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The phase diagram, in coordinates H and I ,  is investigated for a ferromagnetic plate located in an 
external magnetic field parallel to the surface of the plate. It is shown that in the high-anisotropy case, 
P > 4 a ,  the phase transition from the unifonn state to a domain state on change of the plate thickness 
occurs as a second-order phase transition when H >  (P-4w)Mo, and as a first-order transition when 
H <  @-4w)M,. The phase diagram of a plate with large anisotropy, P > 4 r ,  is substantially more 
complicated than in the low-anisotropy case investigated earlier, and it has a number of peculiarities. In 
particular, an equilibrium domain structure exists for an arbitrarily small plate thickness. 

PACS numbers: 75.70.Kw, 75.30.G~ 

A quantitative theory of the domain structure of fer-  
romagnets was f i rs t  developed by Landau and ~ i f s h i t z ~ ' ]  
(see alsoc2]). The domain structure of a ferromagnetic 
plate was investigated in the case in which the thickness 
of the plate greatly exceeds the thickness of the domain 
boundary. A criterion was also formulated for the sin- 
gle-domain state of a ferromagnet: a specimen of fer-  
romagnetic material should be in the uniform state if 
L<< where L is a characteristic dimension of the 
specimen and CY is an exchange constant. Later, do- 
main structures of ferromagnets were extensively stud- 
ied experimentally; this included intensive study of the 

film to a domain state led to a number of theoretical 
studies.[451 It was that in ferromagnetic 
films with small anisotropy (PC 4n, where P is an anisot- 
ropy constant), the state with a stripe domain structure 
occurs in consequence of an instability of the uniform 
state of the film, in which the magnetization lies in the 
plane of the film, with respect to  small inhomogenous 
perturbations. A phase diagram, in coordinates H and 
1, was given for a ferromagnetic film with small anisot- 
ropy, P< 4n .L5' The stability regions of the uniform 
phase a,, and the nonuniform (domain) phase a, were 
separated by a line of second-order phase transitions 
H =H,(I). 

properties of thin ferromagnetic films (those with pa- The form of, the domain structure in the vicinity of 
rameters close to the single-domain criterion). For  the curve ~ ~ ( 1 )  has been investigated. The variation 
films with the axis of easiest magnetization perpendicu- of the parameters of the magnetization distribution (am- 
l a r  to the surface, the so-called stripe domain structure plitude, period, etc.) was found, and also an analytical 
was (see, for [31)9 expression for ~ ~ ( 1 )  was for large thick- 
and also a transition from the uniform state of a film to nesses: 
a state with a stripe domain structure upon change of 
the plate thickness 1 (or of the external magnetic field 
H applied in the plane of the film). The experimental 4n" 

discovery of the transition from the uniform state of a M, 
(1) 
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rot H,=O, div H,=-4n div M (3) 

FIG. 1. Phase diagram of a ferromagnetic plate with large 
anisotropy (j3 > 4a) (schematic). 1, instability line of the phase 
+<, Hi(l). 2, line of first-order phase transitions cp,*GD, 
H@(l). 3, line of second-order transitions G,,*+,, Hc(l). The 
points show values of H,(l) obtained by numerical methods 
when 1 - a lJ2. 

It was shown that for large plate thicknesses, the tran- 
sition ,, =aD occurs for the case of large anisotropy, 
@> 4n, as for the case p< 477, as a second-order transi- 
tion. It can be shown, however, that when H = 0 the uni- 
form state of a film with /3> 477 i s  stable with respect to 
small perturbations for arbitrary plate thicknesses 
(see"', § 11.5). From this fact it is clear that when 
ever H =0, the transition from the uniform state to a 
domain state cannot be a second-order phase transition. 

We have investigated the states of a ferromagnetic 
plate with large anisotropy, in an external magnetic 
field parallel to the surface of the plate. We have con- 
structed, in the (H, 1) plane, a phase diagram that dif- 
f e r s  significantly from the phase diagram for a plate 
with small anisotropy (see Fig. 1). We have shown that 
when H< (0 - 477)Mo, the transition from the uniform 
state of the plate to a state with a domain structure oc- 
curs by a first-order phase transition. It turned out 
that when p >> 4n, a thermodynamic-equilibrium domain 
structure exists at arbitrarily small plate thickness. 
We have shown that for an infinite plane-parallel plate 
of thickness I ,  the width of the interval of magnetic- 
field values within which there is an equilibrium domain 
structure approaches zero as I - 0. 

