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A model of a transparent medium with randomly distributed absorbing inhomogeneities is used to analyze 
optical breakdown of transparent dielectrics and to explain the experimentally observed dependence of the 
breakdown threshold on pulse length and focusing conditions. A statistical approach to the breakdown 
problem is formulated; the distribution of breakdown probabilities is obtained and the averages 
characterizing the threshold are calculated. 
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1. INTRODUCTION 

In most cases the experimentally measured thresh­
olds for optical breakdown of transparent dielectricsU - 3 ] 

turn out to be substantially lower than calculated theo­
retically taking into account processes of impact ion­
ization and multiphoton absorption. [3-5] The cause of 
this lack of correspondence is apparently the extra­
ordinary simplification of the theoretical model of a 
transparent dielectric, in which the material is as­
sumed to be optically uniform. At the same time it is 
known that the optical breakdown threshold is substan­
tially affected by spatial inhomogeneity of the absorp­
tion coefficient. A well known example of an optically 
inhomogeneous medium is the platinum-containing 
glasses, for which optical breakdown is found experi­
mentally to be initiated by the strongly absorbing plat­
inum inclusions. [6] Another example of the strong in­
fluence of absorbing inhomogeneities on optical break­
down is given by the experimental results of Butenin 
and Kogan, [7] from which it follows that the optical 
breakdown threshold of a liquid dielectric increases 
monotonically as it is purified of microscopic solid par­
ticles. 

In the examples presented the existence of absorbing 
inhomogeneities in the medium is not in question and 
the properties of the inhomogeneities are known. In 
most optical media the existence of absorbing inhomo­
geneities is much less obvious-they are difficult to ob­
serve as the result of the smallness of the absorption 
produced by them. Recently, however, direct experi­
mental proofs have appeared of the existence of local 
regions of increased absorption in a number of dielec­
tric coatings [8] and glasses. [9,10] In addition, the lit­
erature contains data which indicate that absorbing in­
homogeneities associated directly with structural fea­
tures of the material exist in compensated and amor­
phous semiconductors. Ull 

Recently several studies appeared in which attempts 
are made to develop a theory of the optical breakdown 
of gases, U2] films, [13] semiconductors, and glassesU4 ] 

containing absorbing inhomogeneities of small size. In 
the present work we have also attempted to construct a 
theory of optical breakdown of condensed transparent 
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media with absorbing inhomogeneities which permits 
explanation from a unified point of view of a large num­
ber of experimental data relating to the optical break­
down of crystals and glasses under the influence of laser 
radiation. 

2. EXPERIMENTAL RELATIONS 

Before proceeding to the theoretical analysis of op­
tical breakdown of media with absorbing inhomogenities, 
we shall enumerate some basic regularities which have 
been established in the experimental study of the break­
down of the surface layer of transparent dielectrics (we 
discuss the results on surface breakdown in order not to 
involve the question of the possible effect of self-focus­
ing of the radiation). We note the follOwing experimen­
tal facts which the theory of breakdown must explain. 

1) The dependence of the threshold intensity of radia­
tionon the duration of the laser pulse. This dependence is 
observed for all materials studied, both crystalline and 
amorphous. The results of a systematic study carried 
out for ruby crystalsU5 ] and K-8 optical glass U6 ] are 
shown in Fig. 1. A characteristic feature is the exis­
tence in the graphs of points near which a change in the 
form of the time dependence occurs. 

2) The dependence of the threshold for optical break­
down of the surface of transparent dielectrics on the 
size of the region irradiated. This dependence appar­
ently is universal in nature; in addition to optical 
glasses, it has been observed, for example, in the ac­
tion of radiation on the retina of the eye. [3] The exis­
tence of a sharp size dependence explains, in particular, 
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FIG. 1. Dependence of breakdown threshold on duration of 
radiation action: a) for ruby crystals according to the data of 
Ref. 15; b) for K-8 glass according to the data of Ref. 16. 
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FIG. 2. Size dependence of optical breakdown threshold for 
K -8 glass. [17l 

the significant spread in the value of the threshold in­
tensity of optical breakdown given by different authors 
for the same materials. Typical dependences of the 
threshold for breakdown on the size of the focal spot 
are given in Fig. 2. U 7J 

3) Recent studies have shown that in a number of 
cases optical breakdown of dielectrics does not have a 
threshold nature, [18,19J but that a finite probability 
exists for occurrence of breakdown over a wide range 
of intenSity of the incident radiation. It is obvious that 
in this case optical breakdown can be characterized by 
specifying the threshold intenSity of light only with an 
accuracy equal to the width of this interval. Th~ size 
of the interval in which the principal change of break­
down probability occurs changes from material to ma­
terial, but it is still not completely clear just what pa­
rameters of the material are responsible for these 
changes. In Fig. 3 we have shown an example of the 
dependence of the probability for optical breakdown of 
the surface of glass on the intensity of the incident light 
flux. U9J 

3. THEORETICAL ANALYSIS OF BREAKDOWN 

In analysis of the optical breakdown of transparent 
media containing absorbing inhomogeneities, we must 
keep in mind two possible paths of developmentofbreak­
down. In the presence of inhomogeneities of sufficiently 
large size the most probable breakdown mechanism is 
local melting of the material near inhomogeneities and 
formation of cracks in the surrounding material as the 
result of mechanical stresses which arise. An analySiS 
of the heating of inhomogeneities and the material sur­
rounding them under the influence of light has been car­
ried out in Refs. 15, 16, and 20, and one of these 
studies l:20l took into account the temperature dependence 
of the absorption coefficient of the inhomogeneity. If 
the size of the inhomogeneities is sufficiently small, 
the experimentally observed breakdown pattern cannot 
be interpreted as the direct consequence of mechanical 
stresses due to heating of the inhomogeneities. In this 
case the damage would have to have primarily a local 
nature and would resemble local melting and formation 
of microcavities in solid materials under the action of 
fast particles. 1:21l It is poSSible, however, to have an­
other breakdown mechanism due to the fact that heating 
of the medium in the vicinity of an absorbing inhomo­
geneity should produce some additional absorption of 
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light, which is equivalent to an increase in the size of 
the inhomogeneity. Under certain conditions this pro­
cess represents the propagation of a wave of heating 
from the surface of the inhomogeneity to the volume of 
the medium. The experimentally observed macroscopic 
breakdown can be related to a wave of this type ariSing 
as the result of instability in the thermal behavior of 
the absorbing inclusion. 

In order to obtain a quantitative criterion for break­
down, we shall discuss a small absorbing inclusion lo­
cated in a transparent medium placed in a radiation 
field. We shall assume that the laser pulse is rather 
long. In a stationary regime the quantity of energy re­
ceived by the inhomogeneity in absorption of light is 
equal to the quantity given up by it to the surrounding 
medium. We deSignate by q the radiation energy flux 
density near the inhomogeneity. The thermal flux den­
sity given up by an inhomogeneity of size R to the sur­
rounding medium can then be set equal to a(R) q, where 
the coefficient a(R) is easily obtained from solution of 
the problem of diffraction of light by the inhomogeneity. 
We will not dwell on discussion of the form of a, since 
the analySiS given below does not depend on the partic­
ular form of a (R). Detailed calculations of the function 
a(R) for metallic and dielectric inclusions of various 
size have been carried out by several groups. 1:22-24J 

As we have already noted, heating of the medium near 
an inhomogeneity will lead to appearance of an additional 
absorption of light. It is easy to show that under the 
conditions realized experimentally in the medium near 
an inhomogeneity, thermodynamic equilibrium can be 
established, so that the local absorption coefficient is 
determined by the local temperature. Usually the tem­
perature dependence of the absorption coefficient of the 
media considered here can be described by the formula 

x (T) =x. exp [ -EfT], 

where 2E=E, is the width of the forbidden zone of the 
material. 

The stationary temperature distribution To(r) near an 
inhomogeneity of size R is determined from solution of 
the heat conduction equationl> 

xv'To+x(To)q=O (1 ) 
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FIG. 3. Dependence of optical breakdown probability for the 
surface of F-2 glass on the intenSity of radiation. U9l 
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with the boundary condition 

-xVTo=aq for r=R. (2) 

It has been shown previously[251 that the stationary tem­
perature distribution To(r) turns out to be unstable to 
small perturbations if the flux density q exceeds some 
critical value. Without dwelling on the detailsofinvesti­
gation of the stability of the solution, we shall point out 
that the condition for loss of stability with any sufficient­
ly rapid dependence x(T) has the following form: 

Rx (To(R)) fa (R);;>1. (3) 

The breakdown criterion (3) relates the inhomogeneity 
size R with the mean free path of the radiation in the 
heated medium at its surface x -1. It can be seen from 
Eq. (3) that the stationary temperature distribution is 
unstable when the mean free path of the radiation is 
still Significantly greater than the size of the inhomo­
geneity, i. e., the additional absorption due to heating 
of the medium remains small. 

Substitution into the condition (3) of the solution of the 
boundary value problem (1) and (2) leads to the following 
expression for the threshold of thermal breakdown of a 
medium initiated by an absorbing inhomogeneity of size 
R: 

• Ex [ x.R] -1 _ Ex 
q (R)= a(R)R In a.(R) - a.(R)R· (4) 

This formula is in reasonable agreement with the ex­
perimental data on optical breakdown of crystals and 
glasses. 

As can be seen from Eq. (4), the threshold of break­
down initiated by an individual inclusion depends sub­
stantially on its size (absorption cross section). H 
several inclusions fall in the focal volume, a determin­
ing role in the origin of breakdown will be played by the 
most strongly absorbing of them. A nontrivial case 
arises in the presence in the focal volume of a large 
number of inclusions of approximately the same size. 
It is easy to understand that the breakdown threshold 
in this case should be lower than for an isolated inclu­
sion. The reduction of the threshold can be calculated 
by using the analogy noted in Ref. 25 between the stabil­
ity problem and the quantum-mechanical problem of a 
bound state in a given potential field. For Simplicity 
we shall give calculations for the case of identical in­
clusions; generalization to an arbitrary distribution in 
the absorption cross sections presents no fundamental 
difficulties. 

Let the intenSity of laser radiation be constant over 
the focal volume and contain in a volume Va number of 
absorbing particles N= nV. The temperature field is 
described as before by Eq. (1) with the boundary con­
ditions (2), which now are given at the surface of all in­
clusions contained in the focal volume. To investigate 
the stability of this solution of the boundary value prob­
lem formulated, we shall discuss the nonstationary heat­
conduction problem. We set 

9 (r, t) =T(r, t) -To (r) (9<t:To) 
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and, linearizing the heat conduction equation, we arrive 
at an equation for 6(r, t): 

a8 
pc-= xV'8 + 8F(r), at (5) 

where the function F(r) = qdx(To(r))/dT has a very com­
plicated form. However, for solution of the stability 
problem there is no need to know the function F(r) in 
detail. 

After separation of variables in Eq. (5) the stability 
problem reduces to the quantum-mechanical problem 
of the existence of a negative eigenvalue in the spectrum 
of the Schrodinger equation 

_. -
v''¥+[E-U(r) ]'1'=0 (6) 

with potential 

U(r) =-F(r)/x. (7) 

The qualitative features of the potential U(r) are easy 
to establish without calculating To(r). It is evident that 
the stationary temperature has maxima near the surface 
of all absorbing inhomogeneities. Since the function 
x' (To) is extraordinarily sharp, the potential turns out 
to be a smooth function far from the inclusions and has 
sharp minima near their surface. This real potential 
can be replaced by a model potential consisting of N 
narrow and deep potential wells located in spherical 
layers R < r< R + 0 whose centers are located at random 
points rio In view of the fact that the total volume of 
inclusions is much less than the size of the focal volume 
V, the potential (7) is equal to zero over practically the 
entire focal region; the solution of the Schrodinger equa­
tion in this case is logically sought in the form (see 
Ref. 26) 

-1: exp{-klr-r,l} 
'¥(r)- I I . 

r-ri (8) 

