
2)In a number of cases, direct registration of the plaSma is 
possible by passing soft x rays through it. [51 
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Linear transformation of electromagnetic waves in the 
region of quasitransverse propagation in a three­
dimensionally inhomogeneous magnetoactive plasma 
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Transformation of circularly polarized waves in the region of a quasitransverse magnetic field in a three­
dimensionally inhomogeneous electron plasma is investigated. Analytic expressions are obtained for the 
fields in the localized interaction region. The possibilities of determining the local electron concentration at 
the orthogonality point by measuring the transformation coefficient ("Cotton-Mouton" plasma 
diagnostics) are discussed. 

PACS numbers: 52.40.Db 

1. INTRODUCTION 

The interaction of circularly polarized waves in a 
magnetoactive plasma in the region of quasi-transverse 
magnetic fields (we shall speak for the sake of brevity 
of a "quasi-transverse" interaction) has been used to 
explain the singularities of solar radio emission[l-3J 
(from among the latest studies we point out alsO[4J) and 
certain anomalies of the Faraday effect in the earth's 
ionosphere. [5,6] All the calculations of this effect were 
carried out so far for a simplified formulation of the 
problem: plane waves in a homogeneous plasma placed 
in an inhomogeneous magnetic field; the only analytic 
result obtained so far for the transformation coeffi-
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cients is that of Zheleznyakov and Zlotnik [2] (see al­
so[3]), who used the phase-integral method. 

In this paper we report a method of describing the ef­
fect of quasi-transverse interaction in a three-dimen­
sional inhomogeneous plasma, based on the quasi-iso­
tropic approximation of geometrical optics (see[?], and 
alsO[8,9]), which is applicable to waves in weakly-aniso­
tropic media, particularly to waves in a plasma situ­
ated in a weak external magnetic field Ho: 

u=wH'lw'= (eHolmcw) '¢:1. (1) 

This method takes into account the bending and the tor-
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sion of the rays, and also the rotation of the force lines 
of the magnetic field relative to the ray. In the case 
when the effect of the quaSi-transverse interaction is 
spatially localized, the equations of the quasi-isotropic 
approximation can be solved analytically, and the re­
sults obtained for the transformation coefficients T/ are, 
as expected, those of Zheleznyakov and Zlotnik [2] for a 
homogeneous plasma. At the same time, it becomes 
possible to determine the corrections to T/ necessitated 
by the extended section of the quasi-longitudinal propa­
gation, i. e., by the "incomplete localization" of the ef­
fect. 

In the Conclusion we discuss briefly the possibility 
of using the quasi-transverse interaction for polariza­
tion plasma diagnostics, which can be referred to in 
this case as quasi-transverse or "Cotton-Mouton" diag­
nostics. In contrast to Faraday diagnostics, Cotton­
Mouton diagnostics makes it possible to determine un­
der certain conditions the local parameters of a labora­
tory or ionosphere plasma at the orthogonality point 
and, in particular, obtain the local electron denSity at 
this point. 

2. QUASI-ISOTROPIC APPROXIMATION EQUATIONS 
FOR INTERACTING CIRCULARLY POLARIZED 
WAVES 

In a weakly-anisotropic medium whose dielectric ten­
sor contains a small anisotropiC part lIi/= eiJ - C,01ili 
«£0' the field of the electromagnetic wave in the zeroth 
approximation of geometrical optics can be assumed to 
be transverse to the beam, just as in an isotropic 
medium: 

E= (Cll,n+Cll,b) e"" (2) 

where n and b are the normal and binormal to the ray 
with tangent vector t, and 

is the phase advance at lIiJ = O. The influence of the 
weak anisotropy manifests itself in the fact that the am­
plitudes <1>1 and <1>2 depend on IIlJ in accordance with the 
equations of the quasi-anisotropic approximation of 
geometrical optics. m 

If we assume <1>1,2 = <l>or 1,2' where <1>0 obeys the equa­
tion for the conservation of the energy flux in a ray tube 
in an isotropic medium: div(JTO I <1>012 t) = 0, then we ob­
tain for the quantities r 1 and r 2, which determine the 
polarization of the field, the following quasi-isotropic 
approximation equations (du is the ray length element): 

df, ik f, 
-=--=-(v •• T,+v •• f,)--, 
do 21'80 T 
df, ik f, 
-=-=(,' •• f,+v •• f,)+-, 
do 21'80 T 

(3) 

where T is the torsion radius of the beam (T-1 =ndb/ 
du). From (3) it follows that in the absence of absorp­
tion we have on any ray I r112+ Ir2 12= 1. 

