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The quasienergy operator has been constructed and its relation to the S -matrix has been established. 
Methods of approximate calculation of the quasienergy spectra are discussed. The quasienergy spectra of a 
dipolar molecule and of an excited hydrogen atom, i.e., systems with both permanent and induced dipole 
moments, have been found. A detailed discussion is given of the conditions for the appearance of the linear 
and quadratic Stark effects for such systems as functions of frequency and external field, and of the 
structure of the wave functions in the intermediate case. 
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1. INTRODUCTION 

The advent of quantum-mechanical generators produc
ing coherent electromagnetic radiation has led to very 
considerable interest in the behavior of quantum-me
chanical systems in high-intensity alternating electro
magnetic fields. It has been necessary to develop a 
special formalism because the formalism of stationary 
quantum-mechanical states, i. e., states with definite 
energy, which, of course, occupies the central position 
in practically all the applications of quantum mechanics, 
is fundamentally unsuitable for an alternating field such 
as the field in an electromagnetic wave, because energy 
is not conserved in such a field. The most convenient 
and suitable for this particular physical situation is the 
formalism of quasienergy states, put forward virtually 
simultaneously by a number of authors (see the review 
in[U) , which makes use of the periodicity of the exter
nal field in time. The formalism of quasienergy states 
is a direct generalization of the formalism of stationary 
states but it enables us, among other things, to estab
lish immediately the absorption, emission, and scat
tering spectra of a quantum-mechanical system in a 
strong alternating field. When the alternating field is 
adiabatically turned off, the quasienergy states become 
the usual stationary states. 

The quasienergy states of free atoms, which are 
among the simplest quantum-mechanical objects, have 
been discussed and investigated by a substantial num
ber of workers, both theoretically and experimentally. (2l 
However, the simplest atom, i. e., the hydrogen atom, 
has turned out to be the most difficult from the theoreti
cal point of view. The reason for this is that the spec
trum of the free hydrogen atom is degenerate in the or
bital quantum number because, as is well known, even 
in a constant field, the hydrogen atom exhibits the 
linear Stark effect. This is its exclusive feature be
cause all other atoms exhibit the quadratic effect under 
these conditions. At present, there are, therefore, 
two independent groups of papers, in one of which only 
the quadratic terms in the alternating electric field are 
taken into account, (3-5l while, in the other, only the 
linear terms are included. (6l As a result, the range of 
validity of either approximation is not well defined, and 
the existence of an intermediate region in which neither 
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is satisfactory remains an open question. 

The hydrogen-atom problem is a special case of a 
more general problem of the behavior of systems with 
both permanent and induced dipole moments in an alter
nating field. For example, published descriptions of 
dipolar molecules in alternating fields include either 
only linearC7l or only quadratic(S-lOl quantities in the 
field. 

The present paper is devoted to a consideration of 
these problems. In the next section, we shall construct 
the operator for which the eigenfunctions are the quasi
energy states of the system. It may be referred to as 
the quasienergy operator. It will be shown that this 
operator differs by only a constant factor from the log
arithm of the single-period S matrix describing the 
temporal evolution of the system in an external field. 
The spectrum of the quasienergyoperator can readily be 
found when the field gives rise to strong mixing of only 
a finite number of stationary states of the system of 
which the quasienergy states are made up. The ap
plication of this formalism to the hydrogen atom is de
scribed in Sec. 4. Section 3 describes the mathemati
cally simpler case of a dipolar molecule for which it is 
possible to formulate physically clearly the conditions 
for the validity of the various approximations. This 
leads to a better understanding of the situation in the 
general case. 

2. QUASIENERGY OPERATOR 

Consider the SchrBdinger equation for a quantum
mechanical system in an external field that is a peri
odic function of time: 

in ii~,/iit~f{(t)1jJ(t), H(t+T)~H(t). (1) 

The solution of this equation, which satisfies the con
dition 

1jJ.(t+T) ~e-;'TI·1jJ.(t), 

is called the quasienergy state corresponding to the 
quasienergy E. 

(2) 

The quasienergy state is conveniently written in the 
form 

1jJ. (t) ~e-;,j/'lD, (t), (3) 
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where <1> f is a periodic function of time. Expanding it 
into a Fourier series, we can obtain the quasienergy 
state in the form of a series in the quasienergy har
monics CP't) 

(4) 

It follows from the definition (2) that the modulus of 
the quasienergy is determined by Ifw. Quasienergy 
states belonging to different values of quasienergy are 
mutually orthogonal. Different harmonics cp<;) on the 
other hand, belonging to the same value of E, are not, 
in general, orthogonal. Since the norm of the quasi
energy states is independent of time, we have the follow
ing condition: 

L ('I'~., ,'1',('+"')=6", k= ... -1, 0,1,... • 
t" 

We can use perturbation theor;C3] to construct the 
quasienergy states and the quasienergy spectra for 
those cases for which the alternating field is small. 
The quasienergy states are also known for a free par
ticle .and a one-dimensional harmonic oscillator in an 
alternating field, CllJ and for a particle in a constant 
magnetic field and in the field of an electromagnetic 
wave, C12] because (1) can be solved exactly for these 
systems. In the case of circularly polarized radiation 
Eq. (1) can al~ be solved for a particle bound by short
range forces because, after transformation to the ro
tating set of coordinates, the alternating field of the 
wave is found to be equivalent to a constant electric 
field crossed with a constant magnetic field. C13] 

In many cases, nevertheless, it is desirable to have 
a sufficiently general algorithm for constructing quasi
energy states and the quasienergy spectrum indepen
dently of perturbation theory and in a form which could 
be relatively simply used on modern computers. With 
this in view, let us introduce the evolution operator S 
defined by the equation 

1/1(t) =S(t, to) 1/1(to). 

and satisfying the equation 

a 
tIi-S(t, to) =H(t)S(t, to), S(to, to) =1, 

at 

(5) 

(6) 

where I is the unit operator. To be speCifiC, let us 
suppose that to =0, and consider the single-period 
evolution operator S(T, 0).1) Since the operator satis
fies the unitarity condition, it can be written in the form 

S(T,O)= exp{ -fHT}, (7) 

where ii is a time-independent self-adjoint operator 
which can be referred to as the quasienergy operator. 
In fact, substituting t =0 in (2), and comparing it with 
(5) and (7), we see that E is the eigenvalue of ii and 
lfie(O) = <1>8(0) is the corresponding eigenfunction. The 
quasienergy operator thus turns out to be (to within the 
factor ilf/T) the logarithm of the single-period S matrix 
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(8) 

For arbitrary t, the equation for <1>e(t) can readily be 
obtained from (1)-(7): 

itza~.lat=[H(t)-Hl~.(t). 

H(t)=exp{ ~ Ht}Hexp{- ~ Ht}, 

H~.(O)=e~,(O). cD,(T)=<I>.(O). 

In special cases, physical considerations can be used 
to isolate a finite number of levels which are highly 
mixed by the field. For example, the two-level ap
proximation of the theory of interaction of resonance 
radiation with matter is well known. In such cases, the 
determination. of the operator S(t, 0) reduces to the 
construction of the fundamental matrix, i. e., the solu
tion of a system of ordinary differential equations (6) 
in the interval tE [0, T]. After diagonalization of this 
matrix at time t = T, the quasienergy spectrum is de
termined by the logarithms of the corresponding eigen
values. 

The formula given by (8) also enables us to apply 
well-known approximate methods to calculate the quasi
energy spectra, since the matrix elements of S(T, 0) 
can be interpreted as the amplitudes for transitions be-
1;"ween given states. In particular, the variational prin
ciple of Schwinger, formulated for nonstationary sys
tems inC14l, and the various forms of the quasiclassical 
approximation, Cll] may turn out to be useful. 

