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1. INTRODUCTION 

1. It is well known that the interaction of electrons 
and phonons in quasi-one-dimensional (with respect to 
the electrons) conductors leads to a Peierls structural 
transition, i. e., to the appearance of a lattice deforma­
tion with period equal to or close to 2rr/2PF (cf. e.g., [11). 
In the case when the important vibrational modes are 
also quasi-one-dimensional, the phase-transition tem­
perature Te lies substantially below the temperature Teo 
determined by self-consistent field theory. Then in the 
region Te < T« Teo one should observe the onset of short­
range order, manifested in an increase in the range Re 
of correlation of displacements of the lattice. In this 
case, according to a previous paper[2] by the authors, 
two situations are possible. The first of them occurs 
when the diameter 2PF of the Fermi surface is close to 
half the length of the Brillouin reCiprocal cell: 12p F 

- rr/a I < TeO/VF' where a is the period of the chain. In 
this case the correlation function has a maximum at 
wave vector qm = rr/a, and the correlation length in­
creases exponentially with lowering of the temperature. 
The second situation occurs when the quantity 2PF has 
a higher degree of commensurability with the period of 
the reCiprocal lattice. In this case, in a broad tem­
perature region the correlation length has a power-law 
increase: Re - v F/T, and the displacement correlation 
function is a maximum at qm =2PF' However, on further 
lowering of the temperature umklapp processes begin 
to playa role. In this case Re increases exponentially 
and qm shifts to a point commensurable with 2rr/a. For 
example, at 

commensurability begins to playa role when T < (T~o/ 
CF) In(cF/Teo )' In the cases when Re is exponential the 
fluctuations of the lattice displacements can be assumed 
to be classical. For a power-law increase of R e , how­
ever, there appears, as will be shown below, a new 
temperature scale T k '" wO[ln(cF)Teo )]-1/2, where wo'" wD 
is the unrenormalized frequency of phonons with momen­
tum q =2PF' The calculation of the true transition tem­
perature Te can be carried out in analogy with the pa­
pers of Efetov and Larkin. [3] 

2. In the present paper we shall investigate the dy­
namical properties of a one-dimensional system in the 
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most interesting region, where Re increases by a power 
law. We shall assume that the electron band is wide 
and the interaction with phonons at T» TeO is weak and 
Iln(wD/Teo) I :51 (this condition implies the absence of 
instability with respect to a super conducting tranSition), 
and that the number of electrons per unit cell is not 
close to unity. The conditions listed are fulfilled in 
crystals of Kep compounds. [4] 

We shall obtain expressions for the dynamic struc­
ture factor, permittivity, conductivity and denSity of 
electron states. These quantities have been investigated 
theoretically by different authors, both in the static[5,6l 
and in the dynamical[7,8l approximation with respect to 
the lattice displacements. In effect, however, these re­
sults were obtained in second order of perturbation the­
ory in Teo/c and, consequently, are applicable only in 
the rather uninteresting region of electron energies c 
»TeO' Moreover, [7,8] a Rayleigh shape was postulated 
for the peak of the structure factor, and this is incor­
rect for quasi-one-dimensional systems for Te < T < TeO' 
as can be seen, e. g., from a comparison with the re­
sults of Efetov and Larkin. [3l 

2. DESCRIPTION OF THE METHOD 

1. The Hamiltonian of the system under considera­
tion can be written in the form 

J'G= S dxiji+(x) [-iV D: cregcp (x) cr+-g(p" (x) cr_ ] iji(x) +1: w(q)b,+b q ; 

iji(x) = ("'+(X) ) , 
, (1) 

'I'-(x) 

where the if! are the annihilation operators for electrons 
with momenta close to the Fermi boundaries ±Pn and a., 
a± = ax ± iay are the Pauli matrices; b; is the creation op­
erator for a phonon with unrenormalized frequency w(q); 

is the complex field describing the lattice vibrations 
with momenta close to ± 2p F' 

We shall make use of the functional formulation (de­
veloped in quantum electrodynamics[9l and in statistical 
physics[lO]) of the problem of averaging expressions con-
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FIG.!. 

structed from electron and phonon operators if! and cp. 
The method of functional integration was first applied, 
albeit in implicit form, in a paper by Ferrell in 1964, (6) 

in which he proved that long-range superconducting or­
der is absent in the one-dimensional case. The opera­
tions performed below, and the corresponding calcula­
tions of Efetov and Larkin(3) for another model, are, in 
essence, a repeat of Ferrell's calculations for the cor­
relation functions. 

