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The interaction of plane electromagnetic waves and gravitational waves is investigated. It is proved on the 
basis of the Einstein-Maxwell equations that an empty space-time that admits of an isotropic absolutely 
parallel Killing field, is described by the Peres solution. The equations for small perturbations of the 
gravitational and electromagnetic fields against the background of a strong plane electromagnetic wave are 
examined in the Newman-Penrose formalism. These equations are reduced to a system of two second- 
order equations relative to the tetrad components of the Weyl tensor Yo and the Maxwell tensor F,. 
Explicit solutions are obtained for the cases when weak plane gravitational and electromagnetic waves are 
incident on a strong wave. 
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INTRODUCTION vacuum equations, which admits of an isotropic abso- 

We consider in this article the propagation of weak 
electromagnetic and gravitational waves in the field of 
a strong electromagnetic waves. For  short-wave per - 
turbations of the background of a strong electromagnetic 
wave, the question i s  quite clear. We encounter here 
all the effects that manifest themselves in the propaga- 
tion of short waves in a vacuum in the presenee of ex- 
ternal electromagnetic fields, ['] viz., the partial and 
total mutual conversion of gravitational and electromag- 
netic waves over a certain characteristic length, rota- 
tion of the plane of polarization relative to a parallel- 
transferred tetrad, conservation of the combined energy 
flux in the gravitational and electromagnetic waves, and 
the reaction of the short waves on the background over 
which they propagate. 

In the case of plane waves, there is a particularly 
pronounced tendency of the beam of null-geodesics to 
become focused without rotation, a tendency inherent in 
the Einstein theory of gravitation: a beam of parallel 
null-geodesic, after passing through a nonlinear plane 
wave, intersects itself on a certain caustic surface, and 
the rays from an instantaneously flashing and dimming 
source a r e  gathered, after passing through a plane 
wave, in a certain point o r  on a spacelike curve. [2s31 It 
can be assumed that inasmuch a s  the geometric-optics 
method i s  not valid on caustics, i t  is necessary, while 
remaining within the framework of the linear equations 
for the perturbations, merely to refine in the vicinity 
of the caustics the procedure used for the expansion in 
the reciprocal frequencies (as is done, for example, in 
phenomena involving diffraction of lightC4] o r  in the case 
of an arbitrary hyperbolic systemc 51). 

The problem of the linear interaction of two plane 6- 
like electromagnetic waves was recently solved inCG1. 
An exact'solution was obtained also for  the problems in- 
volving collisions of a plane 8-like electromagnetic and 
a &like gravitational wave, a s  well a s  two 6-like neu- 
trino waves. c 7 ~ 8 1  

It i s  shown in Sec. 1 that the solutions of the electro- 

lutely parallel Killing vector, reduced with the aid of 
coordinate transformations to the Peres  solution. In 
Sec. 2, the Einstein-Maxwell equations, linearized with 
respect to the background of a plane electromagnetic 
wave with circular polarization, a r e  reduced to closed 
second-order equations for  certain combinations of 
perturbations of the electromagnetic and gravitational 
fields. In Sec. 3 we obtain an exact solution of the 
linearized equations of Sec. 2 for  the case when weak 
plane electromagnetic and gravitational waves pass 
through a strong electromagnetic wave. 

Compared with the exact results already available on 
this subject, we investigate in the present article plane 
waves with trailing edges. In addition, the employed 
small-perturbation method enables us  to obtain solu- 
tions also in the case when the weak wave i s  of arbitrary 
shape. 

We note in connection with our results that the con- 
cept of the cosmic primordial radiation a s  an aggregate 
of plane electromagnetic waves with a Planck intensity 
distribution in frequency i s  no longer valid at high ra- 
diation intensity. The gravitational and electromagnetic 
radiations begin to interact with each other, since (as 
shown below) one electromagnetic wave passing through 
another i s  partially converted into a gravitational wave. 
The nonlinear wave interaction described is partially 
converted into a gravitational wave. The nonlinear wave 
interaction described below for the collision of plane 
electromagnetic waves is a classical effect, in contrast 
to the photon-photon interactions studied in quantum 
electrodynamics: 

We note also that the observed processes take place 
in pure form only at low energy densities, when no im- 
portance attaches to the quantum effects of the gravita- 
tional interactions between photons, effects considered, 
e. g., by Vereshkov and Poltavtsev. c91 
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1. REDUCTION OF THE METRIC OF AN EMPTY 
SPACE THAT ADMITS OF AN ABSOLUTE 
PARALLEL ISOTROPIC VECTOR FIELD TO A 
PERES METRIC 