Another method of obtaining the quasienergy spectrum, 
which is also effective for a limited number of states 
mixed by the field, is analogous to the well-known 
methods of finding the characteristic indices of ordi
nary differential equations with periodic coefficients, 
which belong to the Mathieu class of equations. Let 
I A> represent the states of the unperturbed system 
mixed by the field. Expanding the quasienergy har
monics in (4) over this basis 

(n) ~ (n) 

'1'. =.t..J a. I,.>, 
• 

and substituting in (1), we obtain, after some fairly ob
vious transformations, the following set of linear homo
geneous equations 

r, [O.IJ'6',,,,-n'II.'> -(e+mhw)6mnon , la,(~' =0, .. ' (9) 

where 
1 T 

J'6''''= T S dt e,,·t H (t) 

is the k-th Fourier harmonic of the Hamiltonian. 

Summation over n in (9) is performed between - 00 

and + 00, again for a finite number of states I A>. A 
natural approximation, therefore, is to determine the 
spectrum of the truncated matrix of coefficients in (9) 
with a restriction on the maximum value of I n I. The 
convergence of the approximations can be established 
by increasing the rank of this matrix. 

Continuing our analogy with the Mathieu equation, we 
note that, in the case of this equation, the index A as
sumes a unique value. For a chosen value of I n I, how-
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ever, the diagonalization of the matrix will result, in 
this case, in 21 n 1 + 1 eigenvalues. As 1 n 1 increases, 
the difference between these numbers should tend to 
integral multiples of ffw because they are all values of 
the same quasienergy. Success in the choice of the 
given value of 1 n 1 can therefore be used as a check in 
this respect as well. 

To remove the discrete ambiguity in the quasienergy, 
the usual procedure is to choose its value so that the 
adiabatic introduction of the variable-field amplitude 
ensures that the quasienergy becomes equal to the 
eigenvalue of the stationary Hamiltonian corresponding 
to the wave function which then becomes the limit to 
which the quasienergy state tends. This approach is 
adopted in the present paper. 

3. DIPOLAR MOLECULE 

Consider a linearly polarized field which is used as 
a perturbation on the states 1 Jm ) of a molecule, where 
J is the total angular momentum and m is its compo
nent in the direction of the electric field of the wave. 
The other quantum numbers are not explicitly shown 
for the sake of brevity. The quantum number m is con
served even after the field is turned on because, in the 
case of linear polarization, the Hamiltonian for the 
molecule remains axially symmetric. In precisely the 
same way, axial symmetry is conserved in the case of 
circularly polarized waves except that the correspond
ing direction turns out to be parallel to the direction of 
propagation of radiation, which is the spectroscopic 
stability principle of Bohr and Heisenberg. The two 
cases are, therefore, analogous apart from the differ
ence just mentioned. 

The situation is much more complicated in the case 
of elliptically polarized fields in which the magnetic 
quantum number is not conserved and the mixing of 
states with different m by the field must be taken into 
account. This case will not be considered here because 
our present aim is to elucidate the relative role of per
manent and induced dipole moments, and in this prob
lem the polarization of the field is not of fundamental 
importance. The behavior of a molecule with only the 
induced dipole moment in an elliptically polarized field 
is described in[lOl. 

We shall also assume that the energy of the interac
tion between the molecule and the field is much less 
than the energy interval between the rotational levels. 
Under these conditions, the total angular momentum of 
the molecule will continue to be conserved despite the 
violation of the spherical symmetry of the original 
Hamiltonian because the effect of the field is not suf
ficient to mix states with different rotational quantum 
numbers. The mixing of rotational levels by the field 
in the presence of only the induced dipole moment is 
discussed inC101 • A similar problem for a molecule 
with a permanent dipole moment is discussed inC101 • 

The problem of a molecule with a permanent dipole mo
ment in a constant electric field has been discussed by 
a number of workers (the references can be found in 
inC7,lOl). In both cases, as the field is increased, the 
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spectrum is transformed from rotational to oscillator 
type. 

