(0) 
( 0  (17). At the points where the TIR breaks away, 
i.e., at $=$o=$,,, we have 6=6,=0. 

8 5. HYSTERESES AT POSITIVE NONLINEARITY 
(e, < o) 

1. The transmission regime described by Eqs. (8) 
and (9) is always single-valued at &,>O (Fig, 2, curves 
4; Fig. 3, curves 3-7; Fig. 4a, curve 2). With in- 
creasing A:, the reflection increases, in such a way 
that at r- - 1 we have 

a s  follows from (9) for any field a t  @<<A:, if A:>o, 
and in a sufficiently strong field we have A; >> 4$' 
+ IA: I ) ,  if A:<o. ~f A:=o, then r + l = ~ ( $ / ~ ~ ) " ~  (at 
A;>> 4q2). In a weak field (see (14)) the transmission 
is determined by formulas (11)-(13). At A: < 0 the 
angle limit of the transmission regime shifts towards 
zero (see (10) and Fig. 3a, curve 3); at A: = 1 A: I we 
have already from (10) q O = O  (curve 4). At A % >  IA: I 
the reflection coefficient r in the transmission regime 
no longer reaches the value + 1  a t  all (curves 5-7). 
The extremum (Y, = - 1 + 2 1 A ,  1 /AE) is reached here 
at $=O. On the other hand, if the condition (15) is sat- 
isf ied, then total nonlinear transparentization takes 
place (line 6) for all glancing angles + (see also curves 
1 and3  t o 7 o f F i g .  3b). 

2. The TIR regime in the case E, >O, just a s  in the 
linear case, exists only a t  A:< 0. Jumps of the reflec- 
tion coefficient appear in this case on going from the 
TIR to transmission; in this case they a re  due to the 
ambiguity of the TIR regime (and not of the transmis- 
sion a s  in the case E, < 0). The return transition (from 
transmission to TIR) at J, = q0 (see (10)) is accompanied 
in the case when 1 A; I< I A: I only by a jump in the 
phase of the reflection. At any intensity A;, the maxi- 
mum angle a t  which TIR exists, + = hIR, is always 
larger than the minimal glancing angle for the trans- 
mission regime, $ J = J , ~  (see Fig. 3a, curves 3-7). 

2A. Equation (18) has a f i rs t  integral satisfying the 
conditioh (l9), namely 

(and in addition, lu l e  =const =y2, which by virtue of 
(21) is realized only a t  $' = qi = I A: I - A ;; this solution 
is unstable, see Sec. 2E below). The solution of Eq. 
(31) i s  (see Fig. 5a) 

Eliminating lu l ' (0) fromi Eq. (31) taken at b = O  and 
from the boundary conditions (21), we obtain an equa- 
tion for u,, namely 

2B. Stipulatingthat the amplitude (33) and the phases 
of the waves (22) be real quantities, we obtain the con- 
ditions for the realization of the TIR 

FIG. 5. Amplitude profiles udz) of the nonlinear surface wave 
in TIR in the case zZ > 0, A < 0 (a) and the regions of the ex- 
istence of TIR regimes in the plane of the parameters of the 
incident wave (b). 

from which follows the maximum possible glancing 
angle a t  TIR 

(Fig. 5b, curves 1 and 2), i.e., we always have I A ,  I 
> +TIR > q O = ( I ~ :  I - A % ) ' / ~  (curve 3). 

2C. It follows from (32) and (33) that at E, >O the 
number of possible states of TIR ranges from one (at 

A;/< I A: I ,  when lul = A ~ / c o s ~ ( ~ ~ ~ z ) ) ,  to four 
(their amplitude profiles a re  indicated in Fig. 5a). If 
we disregard the critical values of the parameters, then 
the number of regimes can be either two (region I on 
Fig. 5b) or  four (region 11). The two states of the TIR 
in the region I, which is defined by the inequality 

correspond to one value of uo (the lower sign in (33)). 
These states differ in the signs of the derivatives lu l'(0) 
(321, and consequently in the signs of the phases (22), 
and the form of their profiles is given, say, by any of 
the pairs of curves on Fig. 5a with coinciding uo. In 
region I1 on Fig. 5b 

the presence of two values of .uo (see (33)) and of two 
signs in (32) for each of them yields already four states 
(both pairs of curves on Fig. 5a). 

