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The magnetoresistance of pure metals with open Fermi surfaces is considered under conditions when 
relaxation processes are completely determined by the electron-phonon interaction. "Kirchhoff laws," 
which yield a complete solution of the problem under the condition that the phonon thermal momentum is 
small compared with all characteristic distances in momentum space, are formulated for strong magnetic 
fields. Effects due to finite phonon thermal momentum are discussed. Actual calculations are carried out 
for a Fermi surface of the "corrugated cylinder" type. The electric conductivity tensor is obtained and its 
angular and temperature dependences are studied. It is shown, in particular, that the angular dependence of 
the conductivity is osci11atory in certain temperature ranges. It is demonstrated that in metals for which the 
Fermi surface contains narrow necks there exists a broad range of intermediate magnetic fields in which 
the conductivity depends on the field strength in an unconventional manner. 

PACS numbers: n.15.0d 

The present paper, as the preceding one, [1] is devoted 
to a study of the galvanomagnetic properties of pure 
metals under conditions when the only relaxation mecha
nism is the collision of the electrons with the phonons. 
Principal attention is paid to identification of the singu
larities connected with the character of the small-angle 
scattering of the electrons by the phonons. The asymp
totic behavior of the electric conductivity as a function 
of the magnetic field intenSity is, naturally, in accord 
with the general theory of galvanomagnetic phenome-
na. [21 

For metals with closed Fermi surfaces (FS), an im
portant role is played by umldapp processes; in the ab
sence of these processes, a joint drift of the electrons 
and phonons takes place, and the transverse conduc
tivity is equal to zero. On the other hand, if the FS is 

. open, then the need for colliSions with umklapp is obvi
ated. In the presence of open orbits, the electron goes 
off to infinity in momentum space (and consequently al
so in coordinate space), moving along the orbit in a 
magnetic field. In the case when all the orbits are 
closed (but the FS is open), the departure to infinity is 
via diffusion displacement of the electron along a chain 
of closed orbits. Another nontrivial example of such a 
situation is the possibility, considered by Pippard[S1 of 
diffusion displacement of an electron near a flat bound
ary separating the electron and hole orbits. 

The most interesting manifestations of the special 
character of scattering of electrons by phonons appear 
in those cases when there are layers of open orbits that 
are small in comparison with the entire FS. We shall 
investigate below the simplest (but frequently encoun
tered) possibility of such a situation: the open part of 
the FS is made up of narrow bridges, and the magnetic 
field is nearly or exactly perpendicular to this direc
tion. (Opening line on the stereographic projection. ) 
A detailed examination of the diffUSion relaxation pro
cess makes it poSSible, in particular, to trace the con
ductivity anisotropy connected with the appearance of 
open orbits. 
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We do not deal here at all with effects due to simul
taneous action of the phonon and impurity scattering 
mechanisms. [41 We note that in the presence of narrow 
layers of open (or extended) orbits the contribution of 
the impurity scattering is relatively unimportant. 
Therefore the conditions under which the phonon scat
tering mechanism prevails over the impurity mechanism 
are less stringent in slow magnetic fields than in the ab
sence of the field. 

1. FUNDAMENTAL EQUATIONS. KIRCHHOFF'S 
RULES 

As in our preceding paper, [11 we start from the dif
fusion equation 

1 Jx ---;7it+ div D(Vx-a)=-eEn. (1) 

Here - X alo/ ae is the nonequilibrium increment to the 
electron distribution function, 10= [exp(e - fJ./T ) + 1]'1, 
n=v/v, t is the time of revolution on the orbit in a mag
netic field, jj is the diffusion tensor, and the term a, 
which is integral in VX, describes the dragging of the 
phonons (see[51). The boundary conditions for this equa
tion are 

(2) 

g is the reciprocal-lattice vector. 

Equation (1) is valid under conditions when the ther
mal momentum of the phonons q ~ T/s (s is the speed 
of sound) is small in comparison with all the charac
teristic distances in momentum space. We note that 
with increasing temperature, besides the diffusion dis
placement over the FS, an important role can be played 
by transitions of the electrons between closely-lying 
sections of this surface (a similar possibility was con
sidered in Sec. 2). To take these such transitions into 
account it is necessary to add to Eq. (1) a term Xp con
taining finite differences of the functions np; this term was 
alreadyusedearlier[11 to describe umklapp processes. 
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FIG. 1. 

The electric current density is 

2e S j ="h' xndS. 

When calculating the current in the direction perpendic
ular to the magnetic field, it is convenient to use the re
lation 

i.e =e(n,-n,,)ux + ;, E [g X HI AgoG; . " 
A,,= :' ( ~Qdl,re,S,"E). 

Q=D(vx-a)+ec-'[H X nIx. 

(3) 

(4) 

(5) 

These formulas can be obtained by multiplying Eq. (1) by 
pXH, integrating over the Fermi surface, and uSing the 
identity [5] 

S D(VX-a)dS=O. 

Here Ux = cH-2[E x H], (j is the number of the energy 
band, and g are the reciprocal-lattice vectors corre
sponding to the faces of the Brillouin zone. The ab
solute value of the vector S.,o is equal to the area of the 
intersection of the FS with the corresponding face and 
is directed normal to this face; it is assumed that S •. o 
. g > 0 (the summation in (3) is over all the non-equiva
lent faces). The integration in (4) is along the line of 
the intersection of the FS with the face, the vector dl •. o 

is perpendicular to this line and is located in a plane 
tangent to the FS. 

In certain zones the FS can be closed, and such zones 
contribute only to the term e(ne -nh)ux' Zones with 
open FS contribute to both terms of (3). If the FS is re
garded as "electronic" (this manifests itself in the mag
nitude of the area SI. 0)' then eo = e < 0, while for a hole 
surface eo = - e. The choice of the treatment is dictated 
by considerations of convenience and naturally does not 
affect the result. To verify this statement it is con
venient to use the formula 

Eg, (S.).= VII", 

• 
where S. is the area of the face of the Brillouin zone 
and V is the volume of the zone. 

The first term in (3) is the current connected with the 
Hall drift. The meaning of this term can be easily un
derstood: the electron trajectory in a plane perpendicu
lar to the magnetic field is a plane from the trajectory 
in momentum space by rotating through an angle 1T/2 and 
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multiplying by c/ eH. The quantity AI,a has the meaning 
of the number of umldapps per unit of time; for each 
umldapp, the momentum changes by the vector g. (By 
"umldapp" is meant here the passage of the electron 
through the boundary of the Brillouin zone.) The um
ldapps take place both from the lines ll,o (Q 1s the flux 
density of these umldapps) and from the part of the face 
of the zone which closes the FS. The first term in Q is 
the diffusion flux, the second is the flux connected with 
the rotation of the electrons over the FS under the in
fluence of the magnetic field. (Equation (1) can be writ
ten in the form divQ = - eE • n. ) 

In this and the following sections we shall be inter
ested in the region of strong magnetic fields: Or» 1, 
n is the Larmor frequency, and T is the characteristic 
relaxation time, the meaning of which will be explained 
in Sec. 3. We proceed to solve Eq. (1). We consider 
separately the case of closed electron orbits in the case 
when the FS has open intersections with a plane perpen
dicular to the magnetic field • 

1. There are no open orbits. The solution of Eq. (1) 
can be obtained by successive approximations (cf. [2.1]). 

In first-order approximation 

(6) 

where Vol is the velocity component in the plane perpen
dicular to the magnetiC field; u.L = ux, U" = uc' The func
tion I/J(P.) and the velocity Uc of the co-moving reference 
frame are determined from the condition that the next
order approximation equation have a solution: 

d d~ 
-J=eE,(v,>, J(p,)=-D-. 
dp, dp, 

(7) 

:, E g,J,=eE,(n,-n,,)-E. :' E e,g.S". (8) 
g ,,0' 

Here J (P.) is the diffusion current through the given 
section of the FS, J. is the value of this current at the 
boundary of the zone; the quantity D(P.) and the averag
ing operations ( ••• ) were defined in the preceding pa
per[l]; the z axis was chosen along the direction of the 
magnetic field. 

Since all the orbits are closed, the Brillouin zone can 
always be chosen such that its boundaries cross the FS 
only along the sections p" = const (see Fig. 1). In writ
ing down the quasi-momentum balance equation (8) we 
have already used this choice of the zone. The bound
ary conditions (2) then take the form 

~(p,+g,)-~(p,)=-ug. J(p,+g,)=J(p,). (9) 

We note that a given p. can correspond to several cur
rents and several functions I/J(P.). At those values of p. 
for which there is branching of the sections of the FS, 
the total current is conserved, and the functions rp(p.) 
are continuous. 