Subject to the above restrictions, the solution of the 
SchrBdinger equation for the molecule can be sought in 
the form 

(10) 

where j are the quantum numbers of virtual states and 
n=1. 

The interaction of the molecule with the field in the 
dipole approximation takes the form 

V(t) =-d,F cos (Jlt, (11) 

where d is the dipole-moment operator and F is the am
plitude of th.lectric field of the wave, which can be a 
slowly varying fuhction of time. In particular, F(f
-00)=00 

In second-order perturbation theory in the interaction 
given by (11), the required coefficient aJ is given by 

ia J (t) = (llnl V (t) 11m) aJ (t) -i L, (lml V (t) Ijm) 
j.p.J 

, 
X J (jmIV(t') 11m) exp {i(JlJj(t-t')} aJ(t')dt', 

(12) 

Usually, the equation given by (12) is replaced by an 
equation in which, on the right-hand side, the zero-or
der iteration has already been performed: a J = 1. In 
the present case, the quantity a J is not assumed con
stant, but we will assume that it varies much more 
slowly than the function under the integral in (12). In 
view of this assumption (its validity will be considered 
later), the coefficient aJ can be taken outside the inte
gral sign and the result is 

F' 
ia J=[ -doFcos(Jlt+T L, l(lmld,ljm)I' 

j+J 

(13) 

where do = (Jm 1 dz IJm) is the mean value of the compo
nent of the constant dipole moment of the molecule in 
the particular state along the direction of the electric 
vector of the wave. 

Consider, to begin with, low frequencies 

(14) 

In practice, this means that the field frequency is 
small in comparison with the rotational constant. If 
this is so, we can neglect w in the denominators in the 
sum in (13), which means that the dynamic polariz
ability of the molecule at low frequencies is replaced 
by the static value a. The result of all this is that 

aI' 
ial= ( -d"F cos (Jlt- -2- cos' (Jlt) ai, 

{ doF aI' ( Sin2(Jlt)} 
al(t)=exp i-;;;-sin(Jlt+i-4- t+~ . 

(15) 
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It is clear from (15) that the quasienergy of the mole
cule in the field is determined by the polarizability, 
i. e., e = - OIF 2/4. The permanent dipole moment affects 
only the quasienergy harmonics: 

a(ft) = ~J2'exp{ i~sine+i!!:!:""sin2e+inB}dB. 
2n 00 800 

(16) 

o 

Expressions of the form given by (16) have been in
vestigated by Nikishov and Ritus in[lSl in connection 
with multiphoton processes in the case of a free rela
tivistic particle in the field of a plane electromagnetic 
wave. Expansions in terms of the Bessel functions can 
also be readily obtained: 

(ft) ~ ( d"F) ( aF' ) al = ~ (-1)"1"+,, -;;;- I. s;- . (17) 

When the quadratic terms are small, i. e. , 

aF'/8oo<i, (18a) 

the main term in (17) is that corresponding to s = 0, and 
the harmonic a<;> is determined by a single Bessel func
tion. These expressions for a<;> were used in[71. 

If, in addition to (18a), we have the condition 

d"Floo<1, (18b) 

the zero-order harmonic a<J> is the largest, and the 
shift in the energy of the molecule is determined only 
by its quasienergy, i. e., it is quadratic in the field. A 
linear shift may, therefore, appear only under a con
dition opposite to that given by (18b), i. e., 

d,Floo> 1. (19) 

In this case, the expression given by (16) can be esti
mated by the saddle point method. The saddle points 
are determined, as usual, from the condition that the 
argument of the exponential in (16) is an extremum: 

aF' 
b=-. 

800 

The largest of the harmonics a<;> is that for which the 
second derivative of the argument of the exponential at 
the pOint 91,2 has the minimum absolute value. USing 
this, we find that the number of the maximum harmonic 
is 

n,=2b-a=aF'1 4oo-d,FI oo. 