$1. UNIFORM PHASES OF A FERROMAGNETIC 
PLATE, AND THEIR STABILITY 

We write the simplest expression for the thermody- 
namic potential of a uniaxial plane-parallel ferromag- 
netic plate in an external magnetic field: 

where CY is the exchange constant, P is the anisotropy 
constant, n is a unit vector along the axis of anisotropy 
(the z axis), H is the external magnetic field, and H,,, is 
the demagnetizing field. We shall suppose that the an- 
isotropy axis is perpendicular to the surface of the plate 
and that the external magnetic field is applied in the 
plane of the plate, in the direction of the y axis. 

The demagnetizing field H,,, is determined by the equa- 
tions of magnetostatics 

with the usual boundary conditions at the plate boundary 

where the indices i and e denote the fields inside and out- 
side the plate, and the indices t and n denote the tangen- 
tial and normal components of the vectors. 

In order to investigate the phase diagram of the plate, 
i t  is necessary to find and to investigate with respect to 
stability the static solution of the Landau-Lifshitz equa- 
tion 

taking into account the usual conditions on the plate 
boundary (z =* 1 /2 )  

together with the magnetostatic equations (3) and (4). 

Equations (3)-(6) have both uniform static solutions 
and also nonuniform static solutions, corresponding to a 
domain structure. In order to construct the phase dia- 
gram, we shall begin with investigation of the uniform 
states of the plate. Here H, = - 4 n n ( n ~ ) ,  and i t  is easily 
shown that, depending on the value of the external field, 
two uniform phases of the plate a re  possible for /3> 4n: 
besides the phase @,,, in which M N H and which exists 
also for @< 4n, there exists in the case of large anisot- 
ropy (P> 4n) a phase a, determined by the following rela- 
tions: 

>l=M,(e, cos O,+n sin O , ) ,  cos 0,=H/p..W,, p . = p - ( l r  (7) 

The phase a, is stable when H< P, M,. When H =P, M,, 
there should occur a phase transition of the second kind 
a,, = a,. 

It is clear that with increase of the plate thickness, a 
nonuniform (domain) phase a, can become energetical- 
ly advantageous. In order to construct the phase dia- 
gram with allowance fo r  nonuniform states, i t  is neces- 
sary to investigate the stability of the phases a,, and &, 
with respect to nonuniform perturbations. The stability 
of the phase a,, has been investigated in a number of pa- 
persCCB1 (in particular, inc4v53 a value of the instability 
field of the phase a,, was found by use of numerical meth- 
ods). It was shown'B1 that the transition from the uni- 
form phase to the domain phase when H > p, M,, i. e. 
the transition a,, = a,, occurs at H = H,(I) as a second- 
order phase transition, and the analytical expression (1) 
was obtained for H,(I) when 1 >> C Y " ~ .  As we shall show 
below, 

that is, when H - p, M, the value of the plate thickness 
at which the transition a,,= occurs approaches zero 
(see Fig. 1). 
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We shall investigate the stability of the uniform phase 
of the plate when H< 8, Mo, i. e. the stability of the phase 
@,; for this purpose, we shall find the spectrum of small 
oscillations of the magnetization in the plate by use of the 
dynamic Landau-Lifshitz equation 

taking into account formulas (3)-(6) (g is the gyromag- 
netic ratio). 

Taking into account that the magnetization of unit vol- 
ume is conserved, we write 

lk'.=Mo sin q, M,=M, cos 8 cos q, M,=,v, sin 0 cos g, 

where 8 = @,+a, 8, is the equilibrium angle between the 
magnetization and the external field in the phase @, 
X (cosB, =H//? M,), and 9 and @<< 1. We represent the 
demagnetizing field I& in the form 

H", =HmO+ik',h .,,, 

where H: is the value of the demagnetizing field in equi- 
librium, 

Em0=-4nM0 sin eon. 