The statistical phonon and electron Green functions 
on the imaginary axis of times T are determined by the 
following functional integrals: 

D (x, T; x', T') = S cp(x, T)cp' (x', T')Z-'Z{cp}Dcp, 

G(X,T;X',T')= S G(X,T;X',T'lcp)Z-'Z{cp}Dcp; 

where 

~ If f 

Z{cp}=exp { - SdxS dT[ cp'Do-'cp+ S <dG;n,(g'cp». d:, ]}, 
o 0 

a' 
Z= SZ{cp}Dcp, Do-'=1-Ulo-2 - 2 , UlO=Ul(2pF) , 

ih 

(2) 

(3) 

(4) 

(5) 

and G(x, T; x', T' 1 cp) is the one-electron Green function 
calculated for a fixed classical field cp (x, T). The func­
tional integration is performed with Bose boundary con­
ditions: cp (x, 0) '" cp (x, f3). 

By writing Z{cp}= exp[ - g- {cp }], we obtain that, for cp 
= const, the free energy fT {cp } coincides with the free en­
ergy of a Peierls insulator, calculated without allowance 
for fluctuations of the order parameter. For T « T cO 

this energy has a sharp absolute minimum at g I cp 1 = ~(T), 
where ~(T) '" T cO is the magnitude of the gap in the elec­
tron spectrum of the Peierls insulator. Consequently, 
only small and slowly varying deviations from this ex­
tremal state are important in the integrals in formulas 
(2), (3) and (5). To distinguish these deviations we write 

g<p(x, T)=(ilH(x, T))exp[ix(x, T)], .'T{cp} "".'T{6, x}. 

2. In the calculation of the electron Green function 
G(x, T; x', T' I cp) the fluctuations 6(x, T) of the modulus 
are, generally speaking, a small perturbation, while 
the perturbation from fluctuations of the phase is slowly 
varying but not small. We shall find it more convenient 
to perform a transformation such that, as a result, it 
will also be possible to treat the phase fluctuations as a 
small perturbation. For this we introduce 

G(x, T; x', T/lcp) 
=exp [-'/,iX(x, T)a,lG(x, T; x', ,;'I,p) exp [l/,iX(x', T')a,] (6) 

and define C =C(x -x', T - T ') in terms of C(x, T; x', 
T' 1 cp) by analogy with formula (3). The most important 
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linear response functions of the system, e. g., the per­
mittivity, conductivity and paramagnetic susceptibility, 
are expressed in terms of integrals, of the type (2), of 
products C(x, T; x', T' 1 cp) ® C(x', T'; x, TI cp) contracted 
with the matrix j or a.. It is obvious that these functions 
are invariant under the transformation (6). The density 
of electron states, which is determined by the analytic 
continuation of the function G(x, T; x', T I), is approxi­
mately invariant under the transformation (6) in the case 
when we can neglect the time dependence of the phase: 
X(x, T) - X(x). It will be shown below that this approxi­
mation covers all the important regions of the spectrum. 
The interaction energy is also easily expressed in terms 
of the function G: 

(7) 

« ... >~ in formulas (4) and (7) denotes the trace over the 
electron states for given phonon states). 

3. Performing the transformation (6) in the equation 
of motion for the Green function G(x, T;X', T'lcp), we ob­
tain that the function G (x, T; X " T ' 1 cp) can be regarded as 
the Green function of the effective electron system in a 
field X, 6, defined by the Hamiltonian: 

:1&= S ~+ (x) [-iv~a,-ilax-6ax + ~ v!'!:'l + ~.!.!:..a,] ;P(x)dx. 
ax 2 iJx 2 iJT 

(8) 
The first two terms in the expression (8) describe the 
unperturbed electron states in the Peierls insulator. 

