
'w. M. Walsh and N. Bloembergen, Phys. Rev. 107, 904 
(1957). 

'5. N. Lukin and G. A. Tsintsadze, Zh. Eksp. Teor. Fiz. 69, 
250 (1975) [Sov. Phys. JETP 42, 128 (197511. 

3 ~ .  Yu. Kozhkhar', S. N. Lukin, and G. A. Tsintsadze, Fiz. 
Tverd. Tela (Leningrad) 17, 1870 (1975) [Sov. Phys. Solid 
State 17, 1231 (1975)l. 

*A. G. Taylor, L. C. Olsen, D. K. Brise, and J. W. Culwa- 
house, Phys. Rev. 152, 403 (1966). 

5 ~ .  N. ~ e a o ,  V. P .  Petrenko, and G. A. Tsintsadze, Prib. 

Tekh. Eksp. No. 5, 210 (1972) [Instrum. Exp. Tech. 16, 
1538 (1972)l. 

9. P. Kaminow and R. V. Jones, Phys. Rev. 123, 1122 
(1961). 

'E. S. Itskevich, Prib. Tekh. Eksp. No. 4, 148 (1963) [In- 
strum. Exp. Tech. No. 4, 740 (1964)l. 

'B. Bleaney and D. J. E. Ingram, Proc. Roy. Soc. A208, 143 
(1951). 

Translated by V. Zilberstein 

Electron dispersion law in a bounded crystal 
V. A. Volkov and T. N. Pinsker 

Institute of Radio Engineering and Electronics, USSR Academy of Sciences 
(Submitted July 22. 1976) 
Zh. Eksp. Teor. Fiz. 72, 1087-1096 (March 1977) 

The problem of calculating the dispersion law in a semi-infinite crystal (the Tamm problem) and in a film 
is formulated in the terms of envelopes and is solved analytically as applied to cubic semiconductors with 
narrow forbidden bands. The solution of the Tamm problem points to the existence of one two- 
dimensional Tamm subband. Depending on the surface properties, the extremum of this subband lies 
either in the forbidden band or coincides with the top of the valence band. In the latter case, the states in 
the Tamm subband are quasistationary. The dispersion curve in the Tamm subband is double-humped. 
The energy spectrum of the camers in the film is analyzed and the existence of two-dimensional subbands 
of a new type (besides the usual Tamm and size-quantized ones) is predicted: 1) hybrid subbands to which 
states localized near the film boundaries as well as delocalized states correspond; 2) a pair of subbands 
with anomalously small masses, which realize the two-dimensional analog of the zero-gap state in a 
definite film-thickness interval. It is shown the effective masses at the bottom of the lower size-quantized 
subbands can differ substantially in thin films from their quasiclassical values. The most important of the 
foregoing results cannot be obtained within the framework of one-dimensional models of a bounded crystal 
or models that can be reduced to one-dimensional. 

PACS numbers: 71.25.Cx, 71.25.Jd 

1. INTRODUCTION earlier. "I In contrast to the null conditions, '3*41 these 

It is known'"41 that size quantization leads to a split- 
ting of each energy band in the conduction-electron spec- 
trum into two-dimensional size-quantized subbands. In 
the classical approximation, ['I the dispersion law in the 
n-th subband (n >> 1)can be obtained in the isotropic case 
from the condition 

E=E(x ,  nn ld ) ,  (1 

where E is the electron energy, x(n,,n,, 0) is the two- 
dimensional quasimomentum in the plane of the film, 
k,= an/d is the quantized value of the transverse com- 
ponent of the quasimomentum, n is a positive integer, 
and d is  the thickness of the film, the z axis coincides 
with the normal to the film, and c(k) is the electron dis- 
persion in a perfect crystal. 

The problem of calculating the spectrum of the elec- 
trons in a film at n -  1 is usually formulated in the lan- 
guage of envelopes, i. e . ,  of functions that vary slowly 
over the lattice periods and a r e  the effective wave func- 
tions of the electron in the crystal. 