In crossed fields E and H (i. e., E.=O), the relations 
written out above are equivalent to Kirchhoff's laws for 
a certain electric circuit. [1] By way of example, Fig. 
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1 shows the FS and the corresponding circuit. R stands 
for the diffusion resistances of the sections of the large 
body, and R' are the resistances of the stubs. Accord
ing to (7), the "potential difference" is 

P" 

61jl=IR, R = S D-' (p,)dp,. (10) 
p" 

The sections of the circuit that are joined together 
through the zone boundaries include sources of the emf 
8=u' g. 

At E6 *- 0 we have, in analogy with the preceding pa
per[11 

d1jJ, 
1,=-D-=±eE,S(p,), 

dp, 

where the upper and lower Signs correspond to the elec
tron and hole FS, S(P.) is the area of the intersection of 
the FS with the plane P. = const, and 

dSldp,=±(v,>. 

The currents Ja are determined from the same Kirch
hoff laws as before, but with an emf 

8=ug+\f1 (p,) -Ijl, (p,+g,). 

Thus, Kirchhoff's laws jointly with the quasi-momentum 
balance equation make it possible to determine all the 
currents and the velocity Uc of the co-moving system. 
The electric current denSity is 

(11) 

(12) 

In order of magnitude, J,~UX' g/R and the transverse 
conductivity is 

0="" (c'g'!h"ll")R-'. 

2. Layers of open orbits are present. In this case 
the term eE' v.l. must be relegated to the second-ap
proximation equation. (Otherwise Eq. (6) cannot be 
solved, since (v.) *- 0.) Thus, XU) = 1f!(P.}+ ucP.. From 
the condition that the second-approximation equations 
have a solution, we obtain for open orbits 

d d1jJ± 
-D±-=-eE(v.l.)==FeE[g X hI , 
dp, dp, 

(13) 

where the ± signs number two layers of open orbits with 
opposite directions of motion in the magnetic field, g is 
the reciprocal-lattice vector corresponding to the given 
openness direction, and h=H/H. We assume here for 
Simplicity that E z = 0, since the longitudinal electric 
conductivity au is not very sensitive to the topology of 
the electron orbits, and is no longer of interest to us. 
At the boundaries of the layer Pd "" P. "" P.z of the open 
orbits, the following conditions are satisfied: 
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where J 1 and Jz are the diffusion currents entering and 
leaving the layer. 

Adding Eqs. (13), we verify that r(pz) +r(pz) =J 
= const, i. e., the layer of open orbits is not a source of 
current. This layer, however, is a source of a poten
tial difference: 

(14) 

K±=S' p,d;, 
D± . 

I 

The denSity of the electric current connected with one 
layer of open orbits is 

x {e(E,[gXh])j (p,-p.o)'dp. +1 R+K--R-K+} 
,D' R++R-' 

K++K
p,,= R++R- ' ( 1 1 )-' D'= -+_ 

D+ D-

(15) 

The two terms in (15) are in general of the same or
der of magnitude. The first is determined only by the 
layer of open orbits. The current J in the second term 
is obtained from Kirchhoff's laws for a circuit in which 
each open layer corresponds according to (14) to an emf 
o and a resistance:n. The presence of open orbits does 
not influence the condition (8) for the balance of the lon
gitudinal momentum. 

If all the open-orbit layers are narrow (d«g, where 
d is the layer thickness), then the second term in (15) 
is small in comparison with the first, and the depen
dence of n' on P. can be neglected. Then each layer of 
open orbits makes the following contribution to axx : 

(16) 

Comparing this expression with the known formulas 
for the electric conductivity of the open orbits axx 
=neffeZ,eff/m, we have neff ~ (d/g) (g/h)3 is the number 
of the electrons in the layer, jeff ~ , F(d/ g) z is the time 
of the diffusion of the electron out of the layer, ' F 

~ mgZn-1 is the time of diffusion through the entire FS. 
This result (axxo:d3T-5) was obtained earlier by Kaga
nov, Kadigrobov, and Slutskin. [61 

2. STRONG FIELDS. ANISOTROPY AND 
TEMPERATURE DEPENDENCE OF THE 

. CONDUCTIVITY 

In this section we consider the behavior of the elec
tric conductivity tensor when "opening sets in, " i. e. , 
at magnetic-field directions close to those for which 
layers of open orbits appear. (We recall that we are 
dealing with open directions that are mapped by lines on 
the stereographic projection. ) 

R. N. Gurzhi and A. I. Kopeliovich 336 



FIG. 2. 