Treating the last three terms in (8) as a perturbation 
and taking formulas (4) and (7) into account, we find that 

~ 

z{cp}=exp [ - S dx S dT.2'Ph{cp}]. (9) 
o 

where, in accordance with the expressions (4) and (7), 
the effective phonon Lagrangian .2'ph is determined in the 
quadratic approximation by the diagrams of Fig. la. In 
this figure the shaded circle denotes the potential ~ax 
and the unshaded circles signify either t ia.ax/aT or 
t vIa x/ax. The solid lines denote the Green functions 
of (9). 

Carrying out the calculations to within small terms 
- e-IlIT, we obtain the effective free-phonon Lagrangian, 

S { V [( ax)' 1 (iJ X ) 2] 1 [ rI (V ) 2 ( db) 2 PPh= dx ---:- - +- - +- 6'+- - ::--
8r1 ax u' iJ,; rlV 36 4 Ox 

+! (:LJ' (:~ )']) , (10) 

where u = v(wo/ ~)(g2 /81TV )112 is the effective velocity of 
the sound associated with the oscillations of the phase. 
By virtue of the conditions postulated in the Introduction, 
s « u «v always, where s is the velOCity of the acoustic 
phonons. The terms with time derivatives in (10) are 
determined by the bare Green function in the expression 
(4)-the corrections from <dGint>~ are of relative order 
u2 / v2 • On the other hand, the terms containing gradients 
are determined by the interaction. 

In combination with the Bose boundary conditionsl) the 
expressions (8) and (11) specify the resulting effective 
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system as an insulator with an acoustic (X) and an opti­
cal (0) branch of the vibration spectrum. The difference 
from real systems is that the decay of a phonon into an 
electron-hole pair is forbidden. The green functions of 
the operators X and 0 are equal to 

-4nu' 
Dx= , 

v'(wn'+u'q') 

-4itA'u' 
D, = -,---,--:-:-~ 

v (w!+8A'u'lv') 
(11) 

(For the optical phonons we have neglected the disper­
sion, since the theory as a whole is applicable for q 
«Do/v. ) 

Owing to the smallness of u/ v and T / Do, scattering of 
electrons is important only in the vicinity of the bound­
aries of the forbidden band, i. e., when II£: 1 - Do/21 «Do 
and 1 ~ 1 «Do. In this region it is convenient to perform 
a canonical transformation of the electron operators, 
thereby diagonalizing the one-electron part of the Ham­
iltonian (8). In the new baSiS, in the leading approxima­
tion in ~/ Do, we obtain the following expression for the 
phonon-mediated electron-electron interaction: 

Ueff=I/,D,(k, wn)I®I+D,(k, wn ) o,®o,. (12) 

A qualitative description of the electron states lying in 
the neighborhood of the chemical potential £: =0, i. e., 
in the middle of the forbidden band, can be obtained by 
interpolating data on the tails of the density of electron 
states, obtained in the neighborhoods of the boundaries 
£: =± Do/2. 

3. DYNAMICS OF THE PHONONS 

1. The relations obtained above enable us to deter­
mine the characteristics of the system as a function of 
the imaginary time T. Assuming that the analytic con­
tinuation to real frequencies of the final expressions is 
equivalent to that of individual terms of the perturbation­
theory series, we shall use the well-known analytic-con­
tinuation methods of the diagram technique. 

We shall consider the damping of the acoustic phonons, 
which is essential in the following. It is determined by 
the anharmonicities that arise from the further expan­
sion of fT{o, X}. (The interaction of the phase with the 
real acoustic phonons is small in the ratio (Do/£:F)2.) 
The fourth-order terms are determined by diagrams of 
the type of Fig. lb. In order of magnitude, 

,;e~~ "'" V~2 [(vx')' + (xy (vx.')' + AoS (vx.')' + t.oSX2 + ... J. (13) 

Here we have omitted combinations which give either a 
small or an unimportant effect. The contributions of 
the higher anharmonicities to the damping of the oscil­
lations of the phase fall off like powers of T/ Do and u/v. 

