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The '"1 spectrum of a nucleus at the center of mass of a polyatomic molecule as affected by the change in 
the vibrational state of the molecule incident to the emission or absorption of a '"1 quantum by the nucleus 
is discussed. Formulas are derived for vibrational-nuclear transition probabilities in symmetric molecules of 
types XY2 (D~h)' XY3 (D3h ), XY4 (Td). XY3~ (D3h ). and XY6 (Oh)' and for the intensities of the 
components of the corresponding '"1-ray emission and absorption spectra. 

PACS numbers: 23.20.Hr 

1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

As is known, the spectrum of y transitions of a nu
cleus in an atom or molecule has a discrete structure 
associated with electronic transitions (for nuclei in 
atoms) and electronic-vibrational-rotational transitions 
(for nuclei in molecules). U,2] The considerable interest 
that has arisen in the discrete y spectra of nuclei in 
atoms or molecules is mainly due to the fact that this 
spectrum can be altered by laser irradiation, which 
excites the atomic or molecular levels from which 
quantum transitions take place as a result of recoil. 
Thus, in atomic and molecular gases one can compen
sate the shift of y-ray emission and absorption lines by 
producing additional components of the y spectrum close 
to these emission and absorption lines, [2,3] and in the 
case of a low-pressure gas one can produce narrow 
frequency-tunable y resonances within a Doppler 
broadened y line. [4] 

The calculations reported in[Z,3] showed that the com
ponents of the y spectrum associated with electronic 
transitions have very low intensities in both atoms and 
molecules, the corresponding transition probabilities 
being proportional to the square of the ratio me/M, 
where me is the electron mass and M is the mass of the 
atom (or molecule). For this reason the y spectra of 
nuclei in molecules associated with molecular vibra
tional-rotational transitions resulting from recoil are 
of especial interest. 

Of course, even if the y spectrum of a nucleus in a 
molecule is not associated with any change in the elec
tronic state of the molecule, it must, generally speak
ing, be associated with molecular vibrational-rotation
al transitions because of the transfer to the molecule, 
simultaneously with the absorption or emission of a 
y-ray photon, of both momentum and angular momen
tum, which entails a simultaneous change in both the 
vibrational and rotational states of the molecule. For 
example, in the case of a y-active nucleus in a diatomic 
molecule, it is impossible to treat the vibrational-nu
clear and rotational-nuclear transitions separately, 
even in the zeroth approximation. [3] This situation 
obviously obtains whenