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The behavior of an electron moving with arbitrary velocity in a given random field of intense, low
frequency radiation is considered under conditions when the dominant electron-radiation interaction 
mechanism is induced Compton scattering. The evolution of the electron energy spectrum is investigated in 
the diffusion approximation, and the equilibrium spectrum of relativistic electrons in the field of radiation 
with a high brightness temperature is found. The induced light-pressure force acting on a moving electron 
and the rate of induced heating of an electron gas in an isotropic radiation field are calculated. It is 
shown that. in contrast to the well-known spontaneous retarding force. the direction of the induced force 
depends on the radiation spectrum. Radiation spectra for which the induced force accelerates an electron 
in a given direction right up to ultrarelativistic energies are found. 

PACS numbers: 13.IO.+q 

INTRODUCTION 

The process of induced Compton scattering of electro
magnetic radiation by free electrons (see the review 
article(ll) can play an important role in astrophysics in 
the interaction of high-power radio emissions of pulsars, 
quasars, and other objects with the surrounding tenuous 
plasma, (2-4] as well as under laboratory conditions in 
the investigation of plasma heating by radiation from 
lasers, masers, and superhigh-frequency devices. (5-7] 

It is well-known that this processes] leads to electron 
heating, (5,9] the appearance of an induced light-pressure 
force, (10,11] a change in the radiation spectrumU2 ] and, 
in particular, to the appearance in the continuous radia
tion spectrum of spectrally narrow components and soli
tons, (13] to the divergence or convergence of the radia
tion beam, U4] etc. 

In the present paper we consider the question of the 
behavior of electrons in a given radiation field, i. e. , 
we shall be interested in: 1) the distribution of the elec
trons over energy in a situation in which the plasma is 
sufficiently rarefied and the major role in the formation 
of the electron distribution over energy is played by 
scattering processes leading to the diffusion of the elec
trons in momentum space; 2) the induced light pressure 
acting on a free electron; 3) the heating of relativistic 
electrons during induced scattering of light. 
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For all the quantities characterizing the behavior of 
electrons in a statistical isotropiC radiation field, we 
have obtained exact relativistic formulas that are valid 
for arbitrary electron energies and arbitrary radiation 
spectra. The obtained formulas are fairly simple and 
convenient for the computation of induced effects, and 
allow the investigation of both nonrelativistic and ultra
relativistic asymptotic behaviors. 

To the question of the induced interaction of radiation 
with a relativistic plasma have been devoted a large 
number of papers. (15-17] The dependence, obtained in 
these papers, of the rate of heating of monoenergetic 
ultrarelativistic electrons on their energy is valid only 
for radiation spectra of a definite form. However, it 
is precisely for these spectra that the pattern of plasma 
heating is qualitatively different from the heating of 
monoenergetic electrons. This is connected with the 
presence in momentum space, as a result of induced 
scattering, of electron diffUSion, (10] which, in these 
spectra, washes out the monoenergetic distribution 
much more rapidly than heats it. (1S] At the same time, 
the pattern of electron heating in a wide class of spectra 
differs from the results obtained by Ochelkov and Cha
rugin, (16] Dedkov, U7] and Blandford and Scharlemann.(l8l 
In our paper we analyze the induced effects for arbitrary 
radiation spectra. 
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In the case of a high brightness temperature of the ra
diation field, i. e., for kTb» mcf, allowance for the in
duced heating of the electrons and their cooling in spon
taneous scattering leads to the establishment of the 
equilibrium!) distribution over energy of the relativistic 
electrons 

dN. 
--- E'exp(-Ae n ), 

dE 

as a function of the radiation spectrum. The mean elec
tron energy in this distribution 

(e)"Omc'(kTb/mc') I/n. 

Besides the systematic increase of the energy of an 
electron during induced light scattering, there also oc
curs a systematic change in the electron momentum, 
i. e., on the electron acts an induced pressure. In an 
isotropic radiation field this force may, depending on 
the form of the radiation spectrum, be directed either 
opposite the direction of the electron velOCity, or along 
the veloCity. This force is computed in the rest frame 
of the electron in Levich's paper, EllJ and it is shown in 
the review article by Zel'dovichEll that in this frame the 
force is always directed along the direction of the radia
tion flux. This result has been known for a long time 
for spontaneous scattering; it is also valid for induced 
scattering. However, the presence of induced heating 
in the electron rest frame leads to the result that in the 
laboratory system, in which the radiation is isotropiC, 
the induced force significantly differs from the force 
found in Levich's paper. raj The presence of heating 
leads in certain radiation spectra to a change in the di
rection of the induced force. 

The effects which we are considering, and which arise 
in induced scattering of light by electrons, are classi
cal, i. e., the Planck constant h does not enter into the 
final result. However, the computation of these effects 
in the quantum language, in which the electromagnetic 
radiation is regarded as a photon gas, is Significantly 
more convenientE19J than the classical calculation. 

We shall consider the electromagnetic field to be a 
random field and characterize it by the occupation num
ber, N(II, n), for photons of frequency II and direction, n, 
of propagation in phase space. Then the probability of 
scattering into this photon state from any other state is 
proportional to 1 +N(II, n). The number 1 corresponds 
to spontaneous scattering, while N(II, n) corresponds to 
induced scattering. The change in the frequency of a 
photon upon being scattered by an electron moving with 
arbitrary v is equal toE20J 

v' ( V) / [ v, hv ') ] -= i--n i--n +--(l-nn 
v c c mc''"( 

(1) 

where II, '" and n, n' are the frequency and direction of 
propagation of the photon before and after the scattering, 
y=(1_v2/cftl/2 , c is the velocity of light, andm is the 
electron mass. When the Thomson approximation is 
valid,2) the recoil-related last term in the denominator 
of (1) is a small-proportional to h-correction to the 
Doppler effect. Thus, in low-frequency-photon scatter-
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ing by electrons the frequency change is primarily con
nected with the Doppler effect. However, the effects of 
the induced scattering owe their existence to this small, 
recoil-related correction. 

Let us go over to the electron rest frame and show 
that, without allowance for recoil during induced scat
tering, there is no exchange of energy or momentum be
tween the electron and the radiation. This can easily 
be seen from the following example. Let us place an 
electron in crossed radiation beams. Induced scatter
ing of photons from the first beam is possible only in 
the direction of the second beam, and the number of 
photons from the first beam scattered into the second in 
unit time is proportional to N1N2 • Photons from the 
second beam are scattered at the same rate (propor
tional to N1Na) into the first, the frequency remaining 
unchanged in the scattering when the recoil is neglected. 
Thus, the radiation field does not change in induced 
scattering, and the electron gains neither momentum 
nor energy, i. e., both induced heating and induced light 
pressure are absent. In the inverse transition to the 
laboratory frame (in which the electron moves with ve
locity v) the rate of induced heating and the induced 
force are found according to the Lorentz transformation 
Q=W+L· v, f=L+vW/c2, where Q andf (Wand L) are 
the rates of change of energy and momentum in the lab
oratory system (in the rest frame). It is clear that, if 
the heating and the force are equal to zero in the rest 
frame, then they will be equal to zero in any other in
ertial coordinate system. Thus, the pure Doppler ef
fect does not contribute to induced electron heating, and 
only allowance for the recoil effect leads to the indi
cated effects. 

1. ELECTRON DIFFUSION IN MOMENTUM SPACE 

Let us consider a system of electrons located in a 
given field of radiation with a high brightness tempera
ture, when the effects of induced scattering are impor
tant. An electron, in scattering light, changes its mo
mentum both systematically and randomly. If, as a re
sult of each scattering event, the momentum of the elec
tron changes by a relatively small amount, then we can 
use for the determination of the electron distribution 
function in momentum space, cp, the Fokker-Planck 
equation, according to which 

iJ<p a<p a [ iJ ] -+v,--=-- --D,,<p-j,<p , at ax, {)Pi ap. (2) 

where Ii> the mean (induced and spontaneous) force ex
erted on the electron by the radiation field, and Dik' the 
electron-diffusion tensor defined in momentum space 
for this radiation field, are determined by the formulas 

( I. ) _ S ( !J.p, ) N ( ) 
D.. - '/,dp,!J.P. v, n 

- 2v' 
xl l+N(v', n') ]c"7dv dn' dn, (3) 

where 

dp,=hc-' (vn;-v'n,') (4) 

is the momentum transfer to the electron as a result of 
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FIG. 1. The systematic, t.p=f1ndt.t, and random, Op=[(t.P)]1l2 
= (6D t.t) 1/2, changes, connected respectively with the induced 
force and diffusion, in the initial momentum p of a group of 
electrons over a short interval of time t.t. The induced force 
leads to a relatively small value of t.p as compared to the ron
dom value Op. The figure depicts the situation in the case of 
an accelerating induced force and nonrelativistic electrons. 
In this case t:.P is proportional to, while Op does not depend 
on, p. 

one scattering act, while the Thomson scattering cross 
section 

( e')' l-~n 
a = me' 2'Y'(1-~n')' 

x[ 1+ (1 Y'(1-~:;~:-~n') n· (5) 

In the formula (3) the number 1 in the square brackets 
corresponds to spontaneous scattering, while N(v, n') 
corresponds to induced scattering. The quantity t1fJ1t.Pk 
- h2; therefore, spontaneous diffusion is a quantum quan
tity, while induced diffusion is classical, no] which can 
be seen if the coefficient of diffusion is written in terms 

. of the classical quantity-the spectral intensity F (in 
place of N): 

F( ' )= 2hv'N(v,n) 
\, n, , , [F]=ergjcm 2 • sec. Sf ·Hz. 

c 

In such notation the constant h vanishes from the ex
pression for the induced Dik • 

(6) 

The light pressure-both spontaneous and induced
acting on the electron is a classical quantity. The com
putation of lind with the aid of the formula (3) should be 
carried out with allowance for the first correction in 
hv/me2 in the expression for the frequency v in t.Pi 
and N(v', n'). The Klein-Nishina-Tamm scattering 
cross section[20] has a first correction in hv/m~ to the 
cross section (5). However, this correction does not 
contribute to the induced processes, since it does not 
destroy reversibility and enters in like manner into the 
direct and inverse scattering processes. In computing 
the diffusion coefficient with the aid of the formula (3), 
it is, in general, not necessary to take the quantum 
corrections into account, assuming v' = v(1 - {J. n)/(1 
- (J. n'). Taking these remarks into account, and using 
the formulas (4) and (5), we can show by direct differ
entiation of the formula (3) that the induced force Ii Ind 

= aDlk/apk and that Eq. (2) coinCides with a well-known 
equation in quasi-linear plasma theory. [21] In the case 
of homogeneous electron and photon distributions the 
equation has the form 

(7) 
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In the case of an isotropic radiation field the coefficient 
Dlk can be represented in the form 

ik= ,P --+D,(p) 6 .. --D D ( ) p,p. (P'P. ) 
p2 p2 ' 

where Dz and Dt are respectively the longitudinal and 
transverse diffusion coefficients. 

In this case Eq. (7) can be written as follows: 

(8) 

(9) 

where t.<p.8 is the angular part of the Laplacian in spher
ical coordinates. Let us multiply both sides of Eq. (7) 
by e = rme2 and integrate it over phase space. After 
setting cp = o(q - p)/4rrp2, we obtain the rate of heating of 
monoenergetic electrons. Calculating the rate for one 
electron, we have 

(10) 

and, similarly, after multiplying by p and setting in (7) 
cp = o(q - p), we obtain an expression for the light pres
sure acting on a moving electron: 

f=f,,,H'"d=f,p + : (D,'+ ~ (D,-D,) ) . (11) 

The well-known expression for the spontaneous 
force[22] can be obtained from the formula (3): 

where (1T = (8rr/3){e2 /m~)2 is the Thomson cross section 
and I$r =4rre-1 f F(v)dv is the radiation-energy density. 

2. THE INDUCED FORCE ACTING ON AN ELECTRON 
IN A RADIATION FIELD 

For simpliCity of computation, we shall find the ex
pression for the induced force acting on an electron 
moving with velocity v = fJc in a given radiation field in 
terms of quantities written in the electron rest frame. 
In accordance with the Lorentz transformation, 

f ( V) ?v' 
f ind= L'ip+-L'ie N(v,n)N(v',n')ea~dvdn'dn, 

cl. . c3 
(12) 

where t.p =he-1(vn - vn') and t.E =h(v - v') are respec
tively the electron momentum and energy changes that 
occur in the rest frame during one scattering event, (1 

=!r ~ (1 + cos2 a) is the Thomson scattering cross section, 
re=e2/me2 is the electron radiUS, cosa=n' n', a is the 
scattering angle, and v = v - (hv 2/me2 ){1 - cosa) is the 
frequency of a photon with hv« me2 after scattering by 
an electron initially at rest. 

Expanding N(v',n') in the formula (12) in powers of 
(v' - v)/v, and retaining the clearly nonvanishing (after 
integration over the angles), lowest-order (second-or
der in h) terms, we obtain an expression for the induced 
force 
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re2h2 

!ind=--S (1-cosa) (1 +cos'a)N(v,n) 
me' 

[ dN(v, n') ] 
X N(v,n')(n+~)+(n/-n)" dv v'dvdn'dn. 

(13) 

Let an electron move in an isotropic radiation field 
with a given spectrum N(II). Since the occupation num
ber N is an invariant quantity, the radiation spectrum in 
the electron rest frame (already naturally anisotropic) 
has the form 

N(v, n)=N[q(1+~cos8)1. (14) 

Here and below f3cosO=v· n/c, and the plus sign in the 
brackets corresponds to a situation in which n, the di
rection of the photon wave vector, differs by an angle 1T 

from the direction from which we receive the photon. 

Let us find the induced force first in the nonrelativis
tic limit. The expression (14) in the first approximation 
in f3« 1 has the form 

N(v, n)=N(")+~nv(dN(v)/dv). 

Substituting this formula into (13), and evaluating the in
tegrals with allowance for the expression for the scat
tering angle cosa = cosO cosO' +sinOsinO' cos(<p -<p'), we 
obtain, writing the answer in terms of the spectral in
tensity (6), 

2:n: aT v [ S ( dF )' SF'] find=-~-- 14 - dv-11 -dv . 
1" me c dv \" 

(15) 

Here and everywhere below, in computing the effects 
connected with induced scattering, we assume that F(II) 
for 11- 0 falls off more rapidly than 111/2. 

In Zel' dovich' s review paperu 1 it is pointed out that 
the force in the electron rest frame is always directed 
in the direction opposite to that of the velOCity. In con
trast, the force (15), i. e., the force computed in the 
laboratory system, may, depending on the radiation 
spectrum, be directed either opposite or along the ve
locity of the electron. For example, for spectra of the 
form F_II"'e-va the force accelerates the electron when 
t< a<¥ and retards it when a>¥. The critical value 
of the exponent a depends on the law according to which 
the radiation spectrum falls off at high frequencies. 

As an example, let us compare the magnitudes of the 
spontaneous and induced forces acting on a nonrelativis
tic electron moving in an isotropic quasi-Planckian, 

N(v) =ANo(v) =A[exp(hv/kT)-1]-' , 

radiation field; the induced force in this spectrum is a 
retarding force; the introduction of the factor A » 1 
allows us to describe the situation with a high brightness 
temperature Tb =hIlN(II)/k =AT for the radiation in the 
low-frequency, hll« kT, spectral region where N» 1. 
For the ratio of the forces we obtain 

Usually, the induced force constitutes a small correc-

933 Sov. Phys. JETP, Vol. 44, No.5, November 1976 

tion to the spontaneous force (on the surface of the sun 
its portion is equal to only 2x 10.7). However, in an 
astrophysical situation, near, for example, pulsars, 
the radiation is essentially non-Planckian, and the 
brightness temperature of the radio-frequency radiation 
is enormous: T b '" 10s0 K'" 1020 (mc2/k). Under these 
conditions the induced force plays a major role in the 
interaction of the radiation with the surrounding plasma. 
It must also be taken into account in the interaction of 
high-power radiation beams with tenuous laboratory 
plasmas. 

For the case of relativistic electrons moving in an 
isotropiC radiation field, the induced force is determined 
by the expression (13) with allowance for the formula 
(14). The result of the exact evaluation of the multiple 
integrals entering into the expression (13) for the force 
in the case of arbitrary radiation spectra is given in the 
Appendix. As in the nonrelativistic case, the induced 
force may, depending on the form of the radiation spec
trum, retard or accelerate the electron, the sign of the 
effect being dependent only on the behavior of the spec
trum at low frequencies. Thus, for the spectra 

(16) 

asymptotically in the case when y» 1, the induced force 
retards the electron when a> 1. It has the form 

12:n:arh' S· '( y ) f.nd=--. -. ~ dy<IJ(y)y 1--
1'me' 3 

o 

(17) 

and behaves like y.s. USl Here 

<D(y)= S N(v)N(vy)v'dv (18) 

is a universal function determining the dependence of 
the induced effects on the radiation spectrum. 

In the case of the spectrum (16) with t < a < 1, the 
force accelerates the electron, its asymptotic form co
incides with the asymptotic form of the rate of heating 
(see Sec. 3) in such spectra, and is equal to 

3. INDUCED HEATING OF ELECTRONS IN AN 
ISOTROPIC RADIATION FIELD 

An electron located in a radiation field changes its en
ergy both as a result of induced, and on account of spon
taneous, scattering. Since the heating of electrons as 
a result of spontaneous scattering is a quantum effect, 
proportional to h, we shall not consider it. In the case 
of a nonrelativistic electron and an isotropiC radiation 
field from A. S. Kompaneets' equation[Sl follows[s.9l the 
induced-heating rate: 

(19) 

Owing to spontaneous heating, an electron can gain 
energy of the order of the mean photon energy in the ra
diation. Radiation with a high brightness temperature, S) 
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T b, at low frequencies is capable of doing more: It 
heats up the electrons to an energy much higher than the 
mean photon energy, owing to induced scattering. Thus, 
radiation with a Rayleigh-Jeans spectrum F=2112kTb/c!' 
for 0 < II < 110 and F = 0 for II> 110 (hllo« kTb) is capable of 
heating an electron up to the energy (e) =3kT 0./2 =3kTb/8 
(in the nonrelativistic treatment, see (24». In the case 
when kTb» me2, which is not rare under astrophysical 
conditions, the electrons are capable of being heated to 
relativistic energies. In the present section we shall 
find expressions determining the heating of a relativistic 
electron. 

The expression for the induced heating of an electron 
moving with velocity v = fJc is found in a manner similar 
to the way the induced force was found and has, in the 
same notation, the form 

Q= J (ne+vnp)N(V,n)N(V',n')ccr 2:: dvdn'dn. (20) 

In the nonrelativistic case, for which fl« 1, this formula 
gives the result (19). After the integration (see the Ap
pendix), the formula (20) leads to the expression 

12ncrTh' J~ 
Q=--,- d~'Ill(y')GQ<i3,~'), 

me 

GQ(~' ~')= 1;~8(~~~T> [ (30-24~'+2~')In ~ 
+28~'-60~+J(3-~'n'+(J-~') (3+~"W (1'11)']. 

, 1-~' 1-~ 
Y = I+~" y=~, 

(21) 

and the function ~ is determined by the formula (18). 
In the limit when fl, fl' « 1 the function 

(21') 

The behavior of Q as a function of the quantity y(y» 1) 
is determined by the form of ~(y') for small y', i. e., 
by the radiation spectrum at low frequencies. In the 
case of the spectrum (16) for a> 2, the quantity Q -In y/ 
y5. In the case when t < a < 2, however, we have Q-1/ 
y1+2a. For a =2 the quantity Q_In2y/y5. 

4. COEFFICIENTS OF ELECTRON DIFFUSION IN 
MOMENTUM SPACE. THE EQUILIBRIUM 
DISTRIBUTION 

In an isotropic radiation field the momentum distribu
tion function of the electrons satisfies Eq. (7), where 
Dz =Dik PiPk/p2, while Dt = (D/i -Dz)/2. The quantity D z 
is computed from the general formulas (3) with allow
ance for (4) (see the Appendix), and is equal to (see 
alsoCl51 ) 

D 12ncr'h'J~ (') ( , , 
I = --e-' - III y G D I ~, ~ ) d~ , 

o 

In the limit when fl, fl'« 1, in accordance with Vinogra
dov and Pustovalov's result, [6] 
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To find the form of D t , let us use the relation, which 
follows from Eqs. (10) and (11), between D z and Dt : 

(23) 

where W has the meaning of the rate of accumulation of 
energy by an electron in its rest frame (see the Appen
dix). 

In the nonrelativistic limit D z =Dt =mQ/3. In the rela
tivistic case, in which y» 1, the behavior of the quan
tity D z depends (as in the case of Q and find) on the be
havior of the spectrum at low frequencies. In the case 
of a spectrum of the form (16), D z- y-2 for a> 1 and Dz 
- y -2a for t < a < 1. As is easy to show, asymptotically, 
the quantity W is proportional to y -1, and the formula 
for W /y 2e coincides with the formula, (17), for the force 
and is valid for any radiation spectra. It follows from 
the formula (23) and the asymptotic forms of Dz and W 
that, irrespective of the radiation spectrum, Dt = W /2y 
_ y-2. 

Let us find the equilibrium momentum distribution 
function of the electrons. It follows from Eq. (9) that 

'Il,q(p) - exp ( - J (j.plD,)dp' ). 
o 

In the nonrelativistic case the problem of electron 
distribution over energy during the Compton interaction 
of the electrons with radiation with a broad spectrum 
has been solved by Zel'dovich and Levich. [91 The 
steady-state function turns out to be Maxwellian with the 
temperature 

h IN'\"dv 
T"=4k SN\,'dv . 

(24) 

Let us consider the case of relativistic electrons, 
which corresponds to the condition kT eq >me2 • Depend
ing on the form of the radiation spectrum (16) at low 
frequencies, the equilibrium distribution function of the 
electrons has the form 

(25) 

where n =5 for a>l and n =3 +2a for t< a<l, while the 
parameter a == (kT eq/me2 )-1(me)-n. In this case the mean 
energy (e)=e(p)==ea-1/n, while CPeq, given by (25), cor
responds to a plane electron spectrum truncated on the 
high-energy side by the spontaneous braking force. 

5. EVOLUTION OF THE ELECTRON SPECTRUM 
DURING THE ACTION OF INDUCED SCATTERING 
AND THE HEATING OF AN ELECTRON GAS 

The analytiC solution of Eq. (9) in the isotropic case 
with the diffusion coefficient Dz, which depends in a 
complicated manner on momentum (see (22», is not 
possible. However, the asymptotic solution of the dif
fusion equation for large p»me, where Dz(p) is a known 
power function of momentum, to wit, Dz =Dop-\ is easy 
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FIG. 2. The dependences on the electron momentum of: a) 
the electron-heating rate Q: b) the diffusion coefficients D, 
and Dt : c) the induced force find for radiation spectra of the 
form F ~ !Pe-lla. The broken curve corresponds to a Wien 
spectrum with a = 3, while the continuous curve corresponds to 
a spectrum with (l =i. In the a =3 case the quantity D, vir
tually coincides with D t . In the case c) positive find corre
sponds to an accelerating force. The quantities are given in 
units of 

to find. The normalized-to unity-function 

<p (p. t) = exp - ---- , " {p" } 
4nr(3/x) (x'D,t)'" x'Dot 

(26) 

where x = k + 2. This solution is valid in the momentum 
range where we can neglect the spontaneous braking 
force, i. e., for p« (p), and at times t« (p) x IDo when 
the equilibrium distribution (25) has not yet been 
reached. 

On the basis of the obtained solution we can find the 
rate of heating of an electron gas during induced radia
tion scattering. Calculating the rate for one electron, 
we have 

d~ = SQ(p)rp(P. t)4np' dp. 
dt 

(27) 

Substituting Q(p) from the asymptotic form of (21), we 
obtain that, depending on the radiation spectrum at low 
frequencies, (16), 

where n = 0 for a > 1 and n = (1 - a) 1(1 + a) for t < a < 1. 
To this corresponds the dependence 

(28) 

where k=3 for a>1 and k=1 +2a for t<a<1, of the 
rate of heating of relativistic electrons with a spectrum 
of the form (26) on the mean electron energy E. 
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In the case of the equilibrium electron distribution 
(25), the induced heating of the electrons is balanced by 
the spontaneous cooling. However, the cooling of the 
electron gas is determined by the high-energy end of 
the spectrum of the electrons, while the heating (for a 
> 1) is determined by the presence of semirelativistic 
particles with p '" me, since it is just momentum values 
p"'me that are important for the integral (27). In the 
case when t < a < 1 the heating is determined by the en
ergetic electrons, which leads to the same dependence 
of the heating rate on the mean electron energy in the 
distribution (26) as for monoenergetic electrons. 

Besides the heating of the electron gas, let us con
sider the problem of the evolution in time of the mean 
electron momentum under the action of induced scatter
ing. Interest to such a problem is due to the fact that 
the induced light pressure can, in principle, accelerate 
an electron right up to ultra relativistic energies. It 
follows from Eq. (9) that the induced processes alone 
(without allowance for the spontaneous retarding force) 
cannot by themselves lead to an equilibrium distribution 
of the electrons over energy. The influence, however, 
of the spontaneous force is equivalent to the presence of 
an effective "reflecting" wall at energies of the order of 
(1::). Since the equilibrium distribution is a symmetric 
function of the momentum, the final distribution of the 
electrons will, irrespective of the initial conditions and 
the direction of the induced force, possess zero momen
tum. However, the direction of the induced force es
sentially influences the pattern of evolution of the total 
momentum of the distribution. Thus, in the case of a 
radiation spectrum leading to an accelerating-in the 
relativistic limit-induced force (t < a < 1), the inequal
ity D/» Dt is valid when y» 1, and Eq. (9) may (as long 
as we can neglect the spontaneous braking force) be 
written in the form 

Such a form of the equation corresponds to strong dif
fusion in the direction of p, and, in accordance with the 
formula (28), to the growth, according to the law 

d--.!L .- j5_(l+za) 

dt 

of the total momentum of the electrons right up to p 
'" (p), since in the case of the radiation spectrum (16) 
the relation 

j,nd"'!{'" ~dd (D,p'). 
c p p 

is valid for t < Cl < 1. 

6. SPECTRALLY NARROW RADIATION LINES 

The formulas given above for the quantities describ
ing the induced effects (the rate of electron heating, the 
coefficients of diffUSion, etc.) allow us to compute quite 
simply the quantities for any specific spectrum of iso
tropic random radiation. In particular, this computa
tion is easy to carry out for the case, which has char-
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acteristic features, of spectrally narrow radiation con
sisting of one or several lines. Such a situation is 
realized in cosmic masers and can be realized in a 
laser experiment. The case of one narrow line has been 
considered by Vinogradov and Pustovalov. [61 Their 
principal results[61 (diffusion coefficients and electron 
heating) follow from the formulas (21) and (22) given 
above upon the substitution in them of the nonrelativistic 
expressions for the functions G(f3, f3') (see (21') and 
(22'». In the case of a single narrow line (011« II), the 
overlap function <1>((1 - f3')/(1 + f3'» (see the formula 
(18» decreases rapidly when f3' > 011/11. For example, 
in the case of a line with the Gaussian profile N 
- exp[ -(11- 1I0)Z /2(011)2] with a dispersion (OIl)Z« II~, the 
function <I> - exp[ - 1I~f3'z /( OIl)Z]; therefore, the quantities 
D/ and Q decrease rapidly with increasing electron ve
lOCity. Thus, for a Gaussian line, the values of the 
quantities Q = 1Tl/ZF~aT/II~moll and D/ =mQ/3, which are 
large when f3« 011/11, decrease when f3> 011/11 with in
creasing f3 like 

(29) 

where Fo = f F dll = 2hc-2l1~ f N dll is the total power radi
ated in the line. 

An interesting situation arises in the presence of sev
eral narrow lines in the radiation spectrum. Let us 
consider the case of two lines separated in frequency 
from each other by illl» 0111' OIlZ under the assumption 
that illl« 111'" liZ, when the nonrelativistic case is the in
teresting case. 

For small f3< illl/2l1h the quantities describing the 
induced effects from both lines add up arithmetically. 
However, for f3~ illl/(111 + liZ) = illl/2l1e induced transitions 
of photons from one line to another become possible 
during scattering. The function <I> has, for f3' = illl/2I1e, 
a sharp (with dispersion [(Olll)Z + (0Ilz)Z]/411~« 1) peak. 
This leads to a considerable enhancement, when f3> illl/ 
2 lie, of the induced effects: 

__ 3:rF,F,ar ( ."")_3:rF,F2ar(.lV)'1 Q----GQ p - ---- - -
2 Y/ m ' 2\'(: 4 vc 3 m ,\'c p-l' 

(30) 

where Fl and Fz are the total powers radiated in the 
first and second lines and lie = (111 + IIz)/2. It can be seen 
from this that for f3> illl/2l1e the difference, illl, between 
the frequencies of the lines (and not 0111 or OIlZ) plays 
the role of the effective width of the radiation spectrum, 
so that, for example, the rate of heating of Maxwellian 
electrons with temperature kTe ~m~(illl/lle)Z significant
ly exceeds the rate of heating of a colder plasma with 
kTe <mcZ(illl/lle)z. 

In conclusion, we express our gratitude to Ya. B. 
Zel'dovich and R. A. Syunyaev for interest in the work 
and for valuable comments. 

APPENDIX 

As an example, let us carry out the computation of 
the quantity W for an electron moving in an isotropic 
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radiation field with velocity v = (:Jc. The quantity W, 
which has the meaning of the rate of accumulation of 
energy by the electron in its rest frame, is determined 
by the formula (23), and is equal to 

W=fd.eN(v,n)N(v,n')ca 2v'dvdndn'. 
c' 

Setting ile =h(lI- 11'), and performing the integration 
over the azimuthal angles cp and cp', we obtain 

Let us give a scheme for the computation of the angu
lar integrals in (A. 1). Let us represent (A. 1) in the 
form 

W= La .. J IJ.v'dv, ,. 
'YT(t+~' 

I.=(v1~)-·-' r N(x)x'dx, 
'YT(l-~) 

(A.2) 

O~i,k:S:;;;4, 

where the coefficients aik are functions of the parameter 
f3. Differentiating I k , we obtain 

dl 1+~ k+1 (1-~)>+1 
\. dv·=-(k+l)1.+(-~-) N(v1(1+m- -~- N(V1(1-~»· 

Integrating the expression 
(A. 3) 

by parts and using (A. 3) for IldIk/dll and for IIdII /dll, we 
obtain the formula 

1 + ~ H1 1 ~)i+l 
(k + i - 3) ~ v'IJ.dv = (-~-) ~ T.N (vy (1 +~» v' dv - ( ~ 

x ~ I.N (\'y (1 - ~» v· dv + the expression obtained by 
interchanging the indices i and k. 

(A. 4) 
Making a change of variables, we obtain 

(1±~)'-' l J I.N(v1(1±~) )v'dv =~ J!D (y)y"'±(~-"') dy, (A.5) ., 
where <I>(Y) is the overlap function introduced by the for
mula (18), and Yo= (1- f3)/(1 +f3). For i+k*3, the for
mula (A.4) can be written in the form 

- (1+~r+'-" • _ Yo) ;+'-'] 
f U.v'd\· = (i+k-3h'~I+.+,f !D(y) (y +y') [ 1- (y dy. 

•• (A. 6) 

For i +k =3 this formula, after the passage to the limit 
i +k- 3, has the form 

JIJ.V'dv=_1_J' !D(y) (y·+y')ln.!!....dy. 
1'~' Yo ., (A. 7) 

And, finally, substituting the obtained formulas (A. 5)
(A. 7) into (A.2), we obtain after setting y' = (1 - f3')/ 
(1 + f3') and y = Yo = (1 - f3)/ (1 + f3) the expression 
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W = 12na:h' S· III (y') Gw (~, ~') d~', (A. 8) 
me 

o 
1 ' 

Gw(~, ~') = 1~'(1+~')' {[25-9~'+3\3"W-5) h-'[ In ~ + 2(~' -~) ] 

+2il'(5-8~'+~') (\3"-~') + ! [(25-9~'h-'+2~'(3~'-1) 1 W'-~') }. 

In the nonrelativistic limit, when f3, f3'« 1, 

(A. 9) 

The ultrarelativistic asymptotic form yields 

Gw (1, ~') = 4(1~~~~~~;:~') y~' ( 1- ~' ) 1 ::: I. (A. 10) 

Let us compute the quantity D z =D1k PiPklp2, where 
Dlk is determined by the formula (3), by going (as in the 
calculation of find and Q) over into the electron rest 
frame and replacing t::..Pi by the right-hand side of (4). 
After the integration over cp and cp', we obtain 

Evaluating this integral according to the scheme given 
above, we obtain the expression (22). 

The induced heating is found from the formula (see 
(10)) 

Q=~~ (D,p'v). 
p'dp 

The result is represented by the formula (21). 

Similarly, we find on the basis of the formula (23) the 
quantity 

D,= 12nc~Th' j III (y')G D , (~, ~')d~', 

GD ='/,(G"'l-'-GD 1-'). , , 

For f3, f3' « 1 

(A.n) 

G (. ") = [~., _ E."., + ~ .',., _ ~ ."., + ~ .,'] .-. D, ~, ~ 10:> ~ 15 ~ ~ 3 ~ ~ 15 ~ ~ . 35 ~ ~. 

In the case when y» 1 
(A. 12) 

(A. 13) 

Let us find the induced force acting on an electron 
moving in an isotropic radiation field from the relation 
(see (23)) 

f("d=~(Q- W). 
V' l' 

From the formulas (21) and (A. 8) we obtain 

12noTh' \3 s·' " f.A.=-c-' -T Ill(y )G,(~,~ )d~, 
o 

(A. 14) 

G,= (GQ-Gw'Y-') ~-'. 
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For f3, f3'« 1 the expansion of Gf has an unwieldy form. 
In the case of a broad radiation spectrum this expansion 
leads to the formula (15). For the case of spectrally 
narrow radiation (avlv« 1; see Sec. 6), for f3> aviv, we 
have the first term of the expansion G = - fts f3 -2. In the 
ultrarelativistic asymptotic form, Gf = - Gwy-2 for spec
tra that decrease to zero more rapidly than the first 
power of the frequency, and Gf =GQ for a slower de
crease of the spectral intensity. 

I )Here and below we imply equilibrium with respect to the pro
cesses of radiation scattering, and not total thermodynamic 
equilibrium. 

2)Notice that the Thomson approximation is applicable in in
duced and spontaneous scattering under different conditions. 
In the case of spontaneous scattering this condition has the 
form hv«mc2/'Y. Induced scattering of light by a relativis
tic electron occurs primarily at small angles 1-nn' ~'Y-2. 
The Thomson approximation is in this case valid when hv 
«mc2'Y . 

3)The consideration of induced scattering is equivalent to a 
transition to high brightness temperatures. 
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