There a re  several published solutions of the Einstein 
equations corresponding to nonlinear plane gravitational 
waves. All these solutions-those of Takeno, Petrov, 
Landau and Lifshitz, Kaigorodov and Pestov, Peres 
(see the references in Zakharov's bookcio1)-have an 
absolutely parallel isotropic vector field. We shall 
show that all these solutions are  reducible by a coordi- 
nate transformation to the Peres metric and a re  of 
type N (after Petrov). It can be shown that the metric 
tensor of an Einstein space that admits of an absolutely 
parallel isotropic vector field 1" can be represented in 
the general case in the form (see, e. g., 

where A, S, and E are  functions of the coordinates 
xO, x2, x3, and in this koordinate system we have 1" = 8:. 
To investigate this metric we shall use the Newman- 
Penrose formalism. C121 We choose a tetrad field in the 
form 

1"=(0, 1. 0, 0). l.=(I, 0. 0, 0 ) .  
nZ=( l ,  -A/2. 0, O), ?2,=(A/2, 1 ,S ,  O ) ,  

rnx=(O. s/,~E, - I / ~ E .  - ~ / 1 / = ) .  m,=(O, 0,  YE/^, i / vZ) ,  
%a=(0,~/~2E,-1/~2E.i/)2E). %,=(0,0,1/E/2, -i/Y2) 

2 and put x0 = u, xi = v ,  x = x, 2 = y. The Ricci rotation 
coefficients a re  then expressed in terms of the functions 
A, S, and E as  follows: 

Integrating (1.31, we get 

E'!'=a(u, x )  y+b(u, x ) ,  S=c(u, x )  [a (u ,  x )  y2+2b(u, z) y]+d(u, z), 
aa/au+ac/a~=O. 

We list now the sequence of coordinate transforma- 
tions that reduces the metric (1.1) to the Peres metric. 
We write out first  the transformation and then the form 
assumed by the square of the integral after the indicated 
transformation. In those cases when the independent 
variables a r e  not explicitly indicated, the functions de- 
pend on u and x. The new coordinates will be marked 
by a tilde over the letter, but in the metric form the 
tilde will be left out. 

We assume that a+ 0. 

1. The transformation i s  

and the metric 

2. The transformation 

the metric 

i BlnE a=p = - -- =----- i dS 
, y = - y - .  

412 ay  YE ay 

The remaining rotation coefficients vanish identically. 
In our case the nontrivial Einstein equations a r e  the 
following (seetio1): 

3. The transformation 

Here 

the metric 

dsZ=Adu'+2dudu+f (11, x, y )  dudxfg ( i r ,  .x. y) dt~dy-dx~-dy~.  

4. The transformation 

the metric 
These equations, with (1.2) taken into account, take the 
form 

The first three equations form a system for the unknown 
functions E and S. This system reduces to the form 

The metric (1.5) i s  of the same form a s  (1.1) and (1.4) 
with a = 0 and b = 1. Therefore, taking into account the 
third equation of (1.4), we have 

a(u,  x, y) =2c (u )  y+d(u. x). 
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5. The transformation 

v"=u+$(u,x ,y ) ,  ~ ( u , x , y ) = c ( u ) z y + ~ d ( u , x ) d x ,  

the metric 

ds2=Aduz+2dudu+c( i~)  (ydx-xdy)du-dxz-dy2 .  (1.6) 

6. On changing to the polar coordinates 

x=r  cos cp, y =r sin cp, 

the metric (1.6) takes the form 

d s ~ = A d u 2 + 2 d ~ i d v + 2 c  ( u )  r 2 d u d q - d i - P d q 2 .  

7. For the transformation 

@=q - c(u)d tr ,  i 
I I O  

the metric i s  

ds2=AduZ+2di~dv-dr2-r2dqz.  (1.7) 

Let now a= 0. Then the transformation 

reduces the metric to the form (1.51, so that this metric 
is also the Peres  metric (1.7). 

2. EQUATION FOR SMALL PERTURBATIONS 
AGAINST THE BACKGROUND OF A PLANE 
ELECTROMAGNETIC WAVE 

A plane wave in general relativity theory means space- 
time with a metric 

dsZ=A ( u ,  x ,  y )  du2+2dudv-dxz-dy2,  
(2.1) 

a ? ~ / a x ' + a ? ~ / a ~ ~ = 4 ~ ~ ? .  (2.1) 

For a pure gravitational wave (PGW) we have = 0 and 
a particular solution of (2.2) is 

while for a pure electromagnetic wave (PEW) 

We shall use the tetrad field 

In this tetrad field, the space-time (2.1) has the follow- 
ing nonzero characteristics: 

FIG. 1. Profile of strong plane 
electromagnetic wave. 

b) the tetrad component of the Weyl tensor 

c) the tetrad component of the Ricci tensor 

An electromagnetic wave in a PEW can be defined by 
a 4-potential 

A,=((c,  0, O , O ) ,  q = B ( u )  ( x  cos o u + y  sin o u ) .  

In this case 

Y,=o, Q , ~ = Y . F , F , = X B Z ( ~ ) ,  
8x 16n 

F2=-FUpnur~~=-2-":B ( u )  e-'"'. (2.4) 

Consider the case when B(u) is a step function (Fig. 
1). We obtain an equation for small perturbations 
against the background of a PEW. The small perturba- 
tions of the various quantities will be designated by the 
same letter, but primed. We introduce the symbol 
b= ~ ( x / l 6 n ) " ~ .  

We linearize the following: 

a) Maxwell's equations in terms of the tetrad compo- 
nents: 

D F , - ~ F ~ =  ( n - 2 a )  F0+2pF,-kF2, (2.5) 
GF,-AF,=(p-2y)F, f  2&F,-oF2; (2.6) 

b) the Bianchi identities: 

c) the formula for Go: 

Linearizing (2.5) - (2.9) we obtain 

a) the Ricci rotation coefficient Here 
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T,, is an energy-momentum tensor of non-electromag- 
netic origin. 

We eliminate < and 9; from (2.5')-(2.9') and use 
the fact that for a scalar function f we have 

Then 

where L =D2T3, + 6 2 ~ 1 i  -2D6Ti3. 

We take the Fourier transforms: 

Then Eqs. (2.10) and (2.11) go over into the system 

a2 
dzZ dy- (2.12) 

If we change over in the region ( u ~ ( 0 ,  I)} to the new 
variables 

1 
D, = (%)* e T U u 6 + g b  ( j = i . 2 ) ,  q,,. = - [ o i ( 0 2 + 4 b 2 ) ' " ] ,  

bk 
(2.14) 

then the system (2.12) and (2.13) breaks up into two in- 
dependent equations 

An analogous situation obtains in the Nordstrom- 
Reissner field, where, a s  shown inc13], the Einstein- 
Maxwell system for small perturbations also breaks up 
into independent second-order equations for certain 
combinations of the perturbations of the metric and of 
the electromagnetic-field components. We take this 
opportunity to point out some e r r o r s  in the formulas of 
the preceding article. [I3] The correct  expressions for 
po(w) and A on p. 1246 [p. 619 of the translation] a r e  

Accordingly, i t  is necessary to eliminate the logarith- 
mic term from formulas (5.2)-(5.5) ofci"'. 

In the regions {u> I},  {u = 1}, A and B a r e  the solutions 
of the system of equations 

while in the region {0 < u< 1) they a r e  determined from 

FIG. 2. Collision of a strong 
and weak wave; I-strong wave, 
ll-weak wave. 

(2.14) and (2.15). A and must be continuous a t  the 
points of the surfaces {u = 0}, {u = 1). 

3. COLLISION OF A STRONG PEW WITH WEAK 
PGW AND PEW 

A. Let a weak PGW (11) be incident on a strong PEW 
(I) (see Fig. 2). Assume that in t e rms  of the coordi- 
nates u and v connected with the weak wave, i t s  metric 
i s  of the form 

Using (2.4), we can easily calculate 

It follows, however, from the transformation formulas 
for  9, that in the region {u< 0}, in terms of the coordi- 
nates u and v, we have 

Therefore 
& i  

= S e ' k ' ~ , d u  = -sin ka,  
k 

XI ,,,=O. 

We change over in (2.15) to polar coordinates and 
seek a solution that does not depend on the polar angle 
CP: 

We separate the variables u and r: 

f satisfies the equation 

This equation is well known in the theory of the conflu- 
ent hypergeometric function (seeci4], Vol. 1). It has 
two linearly independent solutions, but we need here 
only one of them: 
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Using the expansion of the confluent hypergeometric 
function in zero-order Bessel functions, we obtain the 
solution of (3.3) in the form 

(3.4) 

Di= exp (b lk l r z -Bqu)  ~ e - p l o ( 2 ( Z b I k I ) ' ~ r t )  U j ( t  exp(- ibu sign k i 2 ) ) d r .  
0 

Substituting the solution (3.9) in (3.8) and turning again 
to (3.101, we get 

where Uj(j = l , 2 )  should be obtained from the initial con- 
ditions a t  u = 0, while a, = 2/ mj. The initial conditions 
(3.1) and (3.2) a s  well a s  formula (2.14) yield 

- A o ~  1  
A = 2 ( 1 - 2 p o b ( u - l ) )  

{ exp [ ik ( rZc+a)  I -  e x p [ i k ( i c - a )  I ) ;  

Ao=a,vo(q , - -qz)k ,  c=c (u )  = ( - l / p o b + 2 ( ~ - l ) ) - t .  