The actual calculations will be carried out for the 
model shown in Fig. 2. The principal part of the FS is 
a sphere of radius PF; the bridges are assumed to be 
narrow and short; the diameter of the bridge is d« PF 
and its length is 1 S d. (The FS of noble metals are 
similar in shape.) The magnetic field is perpendicular 
(or almost perpendicular) to a certain opening direction. 
It is no less important that there are also additional 
opening directionsl ) (not shown in Fig. 2). We shall ex
plain later on the behavior of the conductivity for a 
somewhat more general model of the FS. 

The topology of the electron orbits depends on the 
misorientation angle ~ between the magnetic field and 
the direction corresponding to the open orbits. We in
troduce the symbol b = g{J. At b > d there are two types 
of orbits: those consisting of one circle and those con
sisting of two circles joined by a narrow constriction
"figure-8 formations." At b <d, orbits with large num
bers of loops appear. As indicated in Sec. 1, it is con
venient to choose a Brillouin zone with boundaries that 
do not disturb the closed orbits, e. g., as shown in Fig. 
3. (It is assumed that b < d and the intersection of the 
FS with the boundaries of the zone is marked dashed. ) 

1. We consider first the case when the thermal mo
mentum of the phonons is small in comparison with all 
the characteristic distances in momentum space (q:::; T / 
s « b, d, 1), and therefore the diffusion approximation 
can be used. Elementary calculations based on formu
las (9)-(11) lead to the result (according to (8), ucg. 
« uxgy) 

R-'=2nDo : (1 + : ) I] ( : ), 

_1_=1+ ~(x)(1-t1(x)) . 
'I (x) (A (x)+1) (A (x) +2) 

(17) 

Here A(x) is the integer part of x and .:l(x) = x-A(x); the 
diffusion tensor is assumed to be a constant scalar Dik 

= DO/),k' The function 17(X) :::; 1 oscillates with a unity pe
riod and has kinks at x=n. The angular dependence of 
axx is shown in Fig. 4. We note that the period of the 
oscillations is /)(l/b) = l/d, and the oscillation amplitude 
is independent of b. 

FIG. 3. 
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FIG. 4. 

d 6 

The physical mechanism that leads to transverse con
ductivity consists in the fact that on going from certain 
trajectories to others the electron is displaced along the 
PyaxiS in momentum space and accordingly along the x 
axis in coordinate space. The kinks in the oscillations 
are connected to the jumplike appearance of orbits hav
ing a number of loops greater by unity. The smooth 
part of the angular dependence ofaxx(b) can be inter
preted as the result of random walks of the electron 
along a chain consisting of layers of extended orbits: 

(18) 

Here .:lx:::; cg/eH is the step of the walk, T'ff:::; TF(b/PF) 2 

ex: T-5 is the time of the diffusion displacement of the 
electron through a layer of thickness b, neff:::; n(b + d) g-l 
is the effective number of electrons, and n=(81T/3)(PF/ 
h)3, £F is the Fermi energy. We note that the angular 
dependence axx :::; b -2 at b« d, obtained by Lifshitz and 
Peschanskii[71 in the relaxation-time approximation, is 
of different origin: T does not depend on b, but the step 
is .:lx:::;(cg/eH)d/b. 

Under these conditions, the conductivity axx is deter
mined completely by a narrow layer of electron orbits 
that are close to infinite. The presence of additional 
opening directions (see footnote 1) does not manifest it
self here in explicit form: in view of the smallness of 
the resistance (17), the diffusion current flowing through 
the layer is J I ~ (!f/R, i. e., this section of the "circuit" 
is regarded as isolated. 

The situation is different in the calculation of the con
ductivity au' which is determined by the behavior of 
the function I/J(P~) within the limit of the entire FS (see 
the first term of (12». At b« d, the principal part of 
the FS consists of two "caps," which are widely sepa
rated in reciprocal space (Fig. 3). As a result, a large 
emf (!f:::; ux ' g(1 + d/b)17(d/b) appears on the sections S. 
corresponding to the" additional" opening directions, 
with a corresponding potential drop 1jI(p.) within the lim
its of the caps. 