The damping is determined by the imaginary part of 
the diagram of Fig. 2. The analytic continuation of dia­
grams of this type is most simply determined by the 
technique developed in a paper by one of the authors C1ll • 
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We obtain 

D,(k, w)=1nll',,-'[w'-u'k'+2iwf(llk, w)], 

where the relaxation frequency r(uk, w) is determined by 
the expression 

f(Uk,w)=~~(4n)'A'_w_ ~ S dk,dk,dk, oS(k-k -k -k) 
2 6 v n(w) .::... (2n)' '" 

aj=±l 

x oS (w-ex,w (k,) -ex,w (k,) -ex,w (Ic,) ) CX,u) (k,) ex,w (k2) cx,w (k,) n (ex,w (k.) ) 
Xn(ex,w(k 2 »n(ex,w(k,», (14) 

here, the scattering amplitude A is, according to (13), 
of order A - v3 / Do2 • 

The integrals in formula (14) converge at frequencies 
w(ki)$T, and, consequently, we have the right to con­
sider only the quantum region T« DoU/V. In this case 
the largest contribution is given by that region of inte­
gration over the momenta in which sign k i = (li. In this 
region the energy conservation law is satisfied identi­
cally when the momentum conservation law is fulfilled, 
i. e., the argument of the second o-function is identically 
equal to zero. This circumstance is a consequence of 
the one-dimensionality of the system and of the linearity 
of the dispersion law. A finite result for the damping 
on the mass shell can be obtained by taking into account 
the non-one-dimensionality of the system and correc­
tions to the phonon dispersion law, and also by carrying 
out a self-consistent calculation of the damping. The 
calculations show that the last effect is the least impor­
tant. Therefore, we shall consider only the first two. 

With allowance for the nonlinearity, the acoustic-pho­
non spectrum has the following form: 

w (k) =uk(1-C~o'k2), 

where the coefficient C"" 1 will be omitted in the follow­
ing. Bearing in mind that values w(k i )« T will be im­
portant, we obtain from (14), for w-uk, 

II'T'SS (11'1 ) f(w, w) -w'-;;> 'A' dw,dw,1l -;;> A' [w'-3(w,+w.) (w-w,) (w-w,) 1 , 

whence 
(15) 

w'T' [ { ( u' )'" f(w,w)-~ max w, W-;;>A' , ( u' ) "'}]-' f(w, w) -z;; A' , 

where w is the characteristic width of the spectrum. 
Determining r(w, w) self-consistently, we obtain from 
(15): 

f(w,w) T' u 
--w--- A" T-;-<w<T, 

f(w,w) (IIW)'" T' ( u' )'" u ,..---- ~ -, w-A' <w<T-
w uT A' v' II ' 

f(w,w) 
(wu'A 'Iv') 'I, ' 

( u' ) 'I. 
w< w-A' . 

v' 

(16) 

Below we shall need the value of the damping at k =0. 
In analogy with (15), (16), we obtain 

f(O, w) u' T'w / (U' ) 'I. --w---;<~ -z;;A'max{<u,w} , T: <w,w<T, (17) 
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f(O,6l) u· T' (V6l )'/' 
--6l- ~ -;;-~ -;;r , 6l,w<T~. 

v 

(The extra factor U4/V4 appears in (17) on account of the 
fact that the terms X2(V X ')2 in the expression (13) are 
small in the ratio ~/V2 compared with the terms (VX')4 
that played the principal role for k *0.) 