The generalized function l/k2 has been determined ac- 
curate to a function with a carr ier  in {o}, i.e., accurate 
to an arbitrary linear combination of a 6-function and 
i ts  derivatives. We choose l /k2 such that Po- 0 and 
U - - O O .  We put 

Substituting (3.4) in (3.5), using the Hankel transforma- 
tion (seeci41, Vol. 2) and formula 6.631.4 ofCl5] 

where (l/k2)o i s  the generalized function 1/k2. C1O1 Then, 
using the table of Fourier transforms, we get we obtain U,: 

We introduce the notation 
(3.11) 

We obtain similarly 

We obtain Dj from (3.4), and (3.6), and (3. 7): 

D,=pvy, exp ( - ibaju- ibpkry) .  
The behavior of Po and eo is illustrated in Fig. 3. 

As bu - n we have I Dj I -a and therefore the necessary 
condition for staying within the framework of the linear 
approximation is 

B. Let now a strong PEW of frequency w l  and am- 
plitude Bl be impinged on by a weak PEW of frequency 
w2 and amplitude B2. According to (2.4), the weak 
PEW, in terms of the coordinates ii and 5 connected 
with the wave (see Fig. 2) has a nonzero tetrad compo- 
nent of the Maxwell tensor - We solve Eqs. (2.16) and (2.17) a t  u> I .  We seek solu- 

tions in the form 

A, B == j ~ ( h ,  U )  1, (hr) dh. From the transformation formulas for F, i t  follows that 
in the region {u< 01, in terms of the coordinates u and 
u, we have 

The equation for C yields readily 

if - J P ( h )  Jo (hr) exp ( - ihzu/2k)h dh, - Fo=-FZ=2-kBz exp ( i ~ ' o ~ + i ( p ~ ) .  

8 = j Q ( A )  J, ,r) exp (--ihzu/2k) h  dh. Therefore 

Here P and Q a r e  functions that can be obtained by join- 
ing the solutions together a t  u = 1. We denote 

sin ( k + o , ) a  
A I , , = ,  = j  e'k'Forl~=2"Bze'w4 , 81,-,=0. 

k + o z  

By the same operations a s  in item A, but with differ- 
ent initial conditions a t  u = 0, we arrive at  the following 
expressions for  F', and $ in the region {u> 1): 

A, exp(io2v-io2rZc) 
Fo' = [ e  ( v -  (a+Fc)  ) -0(u-  (-a+?c) ) I ,  

4(1-2pobt(u-L)) 

where 
(3.13) 

To determine P(X) we must solve the equation 

iB,e'"+ 
Y,' = [e'"2"6 (u-  (a+? c )  ) -e-'"'"6 ( v -  (-a+? c )  ) ] - 

2 (1-2p,b,  (u -1 ) )  
We use for this purpose the Hankel transformation and 
formula No. 6.631.6 ofCiS1: 
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FIG. 3. Collision of a strong 
PEW with a weak PGW: I- 

strong wave, 11-weak wave. 
S,:v=Pc(u)*a,  wave line- 
the singularity u = 1 + (26)-' 

cot(bl/2). 

' FIG. 4. Collisions of strong 
and weak PEW. The symbols 
are  the same as  in Fig. 3. 

- 02Bo  exp (io,u-io,rZc) [ 8 ( v - ( a t f c ) )  - 0 ( v - ( -a+rZc ) )  1; 
? ( I - 2 p o b , ( ~ l - I ) )  

The behavior of I *:I and I & I  i s  illustrated in Fig. 4. 

In the solutions (3.11)-(3.14) over the surfaces we 
have S, = 0, where S,= v - (gc *a) ,  are isotropic, i. e., 
(vs,)~ = 0. On these surfaces the gravitational and 
electromagnetic fields in the wave have discontinuous 
solutions. In the case of the passage of a PGW (item 
A), the intensity of the produced electromagnetic wave 
is  continuous on these surfaces, and the gravitational 
field undergoes a discontinuity of second order. In 
accord with the general theory, C'71 the intensity of the 
discontinuity 1 *; 1 satisfies the continuity equation 

In the case of passage of a PEW (item B), the electro- 
magnetic field has a jump on the surfaces u = 4 c  *a, 

while the gravitational field has a 6-function singularity. 
The expansions (3.14) agree with the results of our 
earlier study, C171 in which, in particular, we investigated 
the algebraic structure of a first-order discontinuity of 
the Weyl tensor on isotropic surfaces. Again, the 
coefficient of the &function singularity satisfies the 
intensity conservation law (3.15). The obtained formu- 
las at values of u that cause the denominator 1 - 2p0bl 
(u - 1)  to vanish. The calculation of the invariants, 
however, shows that this singularity has in fact an un- 
physical character. 
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