The boundary conditions that the envelopes must sat-  
isfy on the crystal surface have already been derived 

boundary conditions take into account the abruptness of 
the variation of the electron potential energy near the 
surface; this, a s  is well known, ['I is the cause of the 
appearance of surface (Tamm) states. The case x = 0 
was considered and it was shown that the quasiclassical 
quantization rules k,= nn/d a r e  valid only in sufficiently 
thick films. The deviation of x from zero not only 
changes the system of equations for the envelopes, 
but also renormalizes appreciably the boundary condi- 
tions. The latter is due to the face that the xf i  interac- 
tion jointly with the potential of the boundary entangle 
the electron motions transverse and longitudinal rela- 
tive to the surface. The result is that k, becomes de- 
pendent on x . 

The purpose of the present paper is to consider the 
case x + 0 and to determine the electron dispersion law 
in each subband-both the size-quantized band and the 
Tamm band. The work is based on a derivation of the 
boundary conditions for the envelopes (Sec. 2). The 
problem of determining the electron spectrum in a semi- 
infinite crystal (the Tamm problem, Sec. 3) or  in a film 
(Sec. 4) then reduces to a solution of relatively simple 
equations for the envelopes with the obtained boundary 
conditions. The problem was solved for cubic semicon- 
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ductors with inversion centers in the four-band approxi- 
mation (a conduction band and three valence bands), and 
also in the effective-mass approximation. The results 
can be nevertheless used, a t  least qualitatively, also for 
a much larger class of substances. 

2. BOUNDARY CONDITIONS FOR THE ENVELOPES 

We consider a semi-infinite crystal occupying the re -  
gion of space z 3 zo and bordering on a vacuum (z < zo). 
We assume that the Hamiltonian preserves the two-di- 
mensional translational invariance, i. e. , the boundary 
is an atomic plane. The two-dimensional quasimomen- 
tum x is then a good quantum number. 

The complete wave function of the electron in the 
crystal assumes, far  enough from the boundary, the 
formC8' 

- 
Y,, ( x ,  E ,  r) = y, CLYA ( x ,  E,  r) , 

.I A-' 
(2) 

coincides with a twofold (or in general an even-fold) 
symmetry axis C2. In the case x = 0, which was con- 
sider earl ier ,  c51 the operator I? commutes with the oper- 
ation C2, and theJunctions +,(O, E ,  r )  a r e  either even o r  
odd relative to C2. The even functions, the roots of (4) 
corresponding to them, and the coefficients C, a r e  la- 
beled by the index A,, while the odd ones a r e  labeled 
A,, The infinite matrix in the double brackets in (7) 
consists of four matrix blocks. The off -diagonal blocks 
yGA2(x, E )  and h,t,,(%, E )  a r e  linear inx and vanish at x = 0. 
They a r e  the result of the x e  interaction, which en- 
tangles the roots of (4) which a r e  even and odd relative 
to e2. Since we a r e  interested in values of I x 1 that a r e  
small compared with the reciprocal-lattice vector, we 
shall neglect the dependence of f' on x . 

To analyze the system (7), we separate those roots of 
(4) which depend essentially on E and x in the energy 
interval of interest to us, and label them by the index i. 
We assume that E lies in the forbidden band. The sepa- 
ration i s  with respect to the parameter 

where C, a r e  indeterminate coefficients and 

a re  Bloch functions analytically continued into the plane 
of complex q = q f  + iq"; p= b, y,  0); the summation in 
(2) is over all possible roots (including the complex 
ones) of the equation 

which is solved for q. In accordance with the boundary 
conditions, a s  z-  + the roots of Eq. (4) a r e  subject 
to the constraint 

Just a s  before, C51 we assume that the perturbing ac- 
tion of the boundary z = zo on a,, is described a s  follows: 

where P is  a certain integro-differential operator having 
a kernel localized at atom$ distances near the plane z 
= zo. The actual form of l? is immaterial in what fol- 
lows. (Expressions for f a re  given inC5'. ) 