It can be shown that instability of phase a, is pro- 
duced by oscillations of the magnetization propagated 
along the x axis 

(19=6(x ,  z, t ) ,  cp=cp(x, z ,  t ) ,  h m = h m  ( x ,  z, t )  ). 

The nonvanishing components of the magnetic field h,,, 
are  then those along the x and z axes. By use of the 
Landau-Lifshitz equations, is  i t  easy to obtain the re- 
lations between the oscillations of the magnetization and 
of the magnetic field, 

where ~ = H / M , ,  A is the Laplacian operator, and 
5 = /? cos0, - h/cos28,. 

In order to find the spectrum of small oscillations of 
the magnetization, i t  is necessary to solve (3) and (8) 
inside the plate and the magnetostatic equations (3) out- 
side the plate, and to take into account the conditions (4) 
on the boundary of the plate (z =i 1/21. This is a very 
unwieldy problem, and the resulting dispersion equation 
for the oscillation frequencies can be investigated only 
numerically. But this problem simplifies significantly 
for the case of large plate thickness, and when 1 >> CY"~ 

the investigation of the stability of the phase @, can be 
carried out analytically. We shall suppose that l>> a"2 
(we shall return in the last  subsection of this section to 
the important case of small thicknesses, 15 a"2). 

1. Stability of a,. Large thicknesses. As we shall 
show below, when 1 >> a'/', the field HI@) at which the 

phase @, becomes unstable is close to ~ , p $ / ~ p - " ~ ;  that 
is, (<< 1. It is evident from equations (8) that aA9- 59. 
Furthermore, as we shall show below during analysis 
of the boundary conditions (4), the instability of the phase 
phase @, i s  determined by oscillations of the magnetiza- 
tion for which 

By substituting (8) in the magnetostatic equations (3) and 
taking account of (91, one can easily show that the mag- 
netization oscillations satisfy the following equation: 

Similar equations a re  obtained also for the components 
of the magnetic field h,,, inside the plate. 

We write the solutions of (3) and (10) in the form 

6 ( x ,  z, t) = (a cos qz+b sin qz)  e:'k-"', 

h , ' = - V Y ' .  

By using (3), we find 

cos 0, 

The relation between the constants a and b is deter- 
mined by the boundary conditions (4). In formulas (l l) ,  
k is the wave vector of the oscillation, 52 =52(k) is the 
frequency of the magnetization oscillations, 

" S J L  a-=-- q' - 4nh cos 6 ,  - + B(ak2-f cos go), 
( g M d 2  kZ 

the value of the parameter q for a solution with a pre- 
scribed wave vector k and frequency 52 is determined by 
the relation (12). 

Outside the plate, the potential qe of the magnetic 
field satisfies the homogeneous Laplace equation: 

By use of the boundary conditions (4), i t  is easy to ob- 
tain the equation that determines the dependence of the 
frequency of the magnetization oscillations on the wave 
vector k, 

k ak'-E cos 8,-a-/P. 
['+ ($)'I tg qi=F 2 r  C O S ~ H ~  (14) 

In writing the dispersion equation (14), we have used the 
inequality 6 << 1 and the conditions (9). 

By use of (9) i t  is easily seen that tgql- t;'/'<< 1; that 
is, 
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\ 

FIG. 2. Dependence of the frequency 
of small magnetization oscillations 
on their wave vector k, for different 
plate thicknesses : 1) l <  li(II); 2) 1 
= l t ( H ) .  

1. 

and the expression for the frequency of the magnetiza- 
tion oscillations takes the form 

As has already been mentioned, investigation of the 
stability of a phase can be carried out on the basis of 
the static Landau-Lifshitz equations (3) and (5). We 
shall seek a solution of (3) and (5) in the form 

m = m ( z )  e"", h,=h,(z) e". 

The functions m(z) and h,(z) can be expressed in the 
form of a superposition of Fourier harmonics of the 
form 

in"hcosOa 
a - =  I L ' + ~  (ak'-5 ros €la) 

" ( k l ) ?  

Formula (16) is correct only when kl>> n, since in its 
derivation we have used the inequality k >> q (see (9)). 

