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Absorption of Rayleigh sound in metals with a multiply connected Fermi surface is considered. The 
absorption coefficient in the absence of an external magnetic field or in a strong (nonquantizing) magnetic 
field H perpendicular to the wave vector k is calculated for different orientations of the vector H with 
respect to the sample boundary. In a normal magnetic field, absorption of surface waves is lower than that 
of volume sound; this decrease is due to departure of nonequilibrium electrons by diffusion from the "skin 
layer" of the Rayleigh wave. In a magnetic field parallel to the surface, the absorption coefficients of the 
surface and volume sound are of the same order of magnitude. The dependence of the Rayleigh-wave 
absorption on the nature of the scattering from the metal boundary is discussed. 

PACS numbers: 72.55. +s 

INTRODUCTION 

1. The character of the propagation of sound waves in 
metals has by now been studied in considerable detail. 
The absorption and dispersion of volume sound oscilla- 
tions have been studied especially fully-their depen- 
dence on the direction of wave propagation, on the shape 
of the energy spectrum of the carriers,  and on the ex- 
ternal conditions in which the system is situated (tem- 
perature, magnetic field and so on). In bounded sam- 
ples, in addition to the volume sound waves, elastic 
oscillations that a r e  localized near the surface-Rayleigh 
waves-can also be propagated. "I Their amplitude falls 
off exponentially with penetration into the interior of the 
metal, a t  a distance of the order of the sound wave- 
length. The singularities of the absorption to which the 
surface character of the Rayleigh waves leads have been 
intensively studied theoretically in the recent papers of 
Grishin and the present authors. Some of the re-  
sults (giant quantum ~ s c i l l a t i o n s ' ~ ~ )  have already found 
their experimental confirmation. C61 

Up to  the present time, in all  the theoretical papers 
devoted to the study of surface sound in metals, a model 
of a metal has been considered in which there is a single 
group of carr iers  (or else situations in which the con- 
tribution of several groups to the absorption i s  additive). 
The Fermi surfaces of many metals (and, in particular, 
semimetals) a r e  multiply connected. The study of the 
absorption of Rayleigh sound is therefore of interest in 
such a situation in which the presence of several groups 
of carr iers  can lead to qualitative differences from the 
results obtained previously. 

2. We recall in brief the effect of a multiply con- 
nected Fermi surface on the propagation of volume sound 
 oscillation^ (this question has been considered in detail 
by Gilinskii and ~u l tanov~~ ' ) .  The disequilibrium of the 
electron distribution in the sound-wave field in the pres- 
ence of several groups of carr iers  can be of the intra- 
group o r  of the intergroup type. The latter represents 
the departure of the number of particles in each group 
from the instantaneous equilibrium value in the case of 
total electric neutrality of the system. The character- 
istic relaxation times of these disequilibria a re  gen- 

erally different. At sufficiently low temperatures, the 
intergroup relaxation frequency v~ can turn out to be 
much smaller than the relaxation frequency of the intra- 
group disequilibrium. If a sound wave of frequency w 
<< v propagates in the metal in this case, then, thanks 
to the rapid intragroup relaxation, the decisive role in 
sound absorption will be played by the nonequilibrium 
distribution of carr iers  between the groups. This non- 
equilibrium character can be removed in two ways- 
either by direct transitions between groups with frequen- 
cy v,, o r  by diffusion of the carr iers  in coordinate space 
along the direction of sound propagation. 

The presence of two relaxation times, one of which 
(the diffusional) depends on the frequency w, leads to the 
result that the relative absorption r/w a s  a function of 
frequency has either two maxima at  the frequencies v, 
and wD = s 2 / ~  (s is the sound velocity, D  i s  the diffusion 
coefficient along the wave vector k), o r  one maximum at 
a frequency ( v , ~ ~ ) ~ ' ~ .  

The described picture can be observed, of course, 
only in the case in which the mean free path of the elec- 
trons along the wave vector k is small in comparison 
with the sound wavelength. In the absence of an external 
magnetic field, satisfaction of the condition kl << 1 is 
necessary here ( I  is the mean free path). If the sample 
is placed in a strong (nonquantizing) magnetic field H, 
perpendicular to the vector k ( a  >> v, kR << 1, is the 
cyclotron frequency, and R is the radius of the orbit of 
the electrons in the magnetic field), then the range of 
frequencies in which intergroup disequilibrium appears, 
turns out to be much broader. This is connected with 
the fact that even a t  kl>> 1 the motion of electrons along 
the vector k is limited by the magnetic field and the in- 
tergroup disequilibrium is removed by the two methods 
mentioned above. 