The parameter k, which is related to the eigenvalue of 
Eq. (6) by the expression E = - ~, must be found from 
the condition of matching the external solution (8) with 
the solution valid inside the spherical layers surround­
ing the particles. The latter can be easily obtained as 
follows. Write Eq. (6) in spherical coordinates with 
origin at the point r 1; make the substitution qJ = rv and 
integrate the equation obtained for qJ term by term over 
r inSide the spherical layer with the boundary condition 
v'l r.B = O. In carrying out the integration it is important 
that the wave function of the ground state with energy 
close to zero essentially does not change inside the po­
tentiallayer. As a result of the integration we obtain 
an expression for the logarithmic derivative of the func­
tion qJ at the outer boundary of the layer: 

z "" ....:Cjl_' (,"=R,",+....,.Il;.-) 

Cjl(R+Il) 
R-t + J U •. (r) dr, 

R 

where U1(r) is the potential well near the point r1' 
Matching with the external solution is carried out in the 
follOwing way. We place the origin of coordinates at 
one of the points rh for example, at r1' In the vicinity 
of this point 
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- 1 k + L. exp{-klr,'-r.l} '1'----
. Ir-r.1 Ir,-r.l· , 

from which we obtain the relation 

L. exp{-klr,-r.l} 
z--k+ . 

Ir,-r.1 
i 

Since we are interested in small values of k(k3 « n), we 
can replace the summation by integration over the focal 
volume. Here the averaging operation is automatically 
carried out. After simple calculations we obtain an ex­
pression for k: 

~ 

k=R-'- J U.(r)dr+2nnR/. 
R 

where Rt is the radius of the focal volume, and also the 
instability condition: 

Rx[T,(R)] + 2 nR 'R:;,,1 
a(R) n f ~. 

For n =0 it goes over to the condition written out pre­
viously for breakdown at one particle, Eq. (3). In the 
case n V> Rtl R the threshold is substantially reduced as 
a result of the fact that around each particle the average 
temperature turns out to be higher than the temperature 
beyond the limits of the focal volume, as a consequence 
of which the development of instability is facilitated. 

It follows from what has been said that the experi­
mentally measurable threshold for breakdown of a ma­
terial containing absorbing particles should depend on 
the size of the particles which fall in the region with the 
greatest intensity of light. If the medium contains in­
homogeneities of diff'i!rent sizes (different absorption 
cross sections), the breakdown threshold is no longer 
a completely defined quantity and we can speak only of 
the probability of breakdown under given conditions. 
Thus, breakdown of a medium containing absorbing in­
homogeneities should be described by .statistical meth­
ods. 

Let the distribution of the intensity of radiation have 
the form q(r) = qoqJ(r). To each intensity value there 
corresponds a critical size of inhomogeneity R*(r) which 
is related to q(r) by a formula such as Eq. (4). Break­
down inside the volume Vwill occur if the volume con­
tains at least one absorbing particle whose size exceeds 
the critical value R*(r) at the corresponding point. As­
suming that the distribution of particles in size does 
not depend on the coordinates, it is easy to write out 
an expression for the breakdown probability in the vol­
ume V: 

l-exp{ -n J d'r j /(p)dp} 
(V) n·(rI (9) 

W[q (r)] = -----:1-_-e-n-::v---

Here n is the average density of absorbing inhomo­
geneities, !(R) is the distribution of particles in size, 
normalized to unity, and K'(r) is a function related to 
"(r) by Eq. (4). Usually in the experimental study of 
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breakdown of dielectrics the spatial profile of the in­
tensity qJ(r) is kept unchanged and the maximum inten­
sity qo is vaired. The breakdown probability in this 
case is a function of qo and with the aid of Eq. (9) we 
can determine the average value, dispersion. and other 
statistical characteristics of the random value of break­
down threshold. 

Let us consider the simplest case of a uniform dis­
tribution of light intensity inside the focal volume V. 
In this case 

~ 

1-exp[ -N S f(p)dp] 
W(q)- .(0) 

1-e N 
(10) 

where R(q) is related to q by Eq. (4) and N= nV is the 
average number of particles in the focal volume. From 
Eq. (10) it is easy to see that for a small concentration 
of absorbing particles (N« 1) all characterisitcs of the 
breakdown turn out to be independent of the conditions 
of focusing of the radiation, in particular, independent 
of the size of the focal volume. For N« 1 it is in fact 
easy to obtain an expression for the moments of the 
threshold intenSity 

. 
<qm>= J qm(R)f(R)dR. 

, 

which does not contain N. The situation is different in 
the case in which the average number of absorbing in­
homogeneities in the focal volume V is large (N)> 1). 
In this case the average value of the threshold intensity 
turns out. to be strongly dependent on the volume V and 
the asymptotic behavior of the inhomogeneity distribu­
tion function !(R) at large R. In fact, the probability 
denSity is 

N X(o> dR( ) 
w(q)= eN _1!(R(q»exp[N J !(p)dP]I+'1 

, 

and the average value of the threshold intenSity is 

N • R 

<q>= e"'-J Jq(R)f(R)exp[NJf(x)dx]dR. (11) 
, , 

Let us calculate the asymptote of this quantity for large 
N. For this purpose it is necessary to specify the be­
havior of !(R) at large R, since for large N, as can 
easily be seen, the main contribution to the integral (11) 
is from large R. Physically this statement is obvious; 
it means that if several particles are present in the 
focal volume the breakdown threshold is determined by 
the largest of them, since the latter have the smallest 
threshold for thermal instability. 

We shall assume that as R-oo the distribution func­
tion !(R) falls off according to a power law: !(R) = CIt". 
This assumption, as we shall see below, is in agreement 
with the experimental data for the dependence of the 
breakdown threshold on the size of the focal spot. Cal­
culating the integral in Eq. (11), we obtain 

<q> = ~B(k) [CNj-I/(k-il. 
a 
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where 

_l/~( kH )'/'(HI)/(>-') 
B(k)- r k-1 ""T . 

In derivation of Eq. (12) we assumed for simplicity that 
the absorption cross section of a particle is a = 41TR 2a, 
where a is a constant, and we neglected the effect of 
the logarithmic factor in Eq. (4). Note that for an ex­
ponential falloff of f(R) as R- 00 the average value of 
the intensity falls off logarithmically with increase of 
the focal volume. If the distribution function goes iden­
tically to zero for R> R o, then the average value (q) for 
N- 00 approaches a limit qm related to Ro by Eq. (4). 

The expressions for the breakdown probability in the 
form in which they are written above are valid only in 
the case in which the critical size of the particle R(q) 
is related to the intensity of light by Eq. (4). Here all 
particles whose size R 2!. R(q) will be critical, i. e., will 
produce breakdown inside the volume V, since the func­
tion R(q) is monotonic. It is evident, however, that the 
actual calculation scheme for the breakdown probability 
remains unchanged for any specific form of dependence 
of the breakdown threshold of an individual particle on 
its size and on the duration of radiation action q*(R, to). 
In this case, like the above, particles for which the in­
cident light intensity q exceeds the critical value q*(R,to) 
will be critical, with the difference that the dependence 
of q* on R can be nonmonotonic and the number of criti­
cal particles is now defined as 

""as R2i+l(q,tJ 

Ne,=N L S t(p)dp, 

where RJ(q, to) is the root of the equation q*(R,to) =q. 
The breakdown probability in this case is determined 
by the expression 

W( t)= 1-exp[-Ncr(q,to)] 
q, 0 l-e-N 

and goes over to Eq. (10) for im ... =O; Ro(q,to)=R(q), 
R 1(q,tO)= 00. 

We shall discuss in somewhat more detail the time 
characteristics of breakdown. Proceeding from the 
expression for the induction time obtained by Makshant­
sev, Kondratenko, and Gandel'man,(27J it is easy to 
write out the follOWing formula which determines the 
nonstationary breakdown threshold of an individual ab­
sorbing particle: 

q'(R, to) =q'(R)+Q(R, to), (13) 

where 

n (E'x'xo')," 
~= 

271'6 a'a 

(14) 