It is evident that the value of w;(k) a s  a function of the 
wave vector k reaches a minimum at k = k,: 

and the minimum value of the square of the frequency is 
determined by the expression 

~ , , , ~ = o , , ' ( k , )  =2nl-I (4n3ha$ cos 0,) '"- jb cos go. (18) 

From formula (18) i t  is easily seen that at a definite val- 
ue of the plate thickness, CL$ may change sign (Fig. 2); 
that is, the uniform state @, of the plate becomes un- 
stable with respect to inhomogeneous perturbations with 
wave vector k = ko; this must be interpreted as instability 
with respect to formation of a domain structure. The 
smallest critical thickness Il of the plate corresponds to 
n = l .  

Thus the uniform state becomes unstable at 1 > ll(h), 

4n" a h  ,, ( h )  = - (-)"' , 
t, $cos  80 

It must be mentioned that the value of the critical thick- 
ness ll(h) can also be found by analysis of the static so- 
lutions of the Landau-Lifshitz equations, i. e., with 
R = 0. Then ll(h) is defined as that value of the plate 
thickness for which the system (14) and (12) can f i rs t  be 
solved when 52 = 0. It is easy to show that these equa- 
tions have a solution when 1 2  ll(h), where Il(h) is de- 
fined by formula (19). 

2. Stability of a,. Arbitrary thicknesses. Despite 
the fact that investigation of the instability curve of the 
phase a, at an arbitrary value of the plate thickness 1 
requires use of numerical methods (an analytical expres- 
sion for ~ ~ ( 1 )  can be obtained when P >> 41r and I - O), i t  
is possible to obtain exact relations between the values 
of the instability fields ~ ~ ( 1 )  and H1(l) of the phases 4, 
and @,. 

The relation of the parameters q to the wave vector k 
and to the parameters of the problem is determined, as 
in the preceding subsection by Eqs. (3) and (5) with use 
of the boundary conditions (4) and (6). 

By use of (3) and (5) i t  is easy to  show that the values 
of the parameter q corresponding to the static case 
(52 = 0) satisfy the equation 

4nq' + a sinz 0 .  (k '+qz)]  -0. (21) + - [ 1  cos2 e.+r cos 0 .  - - 
qz+k' cos go 

It is evident that when I >> and q2 << k2- [/a << 1 (see 
(9)), the relation (21) becomes (12) with R = 0. But in 
contrast to (12), equation (21) is cubic in q2; and the ex- 
pansion (20) must contain a superposition of Fourier 
harmonics with all q that satisfy Eq. (21). 

The solutions of (3) and (5) have the form 

where q: a r e  the roots of (21), i = 1, 2, 3. The values of 
9(q,) a re  determined by the boundary conditions (4) and 
(6). 

On substituting (22) in (4) and (6), we obtain for the 
values of 9(qi) a system of homogeneous linear equations 
in which the coefficients depend on the plate thickness 1: 

1 2 q< sin Tq iLv+  ( q i )  =o, 

1 [ ( 4n  cos ~ . + a ~ + a q . ' - i  cos O.)COS qtl 

where 9'(q,) =9(q,) +a(- q,), Equation (23) is a conse- 
quence of the condition ( a m , / ~ z ) , , , ~ = ~ ;  Eq. (25) is a 
consequence of the condition (am,/az,, = 0 (see (6)); 
Eq. (24) follows from the boundary condition (4). For  
the values of a h , )  - 9(- qi) equations analogous to (23)- 
(25) can be obtained, but we shall not write them, since 
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it can be shown that the stability of the uniform state 
9, breaks down with respect to nonuniform oscillations 
that satisfy the condition 

Thus we have shown that when I<< olr2,  the expression 
for  the instability field of the phase 9, has the form 

that is, the condition m,(z) = m,(-z). 

The condition fo r  appearance of a nonuniform static 
solution of the equation for the magnetization is the com- 
patibility condition of the system (23)-(25), i. e., the 
vanishing of i ts  determinant. Investigation of the sys- 
tem (23)-(25) is significantly simplified at large anisot- 
ropy, and we shall hereafter suppose that p>> 4n. Then 
the roots of the equation (21) satisfy the inequality 

and i t  is easily shown that in equation (25) the coeffi- 
cients of 9'(q1), and 9+(q2) a re  much smaller than the 
coefficient of 9+(q3); therefore 

Then the magnetization distribution i s  determined solely 
by the Fourier harmonics with q =ql and q =q2 (see (22)). 