3. The absorption of the Rayleigh wave in a metal 
with several groups of carr iers  possesses a number of 
singularities in comparison with the absorption of volume 
sound. The differences a r e  due to two circumstances. 
First, the dynamics of the electrons interacting with the 
Rayleigh wave depends on the character of their reflec- 
tion from the surface and, consequently, the absorption 
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ought to be sensitive to the state of the boundary of the 
sample. Second, the disequilibrium of the sound wave 
along the normal to the surface of the metal leads to  the 
appearance of still another relaxation mechanism, due 
to the escape of nonequilibrium carr iers  from the "skin 
layer" of the Rayleigh wave. In the absence of a mag- 
netic field, and also in a magnetic field parallel to the 
surface of the metal and perpendicular to the vector k, 
the diffusion relaxation time agrees in order of magni- 
tude with the time of escape of the carr iers  from the 
skin layer, and the absorption coefficient of the surface 
sound turns out to be of the same order a s  that of the 
volume sound. 

Inclination of the vector H relative to the surface of 
the metal changes the relation between the diffusion co- 
efficients in the direction of the wave vector k and along 
the normal to the surface. In particular, if the vector 
H is perpendicular to the boundary of the sample, the 
diffusion of carr iers  along k is frozen, while the diffu- 
sion along the magnetic field is free. In this situation, 
the nonequilibrium electrons leave the skin layer of the 
sound wave before they manage to relax by diffusion. 

As a result i t  turns out that, in that range of frequencies 
in which the absorption of volume sound is determined 
by the diffusion relaxation time, the Rayleigh sound ab- 
sorption coefficient depends on the time of escape of the 
nonequilibrium carr iers  from the skin layer and becomes 
smaller than the absorption of volume sound. 

1. STATEMENT OF THE PROBLEM 

The components of the strain tensor of the Rayleigh 
wave, propagating along the boundary of an elastic half- 
space, have the form 

where U?~(O) a re  the amplitudes of the longitudinal ( a  = I )  
and transverse ( a  = t )  components of the strain tensor at 
the surface x = 0, and a re  connected with one another by 
the boundary conditions, the x axis is directed into the 
depth of the metal, x, = (@' - w~/s,)"~ is the damping 
decrement of the sound field along the normal to the sur-  
face, and s, is the velocity of longitudinal and trans- 
verse sound oscillations. 

In the present paper, we shall consider only the de- 
formation interaction of electrons with sound. The ne- 
glect of the induction part of the interaction in strong 
magnetic fields is admissible only for semimetals; 
therefore, all  the results a re  quantitatively valid only in 
this case. The coefficient of deformation absorption of 
surface sound is determined by the formulac2' 

where W is the energy density in the Rayleigh wave, A;, 
is the deformation potential tensor, and x , ~ ( E  - E = )  is 
the nonequilibrium part of the electron distribution func- 
tion. The dot denotes the partial derivative with respect 
to time, the angular brackets ( 0  *), denote integration 

over the portion of the Fermi surface corresponding to 
the group of carr iers  with index a, the asterisk denotes 
the complex conjugate, and summation is carried out 
over the vector indices i and k. 

It is known that the deformation potential tensor in 
semimetals depends weakly on the momentum. It can 
also be shown that even in typical metals, with multiply 
connected Fermi surfaces, in the region of frequencies 
of most interest to  us and the sound absorption under 
certain conditions should be determined essentially by 
the constant component of the deformation potential for 
the group. Therefore, further calculations will be car- 
ried out with the tensor A;, = const. In this case, the 
initial formula for the absorption coefficient takes the 
form 

Q, = (I), is the density of states on the Fermi surface. 

The nonequilibrium part of the distribution function is 
determined from the kinetic equation (see, for example, 
Ref. 7): 

d x~+v.(x.-%)+ C v a b ( % - ! b )  - A I ~ ' ' ~ ~ I ~ .  I 
b t n  

(1.4) 
Here cp, is the azimuthal angle of the electron in the 
plane perpendicular to the magnetic field, v, is the ve- 
locity of the electron, v, is the frequency of the intra- 
group relaxation, and v,, is the frequency of transitions 
of carr iers  between the groups a and b. 