In the case of high-frequency electromagnetic waves 
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FIG. 1. 

/' 

in an inhomogeneous magnetoac.tive plasma, the small­
ness of lIii can be ensured by weakness of the magnetic 
field (1). If we use the known values of the component 
of the tensor IIli for this case[101 and write down Eqs. 
(3) in terms of the unit vectors n', b', and t such that 
the vector n' lies in the (t,Ho) plane (see Fig. 1), then 
the quantities 

f,'=f, cos ljJ+f, sin 1j:, f,'=-f, sin ljJ+f, cos IjJ 

satisfy at v« 1 the equations 

-=-iDu:cosZar1 - -Deosa - " df,' 'I '( + 1 )f' 
do Terr 

df,' ( + 1)f' 'D 'I'f ' -= -DCOSCl - ,-I U ,. 
do T err 

(4) 

Here D=kvU1 / 2/2, v= wi/w 2 =4rre 2Ne/mw 2 , Q! is the 
angle between the ray and the magnetic field, l/J is the 
angle between the normal to the ray n and the (t,Ho) 
plane, and Teff =(1/T-dl/J/dur1 is the effective torsion 
radius of the ray, which takes into account the rotation 
of the magnetic-field force lines relative to the ray. 

Being interested in transformation of circularly-po­
larized waves, we change over to the variables1) 

1,,= ~(r,'±if")exp{.!....J DU';'(1+cos2 Cl)dO}, 
1'2 2 

(5) 

which by virtue of (4) satisfy the equations 

d1, '( 1 ) t , " -=1 --DCOSCl 1,+-Du'1,sm Cl, 
do T err 2 (6) 

d1, i " , (1 ) -=+-Du"1,sin-Cl-i --DCOSCl 1, 
~ 2 T~ 

and the normalization condition I Y112 + I hi 2 = 1. If the 
wave incident from the side of negative u is right-cir­
cularly polarized, then the system (6) must be solved 
with the initial conditions 

(7) 

The system of the quasi-local approximation equa­
tions (6) d'escribes the transformation of circularly-po­
larized waves under rather general conditions: account 
is taken in (6) of the inhomogeneIty -of the electron con­
centration Ne and of the magnetic field Ho, and also the 
torSion of the rays and the rotation of the force lines. 2) 
At the same time, Eq. (6) is much Simpler than the sec­
ond-order system for the transverse components of the 
field E, which are customarily used for the analysis of 
wave transformation, and facilitates the qualitative and 
quantitative analysis of the interaction of the normal 
waves. We consider below an example of such an analy­
sis-localized interaction of waves in the region of a 
quasi-transverse field. 
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3. ESTIMATE OF LENGTH OF THE SECTION OF 
QUASI· TRANSVERSE INTERACTION 

This estimate will be needed later on and can be ob­
tained from the following simple considerations. In 
Eqs. (6), the Faraday effect corresponds to the terms 
DY1.Z cosa, while the Cotton-Mouton effect corresponds 
to the terms tDu1/ ZY1,z sinza. The "Faraday" terms 
prevail over the "Cotton-Mouton" terms at 21 cosal 
~U1/Z sinza, i. e., in quasi-longitudinal propagation. [10) 
In this case, the crossing terms in (6) are small, and 
these equations then describe independent propagation 
of two circularly-polarized waves. On the other hand, 
on the quasi-transverse propagation section, the oppo­
site inequality is satisfied 

21 cos al.;;;u"· sin' a, (S) 

and in this case the crossing Cotton-Mouton terms re­
sponsible for the transformation prevail in (6). 