According to (12), we have 

nee ( d) (d) ox<""fi 1+ b l] b . (19) 

(As shown by calculations, uc :::;ux(l+d/b), and there
fore both terms in (12) are of the same order.) We 
note that the result (19) remains valid in order of mag
nitude also at ne =nh' The numerical coefficients in (19) 
depend, naturally, on the orientation of the additional 
openness directions. 

R. N. Gurzhi and A. I. Kopeliovich 337 



FIG. 5. 

d 

It is easy to see how the results are altered if we for
go certain asswnptions connected with the FS modeL If 
the neck is not narrow (dO: g), then the dependence axx 
0: b-I may not manifest itself, but at b« d the law axx 
0: b-2T/(d/b) remains in force. If the neck is long enough 
(1)> d), orbits with more than one loop vanish at b ~ dg/ 
I, and consequently the relation axxo:b-1 is violated. 
(In this region, the axx(b) dependence may be determined 
by the anisotropy of the resistance of the neck.) At 
smaller b, however, the results remain in force if we 
asswne in them d=d(b), where d(b) is the thickness of 
the layer of the "through" orbits that pass through the 
neck. 

2. We proceed now to consider effects connected with 
the finite character of the thermal momentwn of the 
phonons q':::J T/s. We asswne first that the momentum 
q is small in comparison with the characteristic dimen
sions of the neck, but exceeds the width of one layer of 
extended orbits: b < q« d, l. It is easy to understand 
the result of the violation of the diffusion approximation 
in this case: a random walk along a chain of orbits 
takes p~ace, as before, although the electron can jwnp 
in one step over several layers of orbits. Therefore 
all the preceding results remain in force, but the os
cillations at q > b become smeared out. (It is curious 
that with increasing temperature, at q > d, the oscilla
tions, as we shall see, appear again. ) 

At higher temperatures, when q~d and q~l, the vio
lation of the diffusion approximation again becomes sig
nificant. To avoid wnklapp process, i. e., transitions 
that bypass the neck (of the type 1- 2 in Fig. 2), we 
shall first asswne the neck to be long and that l» q» d. 
(Then the wnklapp probability is exponentially small. ) 
The transverse conductivity mechanism is then the fol
lowing: during the time of one collision with the phonon 
T off ':::J TF(PF/ q) 2 0: T-s, the electron located in the layer 
of extended orbits has an overwhelming probability of 
leaving the layer and falling in the region of circular or
bits-the cap. The electron is then displaced in recip
rocal space by an amount t::..Py':::J (d/b + l)g and, accord
ingly, in coordinate space by an amount t::..x':::J(cg/eH)(d/ 
b + 1). To estimate the conductivity we can use formu
la (18). 

A more accurate analysis, based on the solution of 
the kinetic equation and on the asswnption that the func
tion l/J(P.) is constant within the limits of individual lay
ers of extended orbits, yields 

bl' 

4:r. c' D. J \""1 o"=,,,PF lI' Z dp,~ [6py(k)]'. 
q -b/2 Ii 
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Here t::..Py(k) = gyk is the change of the momentum on go
ing from the k-th loop of the extended orbit to the cap; 
within the limits of the interval b/2?- pz?- - b/2, there 
are three layers of extended orbits, differing by unity 
in the nwnber of loops. 

The results of simple calculations yield 

3 (C)' D. ( d) 
(j ""-n - -dJ...-
= 2 H q' b' 

(20) 

J..(x) =x'+3x+2+x-'6 (x) [1-6 (x) J [3x+4-26 (x) J. 

It is seen from this formula that, in contrast to the case 
q«d, the conductivity is axxO: T S and is independent of 
b if b > d. Incidentally, with further increase of b we 
return to the result of the diffusion approximation: (Jxx 
0: b-1T 5• The point is that at sufficiently large b, when 
only single and figure-8 orbits remain, the diffusion 
time between the figure-8 orbits over the layer of the 
single orbit may turn out to be appreciable. Indeed, a 
diffusion displacement through a distance b is executed 
after (b / q) 2 Brownian steps; on the other hand, the 
electron lands in a small region (in comparison with the 
step q) of width d, as is well known, after (q/d) 2 steps. 
Therefore at b» q2 / d the conductivity is determined by 
the diffusion resistance, i. e., the result (17) is valid. 
The angular dependence of the conductivity at I» q» d 
is shown in Fig. 5. 