With the aim of simplifying the calculations, we con- 
sider a model of a metal with two groups of carriers. 
Using the equation of electric neutrality of the system 

we represent the kinetic equation for this case in the 
following form: 

Equation (1.5) must be supplemented by the boundary 
condition on the surface x =O. The character of the re-  
flection of the electrons from the boundary of the metal 
can be taken into account by the introduction of the phe- 
nomenological specular-reflection probability p. We 
can represent by i ts  means the boundary condition in the 
form of the equation 

The left-hand side contains the nonequilibrium part of 
the distribution function of electrons reflected from the 
surface of the metal (the arrow t). It coincides, with 
probability p, with the distribution function of the par- 
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ticles traveling to the surface (arrow t ) ,  and with prob- 
ability 1 - p becomes a constant independent of the mo- 
mentum. The constant which renormalizes the 
chemical potential of the nonspecularly reflected par- 
ticles, is found from the condition of vanishing of the 
normal component of the electric current a t  the bound- 
ary x =O. We note that the condition (1.6) does not take 
into account the possibility of transfer of carr iers  from 
one group to the other upon collision with the surface. 
Therefore, the current of each group of carr iers  should 
vanish separately a t  the surface. In what follows, we 
shall omit the number of the group everywhere where 
this does not cause misunderstanding. 

The solution of Eq. (1.5) a t  an arbitrary orientation 
of the magnetic field relative to  the surface of the metal 
is rather difficult. For this reason we limit ourselves 
to consideration of two limiting cases-a magnetic field 
perpendicular to the surface, and one parallel to it. In 
the normal magnetic field, the distribution function has 
a different form for electrons flying to the surface and 
for electrons flying away from it. The solution of Eq. 
(1.5) for electrons moving toward the surface is given 
by the formula 

dq' I%\ 
X ' ( ' ~ T ) =  .. J T g [ ~ + 7 ( q - ~ ' ) ] e x p ( - j y d q f r ) ,  . -- e. (1.7) 

The distribution function of reflected electrons de- 
pends on the boundary specularity parameter p and has 
the following form: 

v P- 

dqr 1 0  I dq' 
i ' ( ~ ~ ~ ) = j ~ ~ [ ~ - ~ ( q - q ' ) ] e s p ( - j y d ~ ~ ' ) + p  C. ., - J T g  - -- 

Here v is the modulus of the electron velocity on the 
Fermi surface (both surfaces a r e  assumed to be spheri- 
cal which, however, i s  not a serious limitation), and 
q-=q - ~ x / l v ~ l .  

In the case in which the magnetic field is parallel to 
the boundary, the solution of Eq. (1.5) can also be ob- 
tained a t  any value of the parameter p. t51 The situation 
in a parallel magnetic field will be discussed below. 

The electron distribution function in a normal mag- 
netic field, represented by Eqs. (1.7) and (1.8), is a 
functional of its mean value over the group j7, the find- 
ing of which is our problem. A rather complicated in- 
tegral equation is obtained for jZ in the case of arbitrary 
p. We therefore limit ourselves to the analysis of the 
limiting cases of specular (p = 1) and diffuse (p = 0) scat- 
tering of electrons by the boundary of the metal. 

2. NORMAL MAGNETIC FIELD. SPECULAR 
REFLECTION 

The electron distribution function in a normal mag- 
netic field (formulas (1.7) and (1.8)) is obtained without 
any assumptions a s  to the values of the parameters kR 

and u,/v. Since we a re  interested in effects connected 
with the intergroup disequilibrium of the carriers,  we 
assume these parameters to be small in comparison with 
unity. 

1. We introduce first  the general formula for the ab- 
sorption coefficient of the Rayleigh waves. Averaging 
the distribution function over the Fermi surface and 
carrying out the corresponding change of variables, we 
obtain an equation for 55: 

Equation (2.1) admits an even continuation of the solu- 
tion into the region x < 0. Introducing the functions 

we represent this function in the form 

It is easily solved by means of the Fourier transforma- 
tion 

For  the Fourier transform X we obtain the expression 

The transform of the function F( lx l )  is easily calcu- 
lated, since the strain tensor is taken in the unperturbed 
form (1.1): 

The asymptotic form of the kernel ~ ( q )  in the limit kR 
<< 1 is 

If we substitute the function X(x) in the form of the 
Fourier integral in Eq. (1.3) and carry out integration 
over x, we obtain the surface sound absorption coeffi- 
cient 
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The quantity ra represents the coefficient of collision- 
less absorption of volume sound by the carr ier  group a 
with concentration Na in the absence of a magnetic field, 
p, is the density of the metal, d ( 0 )  is the amplitude of 
the normal component of the potential mode of the sound 
field a t  the boundary, fa  is the electron-phonon interac- 
tion constant, Aa is the characteristic value of the defor- 
mation potential, the quantity A is the dimensionless 
function of the ratio of the sound velocities, "' and the 
factors Fa characterize the relative contribution of the 
potential ( a  = 1) and vortical ( a  = t )  sound modes in the 
interaction with the electrons. 

We shall calculate the integral in Eq. (2.8) by closing 
the contour of integration in the upper halfplane of the 
complex variable q. For this purpose, i t  is necessary 
to know the analytical properties of the function P(q) in 
this region. It can be shown that a t  w << v the function 
[I - ~(q) ] - '  has a simple pole at the point q =iK in the re-  
gion specified, in the vicinity of which 

vvZ  
I-P ( q )  = - ( qZ+KZ) ,  

3 T 3  
(2.9) 

-+-- ,a ,&I I  k'uz ) to. R - 3 7 (  
a- v. 3 v2+PZ ' 

Moreover, the point qo = ii/v i s  a logarithmic branch 
point, in which connection we must draw a correspond- 
ing cut in the upper half-plane of q. The branch points 
q, =iP* /v ,  which a r e  contained in the coefficient of ( k ~ ) e  
in Eq. (2.7), can be disregarded, since the contribution 
to the absorption from the integrals over the edges of the 
cuts, made from these points, turns out to be relatively 
small. 

At high frequencies (w >> v) the function [I - ~(q) ] - '  has 
no pole and it is necessary to take into account only the 
branch point go. 

With account of everything said above, the absorption 
coefficient can be represented in the form of a sum of 
three terms: 

r=r,+r2+r3, (2.10) 

The following notation is introduced here: ia = va/ia, 
Bz, =Re (pa%*). The term r,, which represents the 
contribution of the poles q =iKa to the integral of Eq. 
(2.8), needs to be taken into account only in the case 
w 5 va. 

2. We now consider the behavior of the absorption 
coefficient a t  different values of the parameters. In the 

limiting case l nil << 1, the term r,, which is propor- 
tional to (no4, can be neglected. Using Eqs. (2.9), we 
obtain the following expression for the absorption coef- 
ficient: 

In the opposite limiting case lxil >> 1, it suffices to re-  
tain only the principal term in the expression for P(ix) 

In the integral contained r2,  the fundamental contribution 
is made by the region t -  1 u l  I. This allows us to sim- 
plify the integrand by replacing the last factor by unity. 
Using (2.12), we get an expression for the sum of the 
quantities rl and rz that agrees in form with the Ray- 
leigh sound absorption coefficient of a single carr ier  

kZ 
T.+T= X B . ~  B ~ ~ ~ - ~ R ~  A+ -A* [3 ln ( l i r . i . ) - I ( - lo ( l+x&l  zn . 

%P 
I R R  

I 
(2.13) 

3. We now analyze the dependence of the absorption 
coefficient on the frequency.- In the region of sufficient- 
ly low frequencies, when I nl l << 1, the absorption is de- 
termined by Eq. (2. l l ) .  If the inequality 

is satisfied in this case, the principal contribution to the 
absorption is made by the first  term which (if we neglect 
the quantity ic in comparison with K) is identical in form 
with the absorption coefficient of volume sound. 

As the frequency is increased, the opposite inequality 
begins to be satisfied 

(getting ahead of ourselves, we note that the transition 
from the inequality (2.14) to (2.15) takes place at fre- 
quencies a t  which we still have 1x71 << 1). The second 
term in Eq. (2.11) becomes dominant (actually, r,) and 
the absorption of surface waves differs essentially from 
the absorption of volume sound. 

In the range of frequencies when l ji il >> 1, but w << v, 
i t  is generally necessary to  take into account the con- 
tribution of (2.13) in addition to  r,. In this region, 

Since the inequality 

is satisfied a t  w << v, and the quantity I lnnil - 8-9 even 
a t  w - v, we can then assume that the absorption through- 
out the .range of frequencies in which the conditions 
(2.15) and (2.17) a r e  satisfied, is determined essentially 
by the term r,. Thus, the formula (2. l l ) ,  which rep- 
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FIG. 1. Frequency dependence of the relative absorption of 
surface sound in the region (L << v (the frequency scale is loga- 
rithmic). Dot-dash line-absorption at H =0 ,  dashed line-in 
a magnetic field parallel to the surface of the metal, continuous 
line-inanormal magnetic field. In theabsence of a magnetic 
field and in the case of a parallel magnetic field, the absorp- 
tion coefficients of volume and surface sound are  of the same 
order of magnitude. Graphs a and b correspond to the case 
v M <  uO, c and d-to the case (. ,, < v,. 

resents the sum of r1 and r,, gives a good description 
of the absorption of Rayleigh sound over the entire range 
of frequencies w < v. 