Substituting (2) and (6) and then expanding each of the 
terms in a Fourier ser ies  in the two-dimensional recip- 
rocal-lattice vector G, and equating the coefficients of 
like harmonics to zero, we obtain a homogeneous sys- 
tem of linear equations for the coefficients C,: 

where 

These roots make the principal contribution to the wave 
function (2) at distances from the boundary much larger 
than atomic distances. In semiconductors with diamond 
o r  zincblende structure (the spin-orbit interaction i s  dis- 
regarded), three roots qi ( i  =1,  2, 3) a r e  separated and 
correspond to "real  lines" (seeCB1) from four bands: a 
conduction band of S type and valence bands of type X, 
Y, and Z (Fig. l).''] The root ql i s  even a t  x =0, since 
it l ies on the real  line thai joins S- and 2-type bands 
that a r e  even relative to C,. The 2-band i s  in this case 
the band of the light holes. The roots q, and q, a re  odd 
a t  % = O .  

When I x l Iqi I is turned on, the far  roots q,(h +i) re-  
main practically unchanged in the approximation (81, so 
that their contribution to the off -diagonal blocks of the 
system (7) can be neglected. The matrix lihGt,,(x, E) I 1  

has then only one nonzero column corresponding to h, 
= 1, while the matrix Ilg,,,(%, E)li has two nonzero col- 
umns corresponding to A, = 2 and 3. The contributions 
of the singled-out roots qi(i =1, 2, 3) will be taken into 
account exactly. 

Those terms of (2) which correspond to the singled- 
out roots qi can be expressed in terms of envelopes 
that vary slowly over the lattice period: 

Y;=efxp {ZB:" ( z )  4. + 2 0::) 

Here ujo(r) i s  a Bloch factor corresponding to the ex- 
tremum of the band j. It is assumed that the extrema 
of the bands lie in the center of the Brillouin zone. The 
summation in (9) and henceforth is over all the bands 
that a r e  even ( j )  o r  odd ( j f )  relative to e,. 

If (9) i s  taken into account, then the condition that the 
determinant of the system (7) vanish yields for the envel- 
opes boundary conditions in the form 

In the derivation of (7) it was assumed that the z axis 
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FIG. 1. Graphical solution of Eq. (4) at x = 0 for a four-band 
semiconductors. The "far" roots q, ( h > 3 )  are not shown; 
ed and Ev0 are the extrema of the conduction and valence bands, 
respectively. The thick line separates the doubly degenerate 
band of heavy holes. 

Each of the real  constants Af(+) in (10) is a determinant 
of infinite order and contains information on the micro- 
scopic properties of the surface. Expressions for A,(+) 
a r e  given incs1. The + sign corresponds to the chosen 
positive direction of the z axis. If the choice is the op- 
posite, then (+) is replaced by A ,(-). The general 
expression for cpf is complicated in form. At x, = O ,  
when one of the singled-out odd roots q,, which i s  n_ot 
connected with the even roots, since there is no x,p, 
interaction, the expression for cpf becomes much sim- 
pler: 

3. DISPERSION LAW IN THE SURFACE SUBBAND 
OF A SEMI-INFINITE CRYSTAL 

Let us solve the Tamm problem for  a semiconductor 
with a narrow forbidden band, in which the four-band 
approximation is well satisfied, for  the case x, = O .  
We seek the envelopes in the form 

where q , ( x ,  E) (i = 1, 2) a r e  the roots of Eq. (4) (see also 
Fig. 1). 

From (10) and ( l l ) ,  with allowance for (12) and for the 
connection that ensues between the @,(z) from the k$ 
system of equations, ['I we obtain a dispersion equation 
relative to E for the Tamm problem: 

is the dispersion law that describes the conduction band 
(+) and the light-hole band (-1; E, is the width of the 
forbidden band; Pis the intrband matrixelements of the ve- 
locitycgl; m d i s  the effective mass  a t  the extremum of the 
conduction band. In the derivationof (13) and (15), m,*was 
assumed to be small relative to the mass  of thef ree  elec- 
tron, and the energy was reckoned f rom the center of 
the forbidden band. 