2D. The power transported in the surface wave along 
the interface of the media (per unit length of the y axis) 
is 

where, a s  follows from (32) and (33) (see Fig. 6), 

The signs in front of the square bracket correspond 
here to the signs in (32), and the signs in front of the 
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FIG. 6. Dependence of the total relative power I transported 
by the surface waves in TIR in the case e2 > 0; A: < 0, on the 
glancing angle at different intensities A: (a) and in A: at 
different $ (b). a) Curves: 1-linear case; 2-A2 < I A I ; B 3-A;= 1 Ail ; 4 - l < ~ i / l ~ i  I <4; 5-~:=4 IA, I ;  6-A: 
> 4 1 ~ f 1 .  h) Curves: l - l / f i<$ / l~ ,  1<1; 2-$=lAll/JZ; 
3.4-J, < IAl  la. 

round parentheses correspond to the signs in (33). Cal- 
culating the derivatives 81 /B(A;) cc BW/B(E 20) (Fig. 6b) 
and assuming their positiveness to be the criterion of 
the stability, we find from (39) that the solutions in (32) 
which a re  stable a r e  those with the upper sign (for which 
lu(0) I; < 0; they consequently have no maxima inside 
the nonlinear medium-solid curves of Fig. 5a). The 
same solutions, which have a maximum inside the re -  
fracting medium (dashed curve of Fig. 5a) and a re  sort  
of two-dimensional self-focusing channels excited not 
through the end face but "from the side," a re  unstable. 

The relative power I (39) in the principal stable state 
of the TIR reaches a maximum I,, = 1/2~/ '  at A: 
= /A: I and + = / A ,  1/2'/'. 

2E. The phases of the waves a r e  determined by sub- 
stituting (33) in (221, where the stable states corre- 
spond to the upper sign. On going from the TIR to 
transmission (i. e., at JI = qT, (35)) we have 

In the return transition-from transmission to TIR 
(A; f I A; 1 ) the phase of the reflection jumps from 6, 
= O  to 

The fifth TIR regime which is possible at this point 
lu l =const =A, (Sec. 2A) is unstable, since any in- 
finitesimal decrease of intensity A: changes the solu- 
tion jumpwise by a finite amount in virtue of (32). 

The width of the hysteresis loop relative to the glanc- 
ing angle Aqh = qTIR - qO in weak fields (A$ << I h f  I ) f i rs t  
increases like Aqh C I , ~  A%/4 1 A; 1 / 2 1 / 2 ~ E ,  reaching a maxi- 
mum A& = I A, i /2 at A: = I A; I ,  and then decreases like 
1 A; 1 /2'l2AB. The depth of penetration of the field into 
the medium (L,, ) is of the same order a s  in the linear 
TIR (L,) independently of the field. 

2F. We present numerical estimates for CS,, where 
n,- 9x10-l2 cgs esu and no- 1.5. Here, at A&,- -lo-' 
the transparency inducing field is E , -  1.8X 10' ~ / c m  

(see (1 5)), in which case qTI R- 0.52', and in the TIR 
regime at $ 5  qT,, and ko- lo5  cm-' we have W- 1.7 
x lo7 ~ / c m  (see (38) and (39)), and L,, - 1.4 pm. 

3 6. THRESHOLD CHARACTERISTICS FOR 
BOUNDED BEAMS 

Under real  conditions, the transverse dimension a 
of the light beam, a s  well as i ts  total power P, is lim- 
ited, and this leads to additional requirements. By 
virtue of the diffraction of the narrow beam, the glanc- 
ing angles of the wave a t  the different points of the spot 
of the boundary a re  different; for  the case A! = 0 and 
zZ<O (Sec. 41, if we require that the diffraction-in- 
duced angular smearing of the Gaussian beam over the 
length of i t s  interaction with the boundary be not less  
than the width of the hysteresis loop (25), we obtain an 
estimate for  its threshold power: 

Here P, does not depend on the beam radius. At n, - - 10'1° cgs  esu and ko- 10' cm-' we have P,,- 1 kW. 
On the other hand, if A t  #0, then P,, depends on the 
radius of the beam, tending to the value (40) if the field 
a t  the center exceeds the value 

i. e., I A: I- I A; 1. In turn, relation (41) imposes the 
following condition on the beam radius a: 

At ko- lo5 cm", A&, - lo", and P- 100P, we have a, - 0.1 mm. 