The analytic dependence of the surface sound absorp- 
tion on the frequency changes substantially o r  going 
from the region (2.14) to  (2.15). The characteristic 
frequency a t  which this change occurs can be different, 
depending on the ratio of the parameters v, and wo 
= 3 ~ ( s / v ) ~  (w, is the frequency a t  which the sound fre- 
quency w and the frequency k 2 ~  = w2v2/3vs2 of diffusional 
relaxation of carr iers  in the absence of a magnetic field 
become equal). If vM < w,, then interchange of the in- 
equalities (2.14) and (2.15) takes place in the region of 
the frequency w,. If vM > w,, then the transition occurs 
at the frequency w z  = (v,~,)"~ (w: is the frequency a t  
which the frequencies of relaxation v, and @D become 
equal). 

The frequency characteristics of the relative absorp- 
tion I'/w of volume and surface sound in the low fre- 
quency region (w << v) a re  shown in Figure 1 for different 
ratios of the parameters v,, w,, w gw, and w :(wl = w,[l 
+ ( ~ / v ) ~ ] ,  w: = ( V ~ W ~ ) ~ ' ~ ) .  Figures a and b correspond to 
the case y, < w,, while c and d correspond to vM > w,. 
The general tendency is for  the relative absorption of 
Rayleigh sound to decrease significantly in the region 
(2.15) in comparison with the case of volume oscilla- 
tions. 

The character of the dependence of the absorption of 
Rayleigh and volume sound on the magnetic field is also 
well investigated. As is seen from Eq. (2.9), in the 
absence of a magnetic field I K l /lc > 1; therefore, the 
absorption coefficients of volume and surface sound a r e  
of the same order of magnitude (they a r e  represented in 
the figure by the dot-dash line). In the case v, coo, the 
diffusion maximum of the relative absorption of volume 
sound is shifted from the point wo to the point wl with 
increase in magnetic field, remaining constant in mag- 

nitude ((r/w),, - A'Q/~,S~). The change in the Rayleigh 
sound absorption in this same situation turns out to be 
more complicated. The diffusional maximum of r / w ,  
which is first  located a t  the point w,, shifts to the right, 
broadens and decreases in magnitude. 

At vM> w,, the picture looks somewhat different (Figs. 
c and d). In the absence of the magnetic field, the rela- 
tive absorption of volume sound has a single maximum at  
the frequency w ,* 

With increase in the magnetic field, the relative absorp- 
tion increases a t  its maximum: 

and this maximum occurs a t  w = w:. When the frequency 
w : becomes equal to v,, the maximum splits in two and 
thereafter the absorption of the volume sound behaves 
the same a s  in the case v,< w,. The relative damping 
of the Rayleigh sound, which has a maximum at the fre- 
quency w ,* in the case H =0, also increases with in- 
crease in the field, always remaining smaller than the 
volume sound absorption. The maximum of r / w  in this 
case shifts in the direction of high frequencies, lagging 
somewhat behind the position of the "volume" maximum. 
At w: - v,, the maximal value of the relative absorption 
of Rayleigh sound saturates and does not change with 
further increase in the magnetic field. The characteris- 
t ic feature of the Rayleigh sound absorption in the case 
v,> w, is the absence of a diffusion maximum at  any 
value of the magnetic field. 

To understand the reason for the significant difference 
of the absorption of surface sound from the absorption of 
the volume oscillations, we consider the distribution 
function of the nonequilibrium carr iers  in the field of the 
Rayleigh wave. The Fourier transform of the distribu- 
tion function (2.5) has the same singularities in the upper 
halfspace of the variable q a s  the integrand in (2.8). 
Since the inequality Ix 71 << 1 i s  satisfied a t  the charac- 
terist ic frequencies wo and w ,*, and also because of the 
condition (2.17), the contribution of the integral along 
the edges of the cut drawn from the branch point q, can 
be neglected. As a result, the distribution function i s  
represented by the expression 

In the range of frequencies in which I K I >> x, the second 
term can be omitted. The situation in this limiting case 
turns out to be in a certain sense local-the distribution 
of the nonequilibrium carr iers  repeats the distribution 
of the sound field. Upon satisfaction of the condition 
IKI << x the second term in Eq, (2.18) becomes domi- 
nant. The density of the nonequilibrium electrons in this 
limit decreases exponentially a t  a distance that is much 
greater than the thickness of the acoustic skin layer. 
The quantity K consequently has the meaning of the re- 
ciprocal depth of the diffusional penetration of the non- 
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equilibrium carr iers  into the interior of the metal with- 
in the relaxation time of the intergroup disequilibrium, 
either by direct transitions between groups o r  by dif- 
fusion of the carr iers  along the vector k, o r  as a conse- 
quence of the change in phase of the sound wave. All 
these mechanisms a re  taken into account in Eq. (2.9) 
for K. 

Thus, the difference between the coefficient of absorp- 
tion of Rayleigh sound in the considered geometry and 
the volume sound absorption coefficient is connected with 
the fact that, owing to the difference in the value of the 
diffusion coefficients along and transverse to the mag- 
netic field, under certain conditions the nonequilibrium 
carr iers  leave the skin layer of the surface wave without 
relaxing and cease to participate in the absorption be- 
cause of their relatively short lifetime in the field of the 
sound wave. 

The described difference between surface sound ab- 
sorption and volume sound absorption develops under 
conditions of intergroup disequilibrium of the carriers,  
i. e., a t  w << v. At high frequencies (W >> v), the dis- 
equilibrium of the carr iers  within the limits of the in- 
dividual groups should play the decisive role. Actually, 
the condition IKv/vl 2 1  is satisfied at w ?  v. Because 
of the rehtion (2.16), the absorption in this region is 
determined principally by the term (2.13), i. e., a s  ex- 
pected, it is identical with the absorption coefficient of 
a Rayleigh wave in a metal with a single group of car- 
riers. "] 

3. NORIMAL MAGNETIC FIELD. DIFFUSE 
REFLECTION 

1. In diffuse reflection of electrons from the bound- 
ary (p =0) the equation for the averaged distribution 
function has the following form: 

(v-v,)'" O 

R ( x ) = ~ J  2 n ~ :  dvs$dvexp(-  i y d v t ) ,  
0 v- 

The solution of Eq. (3.1) is equivalent to the solution of 
the set of equations 

The sought function ~ ( x )  is represented in the form of 
a linear combination of the functions U1 and U2: 

-1 - 
dx U z ( x ) R  ( x )  ] Jdx U, (x)  R ( x ) .  (3.3) 

0 

Omitting the intermediate steps, we write out the final 
expression for the absorption coefficient. The quantity 

is represented in the form of a sum of two terms 

r=r,+rz, (3.4) 

" dt No+ ( i t /L)  " dt' No+ ( i t l / l . )  
7 tt+x.I. - - 

v.-vx dt dt' it it' 

1 L 

The function N', which enters into (3.4), ar ises  in the 
solution of the se t  (3.2) by the Wigner-Hopf method and 
if of the form 

2. We now consider the behavior of the absorption 
(3.4) in different frequency ranges. At low acoustic 
frequencies (w << v) i t  is convenient to represent the 
function N' in the following form, by using the analytic 
properties of the kernel ~ ( q ) :  

I-' 1  - dt I  t + l ) =  ( ; t ) 2 ~ - ' }  
N )  = - e x p {  K-iq 1 - i )  t  -l ( 1  - 1  2t t-1 + - 

(3.6) 
a) lx il << 1. In this region, the principal term of the 

asymptotic form of the function N+(ix) is 

Expanding the quantity C, from (3.4) in the small pa- 
rameter KV/V and using (3.7), we obtain the following 
expression for r, and r,: 

b) lx i l>>  1. We make use of the fact that in this 
limit the principal contribution to  the integral of Eq. 
(3.6) is made by t -  Ixil .  We then obtain the following 
asymptotic expansion for N'(ix): 

1 
N+ ( i x )  = I + -1n ( l+xl ) .  

2x1 
(3.10) 

With account of Eq. (3. lo), the coefficient rl is repre- 
sented in the form 

q ,  = k/x, and agrees with the absorption in the case of a 
singly connected Fermi surface. The coefficient r,, 
a s  in the case luil  <<I, has the form (3.9). 