"0 is the absorption coefficient of the particle, and the 
remaining designations are as before. For simplicity 
we assume that a = const. From Eqs. (13) and (14) it 
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is evident that for fixed length of radiation pulse to 

there exists a size of particle R which lies between 
the roots Rl and Rz of the equation q* (R, to) = q, at which 
the minimum of the function q*(R, to) is achieved. Thus, 
in pulsed irradiation for each pulse length there are ab­
sorbing inhomogeneities of a most "dangerous" Size, 
near which the breakdown threshold of the material is 
minimal. The location of the minimum of q* (R, to) is 
determined by the condition 

ilq'(R, to)/ilR=O 

and depends on the pulse length as a parameter. Keep­
ing in mind Eq. (14), it is easy to obtain an explicit 
expression for the dangerous size: 

and the corresponding value of breakdown threshold of 
the material near the particle of dangerous size: 

• _ 11 [( 8 )'( Ex )'( ~ )']'1 .. q (R,to)-- - - - . 
8 3 a to 

(15) 

The probability of breakdown of the focal volume V in 
the case considered is 

l-exp[ -N St(x)dx) 

Olviously for q." q*(R,to) the function W(q,to) =0, so 
that Eq. (15) can be considered as the definition of the 
nonstationary breakdown threshold of the dielectric. 

Note that in the limit of very long pulses, when the 
focal volume can be assumed uniformly heated, the 
analYSis of breakdown in most cases can be carried out 
in the same way as in Ref. 28. 

4. DISCUSSION 

We shall give a brief summary of the material pre­
sented above and illustrate by examples the possibility 
and legitimacy of use of the proposed model for analysis 
of optical breakdown processes in transparent dielec­
trics. 

As we have already noted, the breakdown of certain 
materials actually has the statistical nature predicted 
by the model. Thus, the experimental data for F-2 
glass, which are given in Fig. 3, are quite satisfac­
torily described by Eq. (19) for a power asymptote of 
the function f(R) - R-~ with an exponent k = 5 and a value 
N=25. 

In terms of the model proposed the dependence of 
the breakdown threshold of a dielectric surface on the 
diameter of the irradiated spot, which has remained 
a mystery for a long time, finds a natural explanation. 
To interpret this let us consider a near-surface layer 
of a dielectric of thickness h containing absorbing in­
homogeneities with an average concentration n and a 
size distribution function cK". It is obvious that the 
irradiated volume of the layer in this case is propor­
tional to the square of the radius of the irradiated spot 
R I • Here the average value of the breakdown intensity 

I. V. Aleshin et al. 635 



(q)-the quantity measured experimentally-depends, 
according to Eq. (12), in power fashion on the radius 
of the focal spot: 

(16) 

The dependence (16) gives· satisfactory agreement with 
the experimental data for K-8 glass, which are given 
in Fig. 2, fork=2.5 

The model of optical breakdown of a medium with 
absorbing inhomogenities describes with qualitative 
correctness the behavior of the time dependences of 
the breakdown threshold. The characteristic times 
at which the form of the dependence changes are the 
time of heating of the inhomogeneity T1 = (R)2/a «R) is 
the average size of the inhomogeneity) and the time of 
heating of the irradiated volume T2=l2/a (l is the aver­
age distance between absorbing inhomogeneities). The 
experimental results are in agreement with the con­
cepts of existence in the medium of inhomogeneities 
of sizes 10-4_Hj5 cm and an average distance between 
them of the order of 10-3 cm. A detailed comparison 
of the theoretical and experimental time dependences 
requires calculation of the thermal-breakdown induc­
tion time over a wide range of light intensities and is 
being carried out at the present time. 

In summing up, we can say that the model proposed 
for optical breakdown of transparent dielectrics per­
mits description of the main experimental relations. 
It is important to note that all of the facts enumerated 
apparently can be individually explained more or less 
satisfactorily without resorting to the assumption of 
absorbing inclusions. However, taking into account 
absorption in inhomogeneities gives the possibility of 
explaining the entire set of experimental facts from a 
unified point of view, and therefore the mode I proposed 
for optical breakdown of transparent dielectrics is ex­
tremely plausible. 

1)For inclusion sizes -10-5_10-4 cm an analysis based on solu­
tion of the heat conduction problem will lead to a qualitative­
ly correct picture of the development of instability. 
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