CONCLUSION 

1. It appears that the simplest possibility of experi- 
mentally verifying the phenomenon is to .use thermal 
nonlinearity, which makes it possible to work with low 
powers and in the cw regimes of the laser. The linear 
medium can be glass, and the nonlinear medium a liq- 
uid such as ether, alcohol, benzene, etc. The match- 
ing of &, and &, can be easily attained here by dyeing 
the liquid. This makes the liquid a convenient compo- 
nent also in the investigation of other nonlinearity 
mechanisms (the Kerr effect, striction, e t ~ . ~ ~ ~ ' ) ,  which 
a re  also large for organic liquids.L301 We note that the 
thermal nonlinearity due to the heating of the thin near- 
surface layer of the refractive medium may turn out to 
be significant for arbitrary media and in sufficiently 
short pulses. The time of establishment of A&,, at the 
penetration depth L,, of the surface wave in the case of 
T m  i s  T,,- L,,/v (where v i s  the speed of sound in the 
medium), and amounts to - l0'~-10-'~ sec at typical pa- 
rameters. 

2. The main results obtained here pertain to an un- 
bounded stationary plane wave incident on a semi-in- 
finite nonlinear medium. If the beam cross seetion, 
the pulse duration, the curvature of the wave front, and 
the thickness of the nonlinear medium are  all bounded, 
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then additional aspects of the interaction should appear 
(besides the threshold conditions, Sec. 6), which call 
for further investigation. 

Limiting the transverse dimension of the beam, even 
in the linear case in TIR, leads to a shift of the re-  
flected beam along the boundary, Es10 ',] and the limiting 
of the duration of the pulse leads to a change in the f re-  
quency spectrum of the reflected wave.cs2' Understand- 
ably, there should exist also nonlinear analogs of these 
phenomena, which a re  of particular interest here be- 
cause different sections of the boundary can be in dif- 
ferent states. In addition, at E,> 0 in a nonlinear me- 
dium, under certain conditions, self-focusing channels 
can be produced even in the transmission regime (in 
contrast to the near-surface "channel" in TIR, § 5, 
Sec. 2), which can also influence the reflection. The 
presence of very strong fields can lead in some cases 
to breakdown, which in the f i rs t  experiments only 
facilitates the observation of the effect, just as it oc- 
curred when sel f - f~cusin&~] and ~ e l f - b e n d i n k ~ ~ ]  were 
observed. If the incident wave is not plane (owing to 
focusing, defocusing, or  diffraction), then by virtue of 
the difference in the reflection of the "near" and "farJ' 
edges of the beam from the boundary, the wave in the 
linear medium can have an asymmetrical amplitude 
profile, and this can lead to ~ e l f - b e n d i n g . ~ ~ ~ ]  

It appears that a finite thickness of the nonlinear layer 
leads, under certain conditions, to formation of several 
reflection-hysteresis loops corresponding to the edges 
of the regions in which different modes of the nonlinear 
waveguide made up by the layer exist. After a beam 
with a bounded cross  section passes through the layer, 
depending on the amplitude and the front of the wave, 
one can observe both self-bending and "external" self- 
focusing o r  self-defocusing. c331 

We note, finally, that when higher harmonics a re  
generated on the nonlinear boundary, C2-51 if the condi- 
tions described here a re  satisfied, hysteresis can like- 
wise be observed (both for the fundamental and for the 
higher harmonics). 

3. Let us point some possible applications of the 
hysteresis reflection and refraction of light on a bound- 
ary of a nonlinear medium, for the purpose of investi- 
gating the nonlinear properties of a medium and in laser 
technology. 