At high frequencies (w >> v), there is no r2 term in the 
absorpt.ion and the coefficient r is identical with expres- 
sion (3. l l ) ,  which describes the absorption due only to 
the intragroup disequilibrium of the carriers.  
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I t  is not difficult to establish the fact that the Rayleigh trons, leads only to a certain numerical change in the 
sound absorption coefficient, which i s  represented by absorption coefficient in comparison with that obtained 
the formulas (3.8) and (3.9), is identical in accuracy below. 
with the expression (2.11) in the low frequency region, 
i. e., the absorption in this frequency range does not de- 
pend on the character of the reflection of the electrons 
from the boundary of the metal. The dependence of the 
absorption coefficient on the specularity parameter p is 
contained only in the single-band components (2.13) and 
(3. l l ) ,  which describe the absorption due to the intra- 
group disequilibrium, and can appear only in the region 
of high acoustic frequencies. 

We note that the absence of a dependence of the sound 
absorption in the low-frequency region on the character 
of the reflection of electrons a t  the metal boundary i s  
entirely natural. In this case, the dominant role is 
played by the intergroup disequilibrium of the carriers.  
The model used by us for electron scattering from the 
surface (the boundary condition (1.6)) does not take into 
account the possibility of transfer of the carr iers  from 
one group to another. Collisions with the boundaries 
thus cannot affect the character of the intergroup dis- 
equilibrium and, consequently, the value of the absorp- 
tion coefficient. 

4. PARALLEL MAGNETIC FIELD 

We now consider a geometry in which the magnetic 
field is parallel to the metal surface and perpendicular 
to the direction of propagation of the sound wave. The 
classification of electron states in a parallel magnetic 
field i s  somewhat different than in the case of a normal 
magnetic field. Those electrons whose orbit centers a r e  
located a t  a depth larger than the turning radius do not 
collide with the metal boundary. The distribution func- 
tion of such electrons is also of the same form a s  in an 
unbounded metal: 

(4.1) 
n, is the projection of the velocity unit vector along the 
normal to the metal boundary. 

The distribution function of electrons colliding with 
the boundaries should satisfy the boundary condition 
(1.6) (see, for example, Ref. 5). However, in the cal- 
culation of the absorption, we shall not take the surface 
electrons into account. For metals with a single group 
of carriers,  this neglect is valid because of the small 
(of the order of kR) relative number of such electrons. 
In our case, a much larger number of nonequilibrium 
carr iers  reach the boundary by diffusion. Since the dif- 
fusion coefficients along the vector k and along the nor- 
mal to the surface a re  equal, however, the depth of the 
diffusion penetration of the nonequilibrium carr iers  into 
the metal does not exceed the thickness of the skin layer 
of the Rayleigh wave. If this depth i s  much less than the 
sound wavelength, then the relative number of electrons 
interacting with the boundary of the metal is small, a s  
before. If the diffusion penetration is of the same order 
a s  the thickness of the skin layer of the wave, then al- 
lowance for the boundary, i. e., for the surface elec- 

Thus, we shall consider a model of an unbounded 
metal with a "Rayleigh" distribution of the sound field. 
The equation for the averaged distribution function of the 
carr iers  is identical in this case in form with Eq. (2.3), 
and differs only in the form of the kernel P(x  - x t ) .  We 
shall not write down explicitly the rather complicated 
expression for the kernel and give only i t s  Fourier 
transform P(q): 

(4.2) 
v, is the projection of the velocity in the direction of 
the magnetic field. In the limit kR << 1, the asymptotic 
form of this expression i s  

We note that the quantity K,, which has the meaning of the 
reciprocal depth of the diffusion penetration of the non- 
equilibrium carr iers  into the metal, is never smaller 
than k in modulus, which confirms the correctness of 
the assumption made by us. 

The absorption coefficient calculated from Eq. (2.8) 
with the use of (4.3) is represented in the low-frequency 
region by the expression 

Because of the fact that I K,, I > k > x, the absorption co- 
efficient (4.4) differs little from the absorption coeffi- 
cient of volume sound. Actually, formally neglecting 
the quantities x ,  in comparison with K,,, we obtain an 
expression that i s  identical in form with the absorption 
coefficient of volume oscillations. Allowance for the 
quantities x, leads only to some numerical difference 
in the coefficient (4.4) from that of volume absorption. 

At high acoustic frequencies, the asymptotic form of 
the absorption coefficient is 

This expression coincides, a s  i t  should, with the absorp- 
tion coefficient of Rayleigh sound in metals with a single 
group of carriers.  ['I 

The authors express their sincere thanks to A. A. 
Bulgakov for help in the numerical caIculations. 
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lsomorphic phase transitions in CuCl at high pressures 
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The 7 ' - P  phi~sc di;lgri~n~ of CuCl was investigated in the temperature interval 4.2-8WK and at 
pressures =35 khiir. Isomorphic phasc transitior~s are observed with small low thermal (AQs 0.1 
kc;ll/mole) iuld vc>lume (A V /  C;, 5 1.5%) effects in the dielectric phase. The obtained T-P diagram of 
CuCI is explained within the framework of the already existing theoretical concepts. 