It is known that the four-band approximation is too 
crude for a description of the dispersion of the heavy 
holes, whose contribution to (13) becomes appreciable 
a t  energies close to the top of the valence band. When 
the dispersion equation is derived under these conditions 
it i s  necessary to use a more exact expression for the 
dispersion lawc1o1: 

where the + sign corresponds to i = 1 and the - sign cor- 
responds to i=2 .  L, M, and N a r e  negative constants. 

I t  is easy to show that the dispersion equation for a 
Tamm subsystem located close to the top of the valence 
band is of the form 

and in the approximation of a narrow forbidden band 
Rc(+) and &(+) a r e  connected by the relationCS1 

In  the isotropic case, when I NI = I L - M I ,  the disper- 
sion law goes over into the expressions 

for the light- and heavy-hole bands, respectively. Equa- 
tion (16), with (18) taken into a.ccount, simplifies and takes 
the form 

I t  i s  easy to verify, using (17), that (13) goes over into 
(19) when E approaches the top of the valence band. 

An analysis of (13) shows that regardless of the sign 
of R,(+) there exists one Tamm subband. At small  In,I, 
when 

where 

is the length characterizing the microscopic properties 
of the surface.c51 We denote by I the quantity 

then 

the dispersion law in this subband can be obtained in  
analytic form 

E ; ' . " ( ~ . )  = - E.lZ 
2 (Z2+4R,l (+) ) 

) ) I h ]  . (21) 

with E',"(x,) corresponding to Rc(+)>O and E:' to &(+I 
<O. The position E',"(o) of the bottom of the first  sub- 
band was calculated incs1 in the two-band approximation, 
while the effective mass on the bottom of this subband 
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under the condition 

FIG. 2. Tamm subband E: (x,) existing at R, > 0. The volume 
states of the light and heavy holes are shaded. 

coincides with mg. In all other respects, however, i t  
differs in shape from the conduction band, and the dif- 
ference is  larger the closer E',"(o) i s  to the top of the 
valence band. 

To analyze the contribution of the heavy holes to the 
formation of the Tamm subband Ek1)(x,) we shall use the 
dispersion equation (19). Allowance for the corrections 
in terms of the parameter (20) leads to the following re-  
sults: First, a renormalization of the effective mass 

on the bottom of this subband, the position of the bottom 
being determined in this case by the expression 

Second, a s  Ix,l increases and the condition (20) i s  vio- 
lated, the dispersion law in the Tamm subband deviates 
more and more from formula (21) and reaches a maxi- 
mum at  an energy (see Fig. 2) 

where f ( 4 ~ / ~ ) - 1 0 ' l  a t  4M/L<< 1, a condition well sat- 
isfied in semiconductors with narrow forbidden bands. 
The effective mass at the maximum i s  of the order of 
the mass of the heavy holes, h2/2M. At 

E'," begins to overlap the volume spectrum. The asymp. 
totic form of E',"(x,) a t  I ~ , / ~ ~ ~ l  >> 1 i s  also determined 
by the mass of the heavy holes: 

We note that a Tamm subband of similar shape was 
calculated for Ge by the LCAO method in the nearest- 
neighbor approximation. ["] 

The appearance of the Tamm subband E',~)(x,) a t  %(+) 
<O is due to degeneracy of the valence band. I t s  top 
E?$)(O) coincides with the top of the valence band, and 
the effective mass near the extremum is equal to the 
light-hole mass x2/2L. Since this subband intersects 
with the heavy-hole band, the states in i t  a r e  quasista- 
tionary: 

and the behavior of the wave function (the damping length 
and the period of the oscillations) is determined by the 
expressions 

4. DISPERSION LAW FOR ELECTRONS IN  A FILM 

We consider a film occupying the region of space 

I t  follows from the preceding section that i f  In,I is 
not too large, and the inequality (20) is satisfied, we can 
disregard in the boundary conditions for the envelopes 
the entanglement of the roots of Eq. (4) that a r e  even and 
odd relative to e2. This means that we can neglect the 
off-diagonal blocks in (7), a s  well a s  the increment p, 
in (10). Following now Sec. 4 ofc5], we can easily show 
that for films whose thickness satisfies the condition 

the boundary conditions for the envelopes take the form 

where 

@, (2) = A exp (ik,z) +B exp (-ik,z), (23) 

and A and B a r e  coefficients that must be determined 
from (22). 