2. The fact, established above, that the damping of 
the oscillations of the phase is small enables us to cal­
culate the dynamic structure factor S(k, w) determining 
the neutron scattering: 

do S' d6l dQ - S (k, 6l) = dt dxe"·'-"") (exp{-iQd(O, 0) }exp{iQd(x, t)} >, 

where d = (1 + 0/ A)do cos(2p F x + x) is the lattice displace­
ment (do=A/Wogpl/2, where p is the linear density, is 
the equilibrium displacement of the lattice in the self­
consistent field theory). Since dOPF- (A/tF}(V/g 2)1/2 
«1, we have, for Q =2PF +k, 

S(k, 6l)'" (d,pp) , J dtdxe,,··-b) [K(x, t) +K.(x, t)], (18) 

where the correlation functions 

K(x, t) =(exp{i[x(O, O)-x(x, t) ]}>, 
K.(x ,t)=A-'(6(O, 0) 1\ (x, t» (18a) 

are expressed in terms of the retarded Green func­
tions[ul: 

K(k, 6l) =Im KR(k, 6l) (Hn(6l». 

(In formula (18) it has been taken into account that the 
correlation length Rij - v/ A of deviations of the modulus 
is much smaller than the correlation length R x - v/T of 
the phase.) 

In accordance with (11), 

We shall find the function KR(k, w) by analytic continu­
ation of the temperature Green function Jt(k, wn). In the 
coordinate representation we obtain 

(19) 

Jt(x, -r)=Z-' S Dxexp{i[x(O, 0) -x(x, -r)]}= exp{D,(x, -r) -D,(O, O)}. 

We expand the exponential in formula (19) in a power 
series and, by the method developed earlier, [U] per­
form the analytic continuation in each of its terms. 
Writing, for ° < T < (3, 

we obtain 

Jt(x,-r)= 1: (2U~~)' ITS d~: [cos ('I': ) e-'''-1} (Hn(TJ,». (20) 
" i=l 

In (20) we Fourier-transform to discrete frequencies 
wn = 2rrTn, replace iWn by W + iO and perform the inverse 
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Fourier transformation to real times t > 0. We obtain 

KR(X, t) = ~ ~ [(A (x, t) )'-(A'(x, t) )'1; 
L. n! 

A (x, t) =2: S d; [ cos ('I : ) e- i"-1] (Hn(rt» 

=: In [( ~')'sh(nTt+)Sh(nTL) ]-in: o(t-':'); 

t,,=t±ixi/u, T.=Aulv. 

As a result we obtain 

K R (t,x)=2sin (n: )[ (;.)' sh(nTt+)sh(nTL) ]. (21) 

Taking the Fourier transform of the expression (21) and 
taking (18) and (18a) into account, we obtain an expres­
sion for the structure factor: 

S k 6l _ U (ppd,,) , ( T ) hi. _/'T 

(, )- Bn'r'(ulv)T' T. e 

I (u 6l+kU) (U 6l-kU) I' X f -+i-- f -+i-- . 
2v 4nT 2v 4nT 

(22) 

Taking into account the smallness of u/v, it follows 
from (22) that 

1) i6lI<T, Ikul<T, 

S(k,6l)= 32n'u'v-'PF'd.'T'(TIT.)'u/, 
[(6l+ku) '+ (2nTulv) '] [ (Ol-ku) '+ (2nTulv)'] 

2) iOl-kui<T; iOl+kui:»T, 

Bn'u'v-'p/do'(TITo)Ui' ( To ) .-./. {Ol } 
S(k 6l)= - exp -O(-w) . 

, (w-ku)'+(2nTnlv), Iwl . l' ' 

3) iw-kul:»T, iOl+lmi:»T, 
u'p/d,' ( To' ) ,- .. , {2w-I6l-kul-lw+kUi} 

S(k w)=2n'--- --- eXl' . 
. ' v2TO"2. u/·-k~nz Ill' 

The integral structure factor S(k) is equal to 

( T) 'ufo ( PFd, ) 2 ( U ) ( nu) S(k)= 2 To -;- r 1-2-;;- usin -;;-

1 ( kU) I (U uk ) I' X-ch - r -+i-. -.' . 
T 2T u b.l 

(23) 

From (23) we obtain 

1) !knl<T: 
S(k) = ('!:!....) , .. I, 4c,T(p,.do), 

T" u[k'+(2nTlv)'] , 

2) [knl:»T: 
u' ?n ( T ) .-,u/. 