For this value of no, the absolute value of the argument 
of the exponential is also small, in contrast to the sec
ond value n, which is not cited here for this reason. 
Substituting no in (16), we see that, because of the ex
istence of the region of maximum harmonics with n '" no, 
measurement of the energy of the molecule by means of 
radiation, absorption, or scattering processes will 
yield the same value, as if the energy of the molecule 
has undergone a linear shift doF in the field. 

It is clear, however, that the linear shift will be re
corded only when the number of large harmonics is 
small, i. e., the distribution of the numbers of these 
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harmonics is sufficiently narrow. The width A n of the 
distribution in the region of no can be found by consider
ing the third derivative of the argument of the expo
nential in (16). The inequality t:..n/no« 1 is satisfied 
provided 

d,F>aF'/4, (20) 

and the physical significance of this is quite clear. 

Thus, the linear level shift in the field occurs when 
the inequalities given by (19) and (20) are simultaneously 
satisfied. When (19) is not satisfied, the shift is qua
dratic in the field. When (19) is satisfied but (20) is not, 
the situation is more complicated because both linear 
and quadratic terms are important. When this is so, 
the wave function contains a large number of quasien
ergy harmonics (17) with comparable weights. 

Let us now consider the validity of the assumptions 
made above. 

Firstly, the restriction to the region of low frequen
cies, defined by (14), is not essential because, at high 
frequenCies, comparable with the rotational constant, 
the condition given by (19) can be satisfied only in fields 
in which the total angular momentum of the molecule is 
no longer conserved. Hence, for such frequencies, 
there is either a quadratic level shift or, in strong 
fields, a radical rearrangement of the molecular spec
trum. 

Secondly, the condition that the frequency of the co
efficient a J be small is necessary to ensure that the 
transition from (12) to (13) takes place in accordance 
with the expressions obtained for a J provided 

(21) 

which means that the energy of interaction between the 
molecule and the field is small in comparison with the 
resonance detuning between the field frequency and the 
characteristic frequency of the molecule. When (21) is 
not satisfied, there is an essential rearrangement of 
the molecular spectrum in the resonance-frequency 
field. 

4. HYDROGEN ATOM 2 ) 

When we consider the states of the hydrogen atom 
corresponding to the shell with principal quantum num
ber n, we shall assume that the interaction between the 
atom and the incident radiation is much greater than the 
spin-orbital splitting, so that the latter can be entirely 
neglected. On the other hand, the interaction with the 
radiation is much less than the separation from the 
neighboring higher shell with principal quantum num
ber n + 1, so that the admixture of all the other states 
to the particular state in shell n can be taken into ac
count through perturbation theory. 

Suppose that the electric vector of a linearly polar
ized wave lies along the z axis. In this case, the com
ponent of the orbital angular momentum along the z 
axis is conserved, and the wave function for the hydro
gen atom in the field can be sought in the form (we shall 
be using the atomic system of units) 
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\j)nm(t) = ~A,e-iEntlnlm> + ~ BNLe-'E.,tINLm>. 
I NL.pnl 

The coefficients A and B satisfy the following set of 
equations: 

iA,= r. <nlmIV(t) Inl'm> At' (t) 

" 
+ ~ (nlmIV(t) INLm> eiwn,t BNL(t}, 

iBNL= l:<.VLmIV(t} Inlm> exp VO"ynt} A,(t) 
, 

+ L eVLm I V(t) IN'L'm> ~xp {iI,'."".,!} BX'L' (t) . 
. y'L' 

(22) 

(23) 

To take into account the admixture of coefficients B 
in coefficients A in accordance with perturbation theory, 
we shall omit the second term on the right-hand side 
of the second equation in (23) and will integrate the re
sulting equation with respect to time. The result of 
this is then substituted in the first equation in (23): 

d.= ~ <nlmIHt) Inl'III>A,'({) 
";;':-.J ' 