1 )  With the aid of the phenomena considered above we 
can measure E, with high accuracy, due to the accuracy 
with which the instants of the jumps a re  determined (for 
example, on oscillograms of the pulses). 

2) In contrast to other self-action effects in nonlinear 
reflection (in the T m  regime), the field penetrates into 
the medium to a very small depth (L,,) .  This could be 
quite useful a s  applied to nonlinear substances with 
strong absorption, since it makes it possible, despite 
the absorption, to investigate and to use their nonlinear- 
ity in the case when L,, << L,, where L, i s  the length of 
the dissipative damping of the wave. We note that for 
many semiconductors the nonlinearity increases near 
the edge of the absorption band by several orders of 
magnitude, c341 i. e. ,  the threshold power is accordingly 

decreased. 

3) In a high-power nonstationary field a t  resonance 
with the quantum transition of the medium, oscillations 
of the populations of the resonance levels can occur, and 
a re  strongest when the pulse duration becomes of the or-  
der of o r  l e s s  than the relaxation times of the system?'' 
Under the conditions described here, one could observe 
and investigate oscillations of reflection by the boundary 
of s u ~ h a s y s t e m f r o m  Irl<<l to Irl =1, i.e., s o t o  
speak strongly enhanced amplitude quantum oscillations. 

4) In the resonance lines produced by several transi- 
tions, some of which a r e  weak and unresolvable, the 
nonlinear properties of each differ strongly. Cs81 This 
would make i t  possible to  realize with the aid of non- 
linear TIR a modification of nonlinear spectroscopy for 
the resolution of such lines, which would be analogous 
to linear spectroscopy of internal reflectioncs7' and 
would have its main advantages. 

5) At a definite setting, the nonlinear boundary changes 
at the instant of the jump from Y = 0 to I Y l = 1, and there- 
fore can serve a s  an ideal' threshold element-shutter- 
in lasers  for  the generation of giant pulses; this shutter 
would have the following advantages in comparison with 
a saturable resonant absorber: a )  it absorbs practically 
no energy during the time of the lasing itself, when we 
already have I r I =1 (the TIR regime); b) it is reso- 
nant when ordinary nonlinear media a re  used and has a 
high operating speed, limited only by the relaxation of 
the nonlinearity; c) the intensity of the light a t  which 
total reflection i s  turned on jumpwise can be easily 
regulated by choosing the linear mismatch A&, and the 
glancing angle I). In addition, the intensity of the "turn- 
ing-off" field is always smaller than that of the "turn- 
ing-on" field, thus increasing the efficiency in the gen- 
eration of a giant pulse. All this makes it possible to 
use the considered system also for the formation of 
short pulse fronts, and also to shorten pulses. 

6) The bistability of the regimes which is present in 
the hysteresis-loop zone makes i t  possible to realize 
an optical flip-flop in all those applications where this 
bistability is significant, C8-15* 17? and in particular to 
realize a binary logic element for  optical computers. 

7) Nonlinear refraction can. be used for an angular 
switching and scanning of the refracted beam (when the 
intensity of the incident light is varied), resulting in 
angular deflections of the beam and in a deflection time 
of the same order a s  in ~ e l f - b e n d i n g , ' ~ $ ~ ~ '  and not re-  
quiring a mandatory asymmetry of i t s  amplitude profile. 

I am deeply grateful to  R. V. Khokhlov for interest 
and support; t o  B. Ya. Zel'dovich, N. F. Pilipetskii, 
V. B. Sandomirskii, A. S. Gurvich, and V. A. Permya- 
kov and to the participants of S. M. Rytov's seminar 
for  a discussion of the results of the work, and to  L. I. 
Gudzenko and G. A. Askar'yan for valuable advice. 

 he reactive component of the nonlinearity can be significant 
also in the case of resonant absorption. Ci41151 

2 ' ~ t  was noted in the Introduction that resonator systems with 
dissipative n ~ n i i n e a r i t ~ [ ' ~ - ~ ~ '  have large losses. 
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