S(k)=(PFdo)'-~ _I '_I . 
v To n k 

4. THE ELECTRON SPECTRUM 

The character of the electron-photon interaction can 
be elucidated using the example of the first-order cor­
rection to the electron self-energy (Fig. 3.). For the 
retarded Green function this quantity is equal to 

(24) 

FIG. 3. 
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C>a FIG. 4. 

b 

where the index \(=0, a) labels the phonon branches, ca 

=1T/2, Co = 1T/4, wo(q)=v'8uA/V, wa(q)=uq, and&(p)=A/2 
+ V2p2/2. When \ = a, in the denominator of formula (24) 
we can neglect the term w~(q) if I ~ I »AU/V or if I I & I - A/21 
» A(u/2v)2. When \ = ° we have the single condition 
11& I - A/21 »AU/V. In the numerator of formula (24) 
we can always assume that tanh(c/2T) = 1. If T» AU/V, 
the frequencies w~(q)« T for all q. When all the condi­
tions enumerated are fulfilled, 

3 S vdq T 3 ( I'. ) 'f, ~R(e,p)~-n ----~-T --
2 2n e-dq) 2 2e-I'. 

Consequently, for T» AU/V the phonons play the role 
of a random Gaussian external field V(x) with correla­
tion function 

<V(x) V(O) >~'/,nTo (x). 

The integral denSity of states in this case was found in 
the paper[12 1 by Halperin: 

1 S· (n )'i. {t' e-M2} 
N(e) ~ t exp -12- 2t -e-o - dt, 

o 

(2E) 'I. { 4 2E 'I. 
N(e)--n- exp -3(-;;) }, _ (( 3n )' , ] 'i, eo- T TI'. (25) 

for 

E~M2-e~eo. 

Since, in estimates, we must always bear in mind that 
I I c I - A/21 :2 & we have 

_1_le_I-_I'._I2_1 > (!...) 'I, > (~) ,/, »~. 
I'. I'. v, v 

Consequently, the use of the static approximation is self­
consistent. It can also be seen from the latter inequali­
ties that, for To;:, AU/V, 

eo/l'.- (ulv) "»u/v. 

Consequently, the static approximation also remains 
valid for T« AU/V. In this region, coth(w~(q)/2T)-1 
and, as can be seen from (17), the optical vibrations 
give the largest contribution. We again obtain formulas 
(25), with Co replaced by 80 = (1Ttr /2V2 )1/3 A. Since 80V/ AU 

0;:, (V/u)1/3» 1, the static approximation is fulfilled as be­
fore, as we should expect. 

We note that the width over which the band edge is 
smeared out is always large compared with the tempera­
ture. The one-electron excitations in the dielectric are 
distributed near the extrema of the function nF(c)dN/dc. 
From formula (25) and the form of Co and 80 we can ob­
tain the result that," for T« AU/V, this extremum lies at 
the center of the forbidden band, i. e., the results ob­
tained are applicable only in order of magnitude. In the 
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region T» AU/ V the extremum of the electron distribu­
tion function is also found to be located at c =0. This 
result, however, depends in an essential way on the nu­
merical coefficients and can change when the model is 
made more complicated (the extremum shifts to the 
boundaries c =± A/2 of the forbidden band). 

5. ELECTROMAGNETIC PROPERTIES 

The electromagnetic response function Q(k, w) = -J(k, 
w)/A(k, w) is determined by the diagrams of Fig. 4. In 
combination with the diamagnetic term Qd = -Ne2/m, the 
first, normal diagram (Fig. 4a) gives 

which corresponds to the normal dielectric permittivity 
4e2v/3A2 of a one-dimensional narrow-band dielectric. 
The second, anomalous part (Fig. 4b) arises from the 
term 

in the Hamiltonian (8). It reflects the fact that the quan­
tity X/2p F is the average coordinate of the electron­
phonon system and, consequently, is proportional to the 
dipole moment. Its contribution can be regarded as the 
precursor of the Frohlich conduction via the Goldstone 
mode[131 in the ordered phase. We obtain 

whence, for k =0, the complex dielectric permittivity 
is equal to 

4e'v 16e'u'Iv 
e (w) ~ - - -::-,..,----=~--:-.,......,. 