At q >l, wnklapp processes come into play. This 
mechanism, which ensures transverse conductivity of 
metals with closed FS, was considered earlier. (I) In 
the temperature region of interest to us, the contribu
tion of the wnklapp processes to the electric conductivi
ty is given by 2) 

(21) 

Comparing (20) with (21) we easily verify that the wn
klapp mechanism is the fundamental one at b >d(d/q)1/2 
and is immaterial at smaller b. Figure 6 shows the 
conductivity (Jxx for ratio of d to 1 at q»d and q» l. 

It is easy to verify that, just as in the preceding sub
section, the conductivity axz exhibits an appreciable 
anisotropy: 

(22) 

Here <p(b) S 1 is a smooth function of the angles and 
changes significantly over distances on the order of PF' 
In the symmetrical directions (alignment of H with a 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 

FIG. 6. 
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FIG. 7. Regions of different behavior of the transverse con
ductivity: I-u a:H-2b-1, II_ua:H-2b-2, Ill-ua:H!, 
IV-ua:H-1, V-ua:H-2(lnHt1, VI_ua:H-2, VII-ua:Jil. 

twofold axis is sufficient) we have cp = O. We note that 
relation (22) is valid in all the cases considered in this 
section. 

3. REGION OF INTERMEDIATE MAGNETIC FIELDS 

As we have seen, in asymptotically strong magnetic 
fields at b« P F the conductivity is determined by a rela
tively short relaxation time r~, which is either the time 
required for the electron to go out of the layer of ex
tended orbits, or the time required to diffuse over a 
distance b. In the absence of a magnetic field, the con
ductivity is determined by the much longer (at d« PF) 
time rF of diffusion through the entire FS. Therefore 
the region of strong magnetic fields (Or~» 1) is not in 
contact with the region of weak fields (OT F« 1) and 
there appears a wide region of intermediate fields: 
HmAX/Hmin~(PF/d)2. We note that in the relaxation-time 
approximation, owing to the smallness of the contribu
tions to the conductivity of the narrow layers of ex
tended orbits, there also arises a region of intermedi
ate magnetic fields. However, the width of this trivial 
intermediate region Hmax /HmID ~ (PF/d)1/2 is small in 
comparison with the case when small-angle processes 
predominate. 

In this section we shall not present the calculations 
and confine ourselves to formulation of the fundamental 
qualitative results for FS with narrow and short bridges 
(1 $ d« PF) under conditions when the diffusion approxi
mations are valid (q« d, 1). 

The diagram of Fig. 7, in which the variables are b 
and (OrFt 1, shows schematically the regions in which 
the conductivity behaves in a qualitatively different man
ner, and we indicate the asymptotic dependences of ax. 
on Hand b. The conductivity in the regions I-VII is 
given respectively by 

m 1 PI' 1 p,d ( d )3 1 d 
a.U;-ne2 ~ IIZ T , -b ' -(.)' -b2 ' LF - '0 ' 

~G __ 'Tp P,' __ PF 
(23) 

1 [ ( PF )] -I 1 P, 
-0' In --d '2 ' TFln- . 
•• "T, ~hF Q TF In (PFld) d 

The dashed curve corresponds to the relation. 
PF(0*rFt 1/2 = b, where 0* ~ Ob/d is the frequency of 
revolution of an extended orbit (b« d). This curve di
vides region n into two parts, with the conductivity un
dergoing oscillations in the upper part (see Sec. 2) and 
no oscillations in the lowest part. All the remaining 
lines in Fig. 7 are straight lines the poSitions of which 
are clear from the deSignations on the coordinate axes. 
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Let us explain the physical meaning of the results. 
Strong magnetic fields corresponded to region I, and 
strictly speaking only to the upper part of region n. 
The layers of orbits that have unequal numbers of loops 
have widths on the order of b. In the lowest part of re
gion n, the diffusion displacement of the electron dur
ing the period of motion on the extended orbit is 
PF(0*TFf 1/2 > b and there are therefore no oscillations. 