To within e r ro r s  of the order of the small parameter 
47//3, the compatibility condition of the system (23)- 
(25) takes the form 

where 

In writing Eq. (261, we have used the fact that when 
@>> 4n, the breakdown of stability of the phase 9, oc- 
curs within the narrow field interval (p?+/2&/2< h< /3 ), 
s o  that 1 - cos8,- 4r/p << 1. 

The stability of the phase 9, with respect to nonuni- 
form perturbations breaks down for that value of the 
plate thickness at which there f i rs t  appears a real root 
k2= k2(1) of equation (26). We consider the case of ex- 
tremely small plate thicknesses (I << It can be 
shown that when 6- 0 (h- p*), the root k2(1) - 0; that is, 
the inequalities 

are  satisfied. 

Equation (26) then simplifies significantly: 

Hence i t  follows that Eq. (26) has a real root k2(1) when 
1 > ll(h) = ( 6 ~ ~ ) " ~ n .  

If 6 - 0, i t  can be shown that 9+(ql) - 9+(q2), and the mag- 
netization distribution (22) has the form 

$(x, Z )  = ~ o e ' k r ( ~ ~ ~  qz+ch  xz ) ,  

a k z = S ,  a q z = a x z =  (4n6)'" .  

An investigation of the conditions for solvability of Eq. 
(24) for the case 1 - a'/' was carried out numerically; 
the results of the investigation a re  shown in Fig. 1. 

We note that if we set  cos8, = 1 and h >  p* in (26), then 
this equation describes the stability of the uniform phase 
GI,. In this case i t  is easy to deduce that 6 = h - p,. In 
the case h< /3* (phase 9,), cos8, = h/p*, and 

Since the magnetic field enters Eq. (26) only through 
the value of 6, i t  is evident that there is a relation be- 
tween the values of the instability fields Hc(l) and ~ ~ ( 1 ) :  

To within a quantity of order 4n/p, this relation is sat- 
isfied over the whole field range within which loss of 
stability can occur fo r  the uniform phases *,, and 9, 
(p3*'2p-'/2< h< p). 

$2. DOMAIN STRUCTURE O F  A FERROMAGNETIC 
PLATE NEAR THE PHASE-TRANSITION LINE 

. SMALL THICKNESSES 

In the preceding section, we investigated the stability 
of the uniform phases *,, and 9, of a ferromagnetic plate 
on the basis of the linearized Landau-Lifshitz equations 
(3) and (5). In order to investigate the properties of the 
phase a,, i t  is necessary to find nonlinear solutions of 
the static Landau-Lifshitz equations, in particular to 
find the dependence of the amplitude of the magnetiza- 
tion variation on the plate thickness and the magnetic 
field when H <  Hc(l). The magnetization distribution in 
the domain phase when 1 >> alr2 was obtained inL6'. 

As we shall show in the following section, knowledge 
of the variation of the amplitude of the domain structure 
and of i t s  energy when H<H,(~) and I<  o'I2 enables one 
to investigate the stability of the phase 9, on the basis 
of Landau's theory of phase transitions. ['I We consider 
a nonuniform magnetization distribution when H< ~ ~ ( 1 ) .  
Equations (5) can be written in the form 

Since the amplitude of the domain structure approaches 
zero when H- H,(l), near the transition field H,(l) we 
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may suppose that m,(x, z) and m,k, z) << 1 and may set  

We shall be interested in the properties of the domain 
structure when 1 << all2 (then h,(l) - P* << 4 ~ ) .  Since we 
a re  supposing that ~ ~ ( 1 )  - H << H,(Z), the amplitude of the 
domain structure is small. (We recall that the phase 
transition a,,= @, is a transition of second order. ) 
Therefore the magnetization distribution is close to the 
distribution described by the linear equations considered 
in the preceding section. In particular, we may asser t  
that (see (29)) 

By use of (3) and (30) and of the relations (32), i t  is 
easy to show that 

and to put (3) and (30) into the form 

d2m, d'm, h  
(h-Be)-+ -: (h-f i ) -  - aAzm, + --Am,'=D, 

d x' 2 

We seek a solution of (33) in the form 

m,(x,  z )  = A l ( z )  cos kz+A, ( z )  cos 3kx+ . . . (34) 

As can be shownL8', A&) - (H,(l) - H)Al(z), and in order 
to find the energy of the domain phase near the phase 
transition we need to keep only the f i rs t  term of the ex- 
pansion (34). The quantity Al(z) satisfies the equation 

dLA 3h d' 
kz ) -A , -  (h.->.)& ( p . h )  ~ Z A ,  + -,A,'=O 

d l -  8 dz- 

We shall seek a solution of Eq. (35), when H - H,, in the 
form 

A ,  ( z )  = I )  ( a ,  cos Q,z+a, cos 4 ~ )  
+ ~ b ,  cos 3q, (2)  +qb,  cos (2q,+g2)z+ . . . , (36) 

the quantity q has the meaning of amplitude of the do- 
main structure. It turns out that bi - ai(H - H,) << ai, and 
only the f i rs t  two terms a re  needed in (36). As in the 
linear case considered in the preceding section, the re- 
lation between the values of al and of a, is determined 
by the boundary conditions. The values of ql and i, are  
determined by Eqs. (35): 

a(~12+k ' )2+4r ' (h -p t )  - (fi-h) k2+'llZh (qIZ+k') q ' (a12f  2a,a,) =0, 

a ( Q ? ' + l ~ ~ ) ~ + ~ z L ( h - $ . )  - (fi-h)k3+9/,2h (q>+k2)  

x qz(azL+2a1az) =O. 
(37) 

As we can show by analysis of the boundary conditions, 
when I << all2, al =a2, and we may take a l  =a2 = 1. 

For the values of q1 and q2 we get 

where 

It is easily seen that the expression (38) for i1 o r  q2 
differs formally from the expression (26) for q1 o r  q, 
only by replacement of 6 by 8 .  It can be  shown that 
analysis of the boundary conditions in the nonlinear case 
also leads to a relation that differs from (26) only by 
replacement of 6 by 8. From this fact i t  is clear (see 
(38)) that if we have found the instability curve Hc(l) of 
the phase @,,, then when H< H,(I) the amplitude q of the 
domain structure is determined by the relation 

By substituting the solution (34), with use of (351, 
(36), and (39), in the expression (2) for  the thermody- 
namic potential of the plate, we obtain an expression 
that determines the energy of the domain phase of the 
ferromagnetic plate when I<< all2 and H - ~ ~ ( 1 )  << H,(l): 

where V is the volume of the plate. 

$3. STABILITY OF THE DOMAIN PHASE. PHASE 
DIAGRAM OF A PLATE NEAR THE TRIPLE POINT 

Instability of the phase @, when H> H1(l) may be indic- 
ative either of a second-order phase transition at 
H = HI(,?) o r  of a first-order phase transition at some 
field value H=H,,(l), where H,,(I)< ~ ~ ( 1 ) .  It is d e a r  that 
in order to resolve the question of the order of the tran- 
sition @,= @,, i t  is necessary to investigate the stability 
of the domain phase @,. 

For  simplicity and clarity, we shall not investigate 
with respect to stability the nonuniform nonlinear solu- 
tions of (3) and (5), corresponding to a domain structure, 
but shall use symmetry considerations in the spirit of 
Landau's theory of phase transitions. By virtue of 
the relations (27) and (29), the regions of existence of 
three phases (@,,, @,, and 9,) come together at the point 
H = &M,, 1 = 0 (the point 0 in Fig. 1). 

As was mentioned in the preceding section, the tran- 
sitions a,,= @, and a,,= *, occur as second-order phase 
transitions. The order parameter for  the transition 
@,,= @, is the angle 8 that the magnetization vector 
makes with the external field H (see (7)). As order pa- 
rameter in the transition @,, = @, we may take the ampli- 
tude of the domain structure in the phase @,, which van- 
ishes when H = H,(l). [" The most symmetric of the three 
phases is the phase a,,, since a transition to phase @, 
o r  @, entails loss of various symmetry elements char- 
acteristic of phase @,, (reflection in the plane of the plate 
for the transition @,, - @,, and symmetry with respect to  
translation by an arbitrary vector along the x axis for  
the transition @,, - a,). 