We have omitted in (22) and (23) the envelope super- 
script  corresponding to the number of the root of Eq. 
(4), since we a r e  considering only one root. In the 
Tamm problem i t  was designated q, (see Fig. 1). The 
requirement (5) is waived for a film, and corresponds 
therefore to a pair of roots of Eq. (4), which we des- 
ignate k, and - k,, and the right-hand side of this equa- 
tion should contain a dispersion law determined from 
(15). 

Substituting (23) in the boundary conditions (22) and 
using the relation (seecs1) 

for a film whose potential i s  symmetrical relative to the 
central plane z = d / 2 ,  we obtain a dispersion equation 
with respect to E 

The signs + and - pertain to envelopes (23) that a r e  r e -  

57 1 Sov. Phys. JETP 45(3), Mar. 1977 V. A. Volkov and T. N. Pinsker 57 1 



spectively even and odd relative to the central plane of 
the film. 

The results of a graphical solution of Eq. (24) a r e  
shown in Figs. 3 and 4. I t  i s  seen from these figures 
that size quantization leads to formation of size-quan- 
tized subbands corresponding to real  kc, and to splitting 
of the Tamm subband. The interaction between the size- 
quantized and Tamm subbands can result in hybrid sub- 
bands. In the case Rc < 0 (Fig. 3), the hybrid subband 
i s  the one with n, = 1; at  small I x, I ,  

this subband can be regarded a s  size quantized, and a t  
I u,I > x1 it can be regarded a s  a Tamm subband. The 
structure of the electron wave function in this subband 
changes radically a t  I x,l = nl: if I x,l s xl, then the en- 
velopes take the form of standing waves, but if I n, I > x, 
then they a re  sums of exponentials localized near the 
film boundaries, and the localization i s  stronger the 
larger In ./xl I . 

A distinguishing feature of the spectrum in the valence 
band i s  that i t  contains a size-effect subband whose ex- 
tremum coincides a t  x = 0 with the top of the valence 
band (n, = 0 on Figs. 3 and 4a). This distinguishes in 
principle the degenerate valence band from the conduc- 
tion band. 

I t  i s  also seen from Fig. 4 that if Rc > 0 one of the 
Tamm subbands approaches the top of the valence band 
with decreasing film thickness, and crosses the top a t  
d = ZR,. The x i  interaction between this subband and 
the n,=O subband causes the effective mass in each of 
these subbands to reverse sign and to pass through zero 
a t  d = 2& (the two-dimensional analog of the zero-gap 
stateuz1). 

I t  follows from (24) that, in contrast to the quasiclas- 
sical approximation (I), kc depends on n,, and this leads 
to renormalization of the effective mass a t  the bottom 
of each subband. If I x,l i s  small we can seek k,  in the 
form 

k Z ( x x )  z k , ( O )  +axXZ,  (2 5) 
I a x 2 / k z ( 0 )  I al. (26) 

Substituting (25) and (24) and expanding in powers of the 
parameter (26), we obtain for the sought effective mass 
the expression 

FIG. 3. Size-quantized and Tamm 
subbands in a film at Re< 0 and R,< 0. 
The thick lines separate the states 
with imaginary k2, the dash-dot line- 
the Tamm subband in a semi-infinite 
crystal, and the dashed line-the 
quasiclassical size-quantized sub- 
bands. 

FIG. 4. The same as Fig. 3, but for Rc> 0 and R,>O. a) Thick 
films (d > 2R, d > 2Rdr b) thin films (d < 2R, d < 2R,). 

where 

In sufficiently thick films (l2k:(0) << 1) there is no mass  
renormalization. The variation of m,(O) with thickness, 
which is  known fromc5], makes i t  possible to determine 
the mass renormalization in the thin-film limit, when 
the nonparabolicity of the dispersion law (15) is essen- 
tial: 

where 

1 1 1 21RjI 
Anj = - n arcctg - ( -  ( i=c .v ) .  