In region ill, time 1/0* is sufficient for the electron 
to leave the layer of extended orbits via diffusion: 
PF(0*rFt 1/2 » d. Under these conditions the electron 
does not manage to sense the difference between an ex
tended orbit and an open orbit, and the electric conduc
tivity is axx~n*e2T/m, where n*~nd/PF and r~ TF(d/ 
PF)2. 

In the region IV, the electron manages to leave the 
layer of extended orbit within a time 1/0: PF(OTFt 1/2 

» d. The electron emerging from a certain neck is al
most certain not to land in an equivalent neck. The. 
electric conductivity determined by formula (18), in 
which the random-walk step is Ax~ V FO-1 and the corre
sponding time is r eft ~ 0-1• It must be borne in mind, 
however, that in the same interval of magnetic fields at 
PF(0*TFt 1/2 <d (region I) the time TF(b/PF) 2 of diffusion 
between the layers of figure-8 orbits exceeds the time 
0-1(pF(OrFr1/2d-l)2 within which the electron lands in a 
bridge (see the analogous reasoning in connection with 
the limits of applicability of formula (20) in Sec. 2; in 
this case the length of the Brownian step is PF(OTFt 1/2). 
Under these conditions the conductivity is determined 
by the diffusion time TF(b/PF)2, just as in the entire re
gion I. 

In region V, the specific mechanism considered earli
ertll comes into play. The diffusion displacement is 
OCt) ~ PF(t/rF)1/2 within a time t, and therefore on small 
segments of the path the electron velocity Ii 0: 1i-1/2 ex
ceeds its velocity along the orbit in the magnetic field 
PFO. The corresponding critical distance lio ~ PF(Oril\ 
if it is larger than d, plays the role of the effective 
width of the neck. In region V we have lio» d, and 
therefore axx can be obtained from the corresponding ex
pression for region IV, by replacing d by 00 (accurate 
to a factor In( lio/ d), which characterizes the probability 
of falling into a neck from a distance lio). 

In region VI, the electron diffuses during the time of 
one revolution through the entire FS, but does not man
age to fall into a neck: r F <0-1 < rIO) ~ rFIn(PF/d). Ac
cordinglyaxx o:(02 T(0)t1• Finally, VII is a region of 
weak magnetic fields, in which Or(O) « 1 and ax>: 0: r(O). 

Let us conSider also the conductivity au' Calcula
tions show that 

(24) 

where the term a~., which is odd in the magnetic field, 
is connected with the conductivity axx by the relation 
(22), while the even term takes the form 

en {!j 
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FIG. 8. 

The potential difference 0 which is produced here at the 
edges of the layer of the open orbits is determined by 
expression (14). In the case of a short neck (l $ d« PF) 
we have 

where cp $ 1 is a smooth function of the angles and is of 
the same type as in (22). 

It is easy to see that at 0» T"J(PF/d) 2 the quantity a~z 
is strongly anisotropic and has a sharp maximum at b 
~ p~(OTFd)-1. Figure 8 shows for this case plots of 
I a~zl (curve 1) and I a~.1 (curve 2) as functions of the 
angle variable b. 

Let us write down in conclusion the resistance tensor 
p = a -1 for arbitrary magnetic fields, including weak 
ones (OT(O)>> 1). We use the fact that the components 
ayy~ne2/m02TF' OYZ~ne2/mO, azz~ne2TF/m are not 
sensitive to the onset of open orbits. We have, accu
rate to numerical factors of the order of unity, the fol
lowing: at ne", nh 

(26) 
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The remaining components of the resistance tensor do 
not contain any singularities with respect to b and de
pend on H in the usual manner. (These components can 
be obtained in the relaxation-time approximation if this 
time is taken to be TF') 

l)Under phonon-dragging conditions, in the presence of only 
one opening direction, the situation is special; a joint drift 
of the electrons and phonons along the magnetic field is pro
duced, such that the resultant velocity u =ux - h(ux ' g) (g. b)-I 
turns out to be perpendicular to the vector g. In this case 
j '" e(nR -nh)u and (Txx'" (TlIY =0. (A similar situation was con
sideredearlier,lll p. 2315 [p. ll48 of the translationl.) In 
the presence of additional opening directions, such a drift is 
obviousJ,y impossible. 

2We point out an error in(ll; in the region PF(q/PF)31 4 < b 
< (p~)1/2 , the quantity (Tn: is proportional not to T 5, but to 
r· 5, as follows from (21) and from formula (25) oflll. 
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