-i ~ <nlm I v(t} IXLm> J (NLm 11'(t') Inl'm> OX]) {io,,,,, (t-t') }A,.(t'}dt'. 
I',XL 

(24) 

Since the restriction on the field V« wn+1, n has al
ready been imposed in the derivation of (24), analysis 
of these equations must be carried out only in relation 
to the values of the two parameters w/wn+1,n and V/wo 
When W - wn+l. n' the first term on the right-hand side 
of (24) oscillates rapidly in comparison with the fun
damental harmonic of the coefficients A, whose time 
dependence is determined by the quasienergy E since it 
is clear that the quasienergy must be proportional to a 
power of the small parameter V (the second power in 
the case of the lowest-order perturbation theory). The 
slowly-varying contributions of the first positive and 
negative harmonics of A can readily be shown to cancel 
one another out. When the quasienergy operator is 
constructed, therefore, the terms that are linear in V 
can be ignored and so can the rapidly oscillating com
ponents in the term that is quadratic in V. The result
ing equations describe the quadratic Stark effect in a 
high-frequency field and were discussed previously 
in[3-S1. Most of the interest, therefore, attaches to 
the case of low 'frequencies w« wn+l. n [compare this 
with (14)], and we shall confine our attention to this 
case. 

In this limit, the time factor exp{iwNn t'} under the 
integral sign in (24) varies much more rapidly than V 
and A, whose variation frequency is of the order of w, 
E. These quantities can therefore be taken outside the 
integral sign. Numerical analysis based on the results 
reported in[Sl for the n = 2 shell with w::::: o. 1 e V shows 
that precise allowance for the time dependence of the 
interaction V modifies the result by no more than a few 
percent. A comparable contribution is clearly provided 
by the time dependence of the unknown coefficient A if 
the weights of the harmonics with numbers k::::: wn+l. nl 
w» 1 in this coefficient are negligible and this occurs 
for V« wn+l. n. We note that, as in the case of the 
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" £, 

1 0.034 0.050 0.042 6 1.50 1.52 
~ 0.161 0.175 0.i68 7 2.08 2.03 
3 0.392 0.364 0.378 8 2.69 2.68 
4 0.680 0.663 0.672 9 3.37 3.43 
J UJ31 1.069 1.050 10 1.20 1,.20 

Note. All the quantities are gIven in units of 10 -3 a.u. 

1 
2 
2 
3 
4 

.51 
,06 
.6~ 
.1,0 
.~O 

dipolar molecule, this approximation corresponds to 
the replacement (at low frequencies) of the dynamiC 
polarizability by its static value. 

The final expressions have the form 

iA,=-F cos rot E <nlmld,lnl'm> A" 

" 

+F' cos' ("t r.'~ <nlmld,INLm> <NLmld,lnl'm> A,'. (25) 
i',.VL+nl (u".",. 

Solutions of (25) with only one term linear in F were 
analyzed in[Sl. A solution without the linear term and 
with the substitution 

was considered, as already noted, in[3-S1. In general, 
Eq. (25) cannot be integrated analytically. In the sim
ple case of n = 2, to which we shall confine our attention 
here, the matrix form of (25) is 

(26) 

Numerical values of the matrix elements were de
termined by the method described in[51, and it was 
found that a1 = 120, a z = 216, {3 = 3. 