The upper sign in (27) pertains to the conduction band 
and the lower to the valence band. As expected, for 
high-lying size-quantized subbands (nj >> 1) one can use 
the quasiclassical approximation, and the mass renor- 
malization is inessential. For the subband with nj = 1 
we have 

A more radical change of the effective mass with de- 
creasing d takes place in the Tamm and hybrid subbands. 
For example, for the upper subband in the valence band, 
in which k,(O) = 0 and (26) cannot be used, m* is given by 
the expression 

which can even reverse sign a t  d = 2 4 ,  a fact already 
noted in the qualitative discussion of Eq. (24). 

In the considered isotropic case, a renormalization of 
m * takes place only if the dispersion is nonparabolic. 
Allowance for the anisotropy, even in the case of a qua- 
dratic dispersion, can lead to an analogous effect if the 
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crystal has no symmetry plane parallel to the film sur-  
faces. 

We did not mention in this section the heavy holes, 
for which the quasiclassical quantization (1) i s  valid. 
If condition (20) is satisfied, they can be treated inde- 
pendently of the light holes. Allowance for the correc- 
tions relative to the parameter (20) leads to spectrum 
correction proportional to MIL << 1 and to an increase in 
the distance between the size-quantized subbands cor- 
responding to the heavy and light holes a t  the points of 
their intersection. 

Size quantization in the vicinity of the top of a degen- 
erate valence band was considered earlierc4' with null 
boundary conditions used for the envelopes. This ap- 
proach cannot yield Tamm states which, a s  shown in 
the present paper, al ter  significantly the spectrum of the 
size-quantized subbands in the valence band at n, 5 1. 
None the less,  the positions of the extrema of the size- 
quantized subbands corresponding to n, > 1 agree with 
Nedorezov's resultsc4] in the limit of thick films 
(d >> nn, l R, I ). A more detailed comparison of his and 
our results is difficult, since Nedorezov considers the 
opposite limiting case, where the spin-orbit interaction 
i s  assumed large and the mass of the heavy holes i s  as-  
sumed finite. 

We note in conclusion that the boundary condition (10) 
retains the same form in those cases  when additional 
fields that can be described in the language of envelopes 
a r e  present in the system. 

The authors a r e  deeply grateful to V. B. ~andomirskir  
for constant interest in  the work and to M. I. Kaganov 
for valuable remarks. 
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Level crossing and instability of magnetic structure in rare- 
earth iron garnets 
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When the ground-state levels of a rare-earth ion cross (or approach one another) in a rare-earth iron 
garnet, the magnetic structure of the garnet becomes unstable. This phenomenon is very close to the well 
known Jahn-Teller effect. If the rare-earth ions have a strong magnetic-moment anisotropy, this 
instability involves some distinctive anomalies of the magnetic behavior of the crystal. We have 
investigated a theoretical model in which the rare-earth ions are treated in an extreme anisotropic (Ising) 
approximation. It is shown that at different orientations of the external magnetic field the instability 
produced by the level crossing has a fine structure that reflects the detailed character of the 
magnetization reversal of rare-earth ions situated in differnt non-equivalent positions. The magnetization 
curves of such a system are investigated and a comparison is made with the experimental data on 
holmium-yttrium ion garnets. 

PACS numbers: 75.10.Hk, 75.30.G~ 

1. INTRODUCTION tures. These jumps ar ise  a t  different orielitations of 
the external field relative to  the crystal axes and a r e  

Demidov, Levitin, and ~ o ~ o v ~ ~ * ~ ~  have observed an in- accompanied by hysteresis phenomena. The probable 
teresting phenomenon: in some mixed rare-earth iron cause of these anomalies, in their opinion, is the cross- 
garnets (REIG), the magnetization curves M(H) exhibit ing (or approach) of the low-lying levels of the rare-  
magnetization jumps in strong fields a t  low tempera- earth ions (REI) when the external magnetic field H i s  
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