31'.' w'(1+2ir(0,w)/w) 

Bearing in mind that, according to (17), r(O, w)/w« 1, 
we obtain expressions for the permittivity and conduc­
tivity: 

4 e'v ( u' 1'.' 
e(w)=-- 1-12--) 3 ;12 v2 U)2 ' 

4 e'u' 1'(0, w) 
o(w)=----. 

n v'l. wz. 

According to (17), in a strictly one-dimensional system, 

( u )' { «uMv)'W)-'I" 
o(w)-e'v -

v (ul'.wlv)-"', 

uT/v«'(fJ«.T, 

w«.uTlv, 
(26) 

The expression (26) obtained above for the conduc­
tivity takes into account the damping of the phase oscil­
lations as a result of the intrinsic anharmonicity. It 
should be borne in mind that there also exists the pos­
sibility of decay of these oscillations into an electron­
hole pair. The change in the function Dx(W, k) as a re­
sult of such processes can be taken into account by not­
ing that, according to (8), the quantities X/2e and V X '/2e 
are equivalent to the vector and scalar potential, re­
spectively. The Fermi velocity V plays the role of the 
velocity of light. We obtain immediately that 
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4n [ 0)2 0)2 ~1 
D,(w,k)=- --k'+n-Q(w k)] 

V U 2 e2 v·1 ' , 

Q(W, k)=2e 2vln+iwa'HI 

is the electromagnetic response function, calculated 
without allowance for the diamagnetic term. The real 
part ReQ gives an unimportant renormalization of the 
sound velocity: u.,z - u.,z + 2v·2 • The imaginary part 

Imi}-coe-MT , 

inasmuch as the normal conductivity u(n) should have a 
finite value under conditions of strong electron-phonon 
interaction. Consequently, we have obtained the result 
that the contribution of polarization processes to the 
damping of the phase oscillations is negligibly small 
compared with the contribution of the decay processes 
due to the anharmonicities. 

The results obtained for the conductivity also remain 
valid in the ordered phase of the quasi-one-dimensional 
system, i. e., for T < Te. 

In conclusion we shall discuss the sensitivity of the 
results obtained to the inclusion of coupling between the 
phase oscillations and the electric field in a quasi-one­
dimensional system. This coupling leads to a renor­
malization of the sound velocity: 

( e' S)' u'-+u' 1+16n lW"ln S~ , 

where SJ. =a~ is the transverse cross-sectional area of 
the unit cell, So is the area of the transverse localization 
of the electron states, and ~o = v /~, and to the appear­
ance of a gap in the sound spectrum(13,14]: 

(27) 

The gap in the spectrum (27) effectively exists for k)( 
»kJ.' while for k)(<< kJ. the renormalization becomes un­
important. Inasmuch as all the quantities investigated 
above were defined initially on one filament, i. e., were 
integral quantities over the transverse quasi-momenta, 
the expressions obtained remain unchanged over longi­
tudinal distance I x I »a J.. 
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For the conductivity this means that we should con­
sider the region w» u/aJ.' At lower frequencies the 
damping of the phase oscillations will be determined by 
polarization effects. It is possible that this effect ex­
plains the appearance of the low-frequency peak in the 
infrared spectra of KCP. (15] 

The expressions (22) and (23) for the structure factor 
are applicable for k)(<< ail. For larger k)( the phase os­
cillations will give qualitatively the same contribution 
to S(k, w) as the oscillations of the modulus of the gap. 
The electron-spectrum parameters £0 and £0 found above 
acquire an additional numerical factor of order unity if 
max{£o, co}> ~(aj ~0)2. 

1)This elementary quantization of the phase is possible only in 
a one-dimensional system, in which vortices cannot arise. 
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