Equation (26) can be looked upon as a Schrodinger 
equation in a finite-dimensional space, which arises as 
a result of the foregOing simplifiying assumptions. To 
find the corresponding quasienergy spectrum, we use 
the device described in Sec. 2. We first solve Eq. (6), 
in which the Hamiltonian is determined by the matrix 
in (26) by means of iteration. To determine the quasi
energies to within F 4 , we must perform three itera
tions, and the result of this is 

(27) 

Quantities - F Z determine the energy shifts of the 
atomic levels due to the ordinary polarizability. The 
expressions given by (27) can also be used to derive 
the following condition under which the permanent di
pole moment, which is determined by {3, can be neg
lected in an alternating field: 

(28) 

The above table lists values of quasienergies cor
responding to the above states of the hydrogen atom, 
found by numerical solution of (6) with the Hamiltonian 
given by (26) and W = 0.1 eV::::: 0.0037 a. u. (the fre
quency range of the CO2 laser). In the limit of a very 
weak field, the value of f 1 is determined by the polar
izability of the 2s state, which is equal to at> and E Z is 
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f.) 
s 

0.4 

0.2 

-0.2 

Weights of quasienergy harmonics for the 28 state as func
tions of the wave field (in multiples of 1O-3a • u.). Numbers 
of harmonics are shown against the curves. 

determined by the polarizability of the 2p state, which 
is equal to O!z. Condition (28) is violated in this fre
quencywhenF"'10-3 a.u. =5x106 V/cm. 

It is clear from the table that the quasienergies £1 
and £2 approach one another as F increases. This be
havior is explained by the presence of the small nu
meric:al parameter in (26). To determine this param
eter, it is useful to substitute 

A.+Ap=2Bt, 

( ",-,-"., 
. . ~F COg ~I)t - -;,-- F~ cos2 wt 
,B= 

u:: -:- UI F~ ("O,:'"! wt 

(29) 

The values of the parameters O!l.Z indicate that the 
nondiagonal matrix elements in (29) are smaller than 
the diagonal elements in the ratio of (0!2 - 0!1)/(0!2 + 0!1) 
'" t. Rejecting the nondiagonal terms, we obtain the 
following approximate solution: 

a fiF' 
A"p= exp{ i - F't+i --sin 2wt} 

4 8u' 

x[C,eXP{-i! FSinwt}±C,exP{i ~ FSinwt}] , (30) 

where a = (0!1 + 0!2)/2. The upper sign corresponds to 
s, and the lower to p. C1• 2 are arbitrary constants, 
for example, if the atom were in the 2s state prior to 
the introduction of the field, then C1 =C2 =!. 

The functions given by (30) correspond to the degen
erate quasienergy spectrum e = aF 2/4 in the third 
column pf the table. 

Since the functions given by (30) turn out to be iden
tical with (16), we can use the analysis of these quanti
ties given in the preceding section. In particular, the 
energy levels of the hydrogen atom undergo a linear 
shift and a splitting when 

~F>w, ~F>fiF'/4. 

For the frequency which we are conSidering, these 
two inequalities are satisfied in the region of F'" 5 
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X 107 V/cm. 

The solid curves in the figure show the behavior of 
the first even harmonics of As for initial conditions 
C1•2 =!. The broken curve represents the same har
monics when the quadratic terms - aF 2/4 are ne
glected. When F«F1 =w/{3, all the quasienergy har
monics are negligible in comparison with the zeroth 
harmonic. The second characteristic value of the field 
beyond which the quadratic terms contribute to the 
weights of the harmonics [see (18a)] is F z = (8w/Ci?12 
'" 10F1 at the above frequency. In this case, therefore, 
the region in which the quasienergy harmonics with ap
preciable weight are described by one term from (17) 
is practically lwsent. Nevertheless, it is clear from 
the figure that the linear terms reproduce the behavior 
of the zeroth harmonic quite well, but the importance 
of the quadratic terms increases rapidly as I k I in
creases. The quadratic terms also lead to a difference 
between the weights of harmonics with different signs of 
of their number, whereas, when these terms are ig
nored, the weight of a harmonic is determined only by 
the absolute value of the number. 

We are grateful to V. I. Ritus for a useful suggestion. 

1)In the mathematical literature, this operator is referred to 
as the monodromy operator. 

2)The main results presented in this section were communi
cated to the All-Union Seminar on Multiphoton Spectroscopy 
which was held in Chernogolovka in 1974. 
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