By virtue of the assumed smallness of u 1/ Z it follows 
from the inequality (S) that the quantity cosa is also 
small over the entire quasi-transversality section. On 
this basis we can assume 

a (a') (a') cosa"'-+O --'- , sin'a."'1-0 -:- , 
,p p' p' 

(9) 

where U is the length of the ray measured from the or-
'thogonality point cosa=O, and p=(da/dut1 is the char­
acteristic scale of the variation of the angle a on the 
ray, and depends both on the curvature of the ray and 
on the configuration of the magnetic field. In particu­
lar, if the ray lies entirely in the plane of the magnetic 
meridian, then I p;1 ± p;t 1-1, where PT is the curvature 
radius of the ray and PH is the distance from the or­
thogonality point to the arbitrary center of the magnetic­
field line, where the tangents to the Ho lines intersect. 
It follows from (S) and (9) that on the section of the 
quasi-transverse propagation we have 21 ul /p S. u 1/Z• 
As a result, the length of the intersection region 

is small in comparison with the scale of p. 

4. TRANSFORMATION COEFFICIENTS FOR THE 
LOCALIZED REGION OF QUASI-TRANSVERSE 
INTERACTION 

(10) 

The system of Eqs. (6), of course, cannot be solved 
analytically at arbitrarily varying parameters. How­
ever, if the interaction region is localized, i. e., if the 
length lJ. of the interaction region is small in compari­
son not only with P but also in comparison with the char­
acteristic plasma inhomogeneity scale L, then the sys­
tem (6) admits of an approximate solution that is never­
theless sufficiently universal. In fact, at h «L the 
plasma parameters u and v, as well as the effective 
radius Teu, can be replaced within the limits of the in­
teraction region by their local values uo, vo, and To eU 

at the orthogonality point. Then, taking (9) into ac­
count, we obtain the system of equations 
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dl, (D,a 1) 1 " 
-= i --+-- 1. +-iD,u"l" 

da p T,eff 2 

(11) 
dl' 1. 'f, . (D,a 1) -=+-,D,u 1,+' -,--- 1" 
da 2 P T'eff 

where Do = kvou~/z /2(1 - VO)l/Z. 

If we introduce the dimensionless variable ~ = (Do/ 
'p)1/Z(u-P/DoToeu), then we arrive at the system 

d,(, i'lp .• 
-=+-1,+';'(" dq, 2 

(12) 

which contains the Single parameter 

p=D,u,p=kv,u," p/2, (13) 

the physical meaning of which is that it determines; the 
advance of the phase difference of the normal waves on 
the section of the quaSi-transverse propagation. In 
fact, since the difference of the refractive indices in 
the region of the quasi-transverse magnetic field is Il.n 
~ t uovo, the quantity Il.cp = kll.nlJ. is precisely equal to p. 
The transformation coefficients for localized interac­
tion depends on the value of this parameter (and only 
on this value). 

Elimination of yz from the system (12) leads to the 
Weber-Hermite equation 

(14) 

the solution of which is expressed in terms of the para­
bolic-cylinder functions Dn(z). (11) 

Equation (14) and the condition Y1(_co)=0 are satis­
fied by the functions 

(15) 

in which case we have by virtue of (12) 

(16) 

where the constant C is determined from the require­
ment I yz( - 00) I = 1 and is equal to (accurate to a phase 
factor) (P/S)1/Z e-'lfP/3Z. Using this value of C and the 
anisotropic formulas for Dn(z) fromUll, we obtain the 
following value of the intensities of the circularly po­
larized waves at ~ - + co: 

(17) 

Recognizing that the function Yz(~) describes a wave 
with right-hand circular polarization, it is natural to 
regard the quantity 

(IS) 

as the coefficient of transformation of a right-polarized 
wave into a left-polarized wave. The coefficient for 
the inverse transformation is obviously the same. 
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Formula (18) coincides, as is expected, with the val­
ues of the transformation coefficients obtained from the 
localized interaction by the phase-integral method, but 
in a one-dimensional formulation of the problem. (2) The 
foregoing analysis leads also to certain additional con­
clusions (compared with(2). First, we have obtained 
not only the value of the transformation coefficient 71, 
but also the value of the field on the ray. As a result, 
it becomes possible to calculate 71 under conditions when 
the source is inside the interaction region, an impor­
tant factor for ionospheric investigations. Second, it 
turned out that the torsion of the ray and the rotation 
of the magnetic force lines do not affect the value of 71, 
since the effective torsion radius Teft has dropped out 
completely from (12). Third, from the initial equations 
(6) we can establish the smallness of the transforma­
tion of the waves in the extended region of the quasi­
longitudinal propagation and obtain the corrections to 
the transformation coefficient (18) necessitated by the 
"incomplete localization" of the interaction effect. 

The corresponding estimates can be obtained with the 
aid of Eqs. (6) and (11) by a different method. The 
Simplest method is to solve (6) in the region of quasi­
longitudinal propagation by the perturbation method in 
terms of the parameter q = u 1/2 ~in2a/2 cosa, which is 
small precisely in this region. On the other hand, to 
take the incomplete localization into account in the in­
teraction region lui :S l~ = U 1/2p we can construct a per­
turbation-theory series on the basiS of Eqs. (11), taking 
into account in the latter the terms quadratic in u in the 
expansions for cosa and sin2 a, which were discarded 
in (9), as well as the terms linear in u of the plasma 
parameters u, v, and Tefl' Matching together the two 
perturbation-theory series Somewhere on the boundary 
of the interaction region I ul - pu 1/2 in such a way that 
the result depends least on the matching point, we can 
obtain the correction to the calculated transformation 
coefficient (18). 

The final estimates, which are too cumbersome to 
present here, indicate that two factors exert a dominant 
influence: the values of the parameter qln at the point 
of entrance of the wave into the medium (or at the point 
where the source is located), and the ratio }{=l~/L of 
the length l~ of the interaction region to the character­
istic scale L of the inhomogeneity of the plasma param­
eters. The correction 1571 is in this case of the order 
of 

~] 
in! L . 

(19) 

5. POSSIBILITIES OF "COTTON-MOUTON" PLASMA 
DIAGNOSTICS 

Unlike the Faraday effect, which yields information 
on the integral characteristics of the plasma, the quasi­
transverse interaction due to the Cotton-Mouton effect 
can serve as a source of information on the local char­
acteristics of the plasma at the orthogonality point. In 
particular, one can speak of determining the local value 
of the electron concentration Ne if the values of the oth­
er parameters are known. 
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If the effect of the quasi-transverse interaction is 
spatially localized: 

11-=pu'''«L, (20) 

then the transformation coefficient is given by expres­
sion (18), and from the measured values of 71 we can 
then determine the parameter p which characterizes the 
local properties of the plasma at the orthogonality 
point: 

kvouo'''p 4 1 
p~Douop"'" --= -In --. 

2 :t 1-1'] 
(21) 

A possibility of this kind, which follows from the re­
sults of [1,2) has been widely and successfully used to in­
terpret data on the polarization of solar radio emission, 
particularly to estimate the magnetic field Ho in the so­
lar corona from reasonably specified values of other 
plasma parameters. However, as applied to ionosphere 
and laboratory plasma, the possibilities of Cotton-Mou­
ton diagnostics, insofar as we know, have never been 
discussed (apparently because there is no theory that 
takes the bending of the rays into account). 

Under the conditions of the earth's ionosphere, the 
characteristic scale of p amounts to (within the frame­
work of the dipole model of the magnetic field) 3000-
6000 kilometers, whereas the vertical scale of the plas­
ma inhomogeneity Lver! - 100 km. By virtue of (20), the 
effect of the quasi-transverse interaction is localized 
at U 1 / 2 « L/p -frr -fa, i. e., at;\. $4-7 meters. Thus, 
at ultrashort wavelengths one can count on measuring 
the local electron concentration of the ionosphere plas-. 
ma at the orthogonality points. In the case of oblique 
propagation of the radio waves, when the effective scale 
L of the plasma inhomogeneity along the ray increases 
by several times (inasmuch as Lhorlz -1000 km), the 
threshold wavelength increases also by several times 
(up to 20-30 m). 

Under laboratory-plasma conditions, the quantities 
N e , Ho, and p can vary in a very wide range, and it is 
therefore quite probable that if the microwave-radiation 
frequency and the sounding direction are suitably chosen 
it is possible to "probe" appreCiable plasma volumes 
for the purpose of determining the local electron con­
centration. This could also be helped by a purposeful 
control of the magnitude and configuration of the mag­
netic field, if this can be done under the experimental 
conditions. 