Thus the phase a,,, depending on the plate thickness, 
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changes on change of the magnetic field to different less  
symmetric phases @, and a,. As was shown by Lan- 
dau"' from symmetry considerations, in such a situa- 
tion two types of phase diagrams may occur (see Fig. 2 
and 3 of"]). There can be a phase diagram in which the 
transition @,= @, occurs a s  a first-order phase transi- 
tion; in this case only the three phases indicated above 
(GI,, a, and a,) exist (seeCB1, Fig. 2). Or else there 
can be a phase diagram in which the transition @,= @, 

occurs by two second-order transitions; @,= @,, @, = @, (seeLeE, Fig. 3). Here @, is a certain least sym- 
metric state of the ferromagnetic plate, whose symme- 
try group is a subgroup simultaneously of the symmetry 
groups of phases @, and @,; that is, a certain nonuni- 
form state of the ferromagnetic plate, unsymmetric with 
respect to reflection in the plane of the plate. 

Hereafter we shall show that for  the case @>> 477, the 
phase @, cannot occur, and the phase transition @,= @, 

occurs as a first-order phase transition. We shall in- 
vestigate the state of the plate near the point 0; for this 
purpose, we shall write the simplest expression for the 
thermodynamic potential @ of the plate that describes 
the existence near the point 0 of three phases of the 
plate, in the form of an expansion in powers of the order 
parameters 8 and q: 

The coefficients of 9' and 8' in the expansion (41) can be 
easily obtained. To determine the coefficients of q2 and 
114, we used the expressions obtained in the preceding 
section for the equilibrium values of the order parame- 
ter  q2 in the phase a,, (39), and for the equilibrium en- 
ergy of the domain phase, (40). 

The coefficient y determines the form of the phase 
diagram of the plate near the point 0, in particular the 
form of the instability curves ~ ~ ( 1 )  and ~ ' ( 1 )  of the 
phases @, and a,, and consequently the nature of the 
phase transition @,= 9,. 

By minimizing (41), we can express the values of the 
instability fields of the phases @, and @, in terms of the 
instability field ~ ~ ( 1 )  of the phase GI,. For the field ~ ~ ( 1 )  
we get 

where AH=H - &M0. By using the relation AH,/AH~ 
=-  2 (see (29)), we find the value of the coefficient y: 

Thus all the coefficients in the expansion (41) a re  known, 
and we can obtain the conditions for stability of the do- 
main phase @, without direct investigation of the stabili- 
ty of the nonlinear solutions of the Landau-Lifshitz equa- 
tion, of the type (34). 

By substituting the value of y that we have found in 
(411, we can show that the domain phase is stable when 
the condition 

H<H,  ( I ) ,  

is satisfied; that is, the stability of the phase @, is de- 
stroyed only on the second-order phase-transition line 
a,,= 9,. The stability regions of phases 9, and 9, over- 
lap (see Fig. I), and consequently the transition @,= @, 
occurs a s  a first-order phase transition of the first  kind. 

To find the first-order phase-transition line, we 
equate the energies of phases @,, (40), and @,: 

On solving (43), we get the following expression for 
HJt): 

It is evident that 
(44) 

CONCLUSION 

The phase diagram of a ferromagnetic plate with 
p >> 477 is shown schematically in Fig. 1. On this phase 
diagram there i s  a triple point, at which the existence 
regions of three phases make contact: the uniform 
phases @,, and @, and the domain phase. The transition 
@,= @, occurs a s  a first-order phase transition. It was 
found that for p>> 4n an equilibrium domain phase can 
exist at an arbitrarily small plate thickness 1 (see Fig. 
1). It is found, however, that as 1 - 0, the amplitude of 
the domain structure diminishes to zero, as does also 
the width of the interval of magnetic-field values within 
which a domain structure exists. 