PACS nunlhrrs: 64.7O.Kb 

INTRODUCTION 

Copper halides with sphalerite structure have a num- 
ber of anomalous pllysicnl properties when compared 
with the properties of all other tetrahedral compounds 
(11-VI or  111-V compounds and covalent crystals). For 
esaniple, the CuCl crystal has an anomalously small 
bulk n~odulus. c''21 The well known Lyddane-Sachs- 
Teller (LST) relation does not hold for CuC1. 'I The 
anonlalies of the properties of copper halides become 
most pronounced, however, at high pressures. It i s  
knowncg1 that in covalent crystals and in 111-V com- 
pounds with small asymmetry of the pseudopotentials, 
pressure produces a dielectric-metal phase transition 
with tetragonal symmetry of the P-Sn type. This tran- 
sition i s  attributed to the overlap, under pressure, of 
the maximum of the valence band at the Brillouin r 
point and the bottom of the conduction band in the vicin- 
ity of the X point, i. e., under pressure, the indirect 
energy gap E,, - 0. In 11-VI compounds and in the most 
ionic of the 111-V compounds, a transition to the NaCl 
structure takes place under pressure. Nonetheless, in- 
stead of the expectedc3] phase transition into the NaC1- 
type structure under pressure, what is produced in 
CuCl i s  first a dielectric-metal transition without change 
of lattice symmetry, followed by a transition into a 
structure of the 9-Sn type, and only at higher pressure 
(P > 100 kbar) does a transition take place into a dielec- 
t r ic  phase with a structure of the NaCl type. c2*'v51 

It was shownc2' that all the known anomalies of the 
properties of CuCl can be explained if one assumes the 
presence of a small indirect gap between the maximum 
of the valence band at the point I? and the minimum of 
the conduction band a t  the point X (E,, = 0.3 eV). This 
model of the band structure is confirmed by the experi- 
mental dependence of the resistivity on the tempera- 
ture, te] by calculations of the band structure, and by 
measurements of the optical absorption of CuCl crys- 
tals. 'I1 Owing to the large ratio of the effective masses 

of the holes and electrons, and also because of the hin- 
drance rules for transitions in the vicinity of the X point 
of the Brillouin zone, the gap E,, is difficult to observe 
by standard optical measurements on thin CuCl films. c21 

Inasmuch a s  the experimental binding energies of the 
direct excitons is E~ =O. 2 evC8' such a dielectric state 
with E~ = Erx << ED (direct gap between the maximum of 
the valence band and the minimum of the conduction band 
at the point r) can be unstable with respect to electron- 
hole pairing, i. e., with respect to a phase transition 
into the state of an excitonic dielectric. The physical 
properties cf the excitonic dielectric CuCl should ex- 
hibit many anomalies. Owing to the polarization of the 
electron-hole pairs, the LST relation is violated. 'I 

Owing to the interaction .of the exciton (two-particle) and 
phonon branches in the spectrum of the elementary ex- 
citations, the speed of sound decreases sharply, lgl and 
with i t  the bulk modulus of the CuCl crystal. At an en- 
ergy E =O. 358 eV, ['] an additional absorption band ap- 
pears and corresponds to single-particle excitations in 
the exciton system. 

Anomalies ar ise  in the short-wave region of the spec- 
trum. [lo' With the increasing pressure, the indirect gap 
E,, for the nonrestructured electron spectrum de- 
creases. As a result, an insulator-metal transition 
takes place a t  P =42 kbar without a change in the lattice 
symmetryc5' and with a small volume effect. In addition 
to these experimental observed effects, the theory pre- 
dicts a number of additional effects, which have not yet 
been observed in the case of CuC1. Thus, i t  follows 
from the theory of ~ u s g n o v  and ~ e l d ~ s h [ " ~  that a phase 
transition from a dielectric into an excitonic dielectric 
is of first order with a small volume effect. Conse- 
quently, if the CuCl crystal is indeed an excitonic di- 
electric, then isomorphic phase transitions with very 
small volume effect A V / V ~  should be observed on the 
T-P phase diagram in the dielectric region. To check 
on this possibility i t  is necessary to study in detail the 
T-P diagrams in a wide range of temperatures and 
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