When solving problems in plasma diagnostics it is 
necessary to strive, besides localization of the effect 
(the condition (20», also to a complete "visibility" of 
the effect, which can be characterized, for example, 
by the degree of linear polarization I3 l1n = 271(1 - 71)1/2. 

This quantity is maximal at 71 = t, corresponding to the 
value Po = 41T-1 ln2 = O. 88 and to a radiation frequency Wo 
= (wi W 1p/2cPO)1 14. [2,3) Generally speaking, at this fre­
quency of the "best visibility" of the effect the inequali­
ties (1) or (20) can be violated. To prevent this, it, is 
necessary, as shown by simple calculations, that the 
plasma frequency wL be in the range 
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and this in turn is possible under the condition wHP/ C 

»1. These inequalities indicate the range of values of 
wH and WL in which both spatial localization and good 
visibility of the effect are possible. 

In conclusion, the authors are sincerely grateful to 
V. V. Zheleznyakov and E. Ya. Zlotnik for attentive 
discussion of the work and for exceedingly valuable 
advice. 

UThe phase factor is introduced in (5) to simplify the system 
of equations (6). 

2)The region of applicability of these equations is restricted by 
the condition (1), by the inequality v« 1, and by the require­
ment, common to all modifications of the geometrical-optics 
method, that the parameters of the medium vary slowly in 
terms of the wavelength (for more details see[9 1). 
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It is shown that at small values of the wave vector k, the usual kinetic equation for the occupation 
numbers is not applicable for the calculation of the damping decrement of spin waves Y3c{k) due to three­
magnon dipole coalescence processes. The effect of four-magnon exchange interaction on spin wave 
coalescence proceses is taken into account by the diagram technique in all orders of perturbation theory. 
The expression for Y3c(k) for small values of k considerably differs from the results derived from the usual 
kinetic equation. In particular, it is found that three-magnon coalescence processes give a much larger 
contribution to magnon damping with k = 0 than do four-magnon dipole processes. 

PACS numbers: 75.30.Fv 

At T« Te(TeistheCurietemperature), manyequilibri­
um and nonequilibrium properties of magnetically or­
dered crystals are determined by the spin waves. [1,2] 

In particular, the damping of the spin waves deter­
mines the threshold of parametric excitation of the spin 
system by a variable magnetic field. The relaxation of 
the magnetization to its equilibrium value, and con­
sequently, the width of the line of magnetic resonance 
in such crystals are also determined by the damping 
of the spin waves which, in turn, is due to their inter­
action with one another, with phonons, impurities, 
defects of the crystal structure, etc. 

In what follows, we shall consider an ideal ferrodi­
electric and confine ourselves to the case of spin-spin 
interactions only, to wit, the exchange -and relativistic 
dipole interactions. In this case, the Hamiltonian of the 
spin waves has the formU ,2] 

(1) 

where JlCo is the Hamiltonian of the free spin waves, 
V~e and V~IIIJ are the contributions from three-magnon 
processes of coalescence and splitting, due to dipole 
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interaction, V: is the contribution from a four-magnon 
exchange scattering, V't.,c is the contribution from 
four-magnon dipole processes, and W denotes processes 
of higher order in the creation and annihilation opera­
tors of the spin waves, which, at T« Te , make a 
small contribution. We do not include in the Hamil­
tonian (1) the interactions of spin waves with the vibra­
tions of the crystal lattice, impurities and defects, both 
from considerations of simplicity and because the ex­
periment allows us to separate the contribution of the 
"characteristic" mechanisms of magnon damping due 
only to spin-spin interactions. [2,3] 

The damping of spin waves, i. e., the approach toan 
equilibrium occupation number nk = (aia k) « ) denotes 
averaging) is determined in second-order perturbation 
theory by the usual kinetic equation 

(2) 

Here (lex) is the delta function, V'm are the matrix ele­
ments of the interaction operator in the representation 
in which the Hamiltonian JlCo is diagonal, land m denote 
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