It must be mentioned that when p>4n, i t  is not possi- 
ble to give a complete analysis of the phase diagram 
without resort  to numerical methods. In particular, the 
possibility is not excluded that within a restricted re-  
gion of the diagram the phase @, occurs (see O 3), and 
the transition @,Z @, occurs by two second-order phase 
transitions. It is also not excluded that for p> 477, do- 
main structure is absent when I < <  c ~ ' ' ~ ;  that is, i t  ex- 
is ts  only when 1 > I, (I, - 0 when 477/~- 0). But the rela- 
tion (29) between the instability fields of phases @,, and 
@, remains correct as H- (p - 4n)Mo regardless of the 
value of p. 

The authors thank A. E. Borovik, M. I. Kaganov, A. 
M. Kosevich, and V. V. Tarasenko for discussion of 
the work. 
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Investigation of ferromagnetic resonance in Y,Fe,O,, by the 
method of optical spectroscopy 
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Results are presented of an investigation of inelastic scattering of linearly polarized monochromatic light 
(A= 6328 A) by homogeneous-precession magnons excited by FMR in a thin Y,Fe50,, plate. By 
separating the contributions of the magneto-optical effects to the intensities of the spectral lines with 
combination frequencies, the amplitudes and polarizations of the precessions are reconstructed as functions 
of the microwave magnetic field. It is shown that when the threshold for the second-order parametric 
process is exceeded, besides saturation of the amplitude of the homogeneous mode, a substantial change 
takes place also in its polarization. 

PACS numbers: 76.50.+g, 78.20.k 

High-frequency modulation of light in ferromagnetic 
resonance (FMR) in magnetically ordered crystals has 
been the subject of relatively few studies. Mention 
should be made of a paper by Hanlon and Dillon, [" where 
direct spectroscopic proof was obtained that microwave 
satellites appear when monochromatic linearly polarized 
light passes through a CrBrs single crystal. High-fre- 
quency modulation of light in antiferromagnetic reso- 
nance in a C0CO3 crystal was observed by Borovid- 
Romanov et  ~ 1 . ~ ~ '  

with the optical axis directed along the magne t i za t i~n .~~ '  
Inasmuch in FMR the deviation of the magnetic moment 
from its  equilibrium position is small, it is accurate 
enough to state that the optical axis of the crystal pre- 
'cesses. Assume that the light propagates along the X 
axis. The vector E of the incident light can then be rep- 
resented in the form 

E ~ =  ( E ~ , ,  E ~ , )  - {COS 9, sin rp}eSat, (1 ) 

where JI i s  the angle between the vector E and the Z At the same time, the study of magneto-optical phe- 
axis; w, is the frequency; the intensity is set  equal to nomena due to FMR i s  of considerable interest, espe- 
unity. The change of the polarization of the light pass- 

cially in crystals having comparable values of the Fara- 
ing through the crystal can be described by the corre- 

day rotation (FE) and the linear magnetic birefrin- sponding Jones matrix 6, the elements of which have 
gence-the Cotton-Mouton effect (CME). It will be shown 

been calculated with allowance for the principle of su- below that in this case optical measurements yield suf- 
perposition of the FE and the CME. By a procedure 

ficiently complete information on the most important similar to that used by ~ron'ko"' we obtain expressions 
parameters of the homogeneous magnetization oscilla- fo r  the matrix element that describe the light emerging 
tions in FMR. from the sample 

We consider the interaction of linearly polarized 
monochromatic light with a ferromagnetic crystal, in 
which homogeneous precession of magnetization is ex- 
cited. We assume for simplicity that the crystal has 
cubic symmetry (for example, YSFe5012) and is magne- 
tized along the [001] axis. 

We choose the coordinate system such that i ts  axes 
coincide with the fourfold axes of the crystal, and the 
constant magnetic field H, is directed, a s  usual, along 
the Z axis. In this case the crystal is optically uniaxial 

Q,.=Q,'=cos A l f  i8 cos 28, sin ALIZA, 

Q.,,=-Q,,.'=A-' ('/*is sin 20,-p.) sin 81, 

A=('/462+p,Z)'", 

where p,  is the Faraday rotation per unit thickness of 
the crystal and is due to the component m, of the mag- 
netization vector (in the absence of precession we have 
p, = 0, for in this case the light propagates perpendicu- 
l a r  to  M,,); 6 is the specific phase shift of the CME (6 - IM 1 2); O,, is the angle between the projection of the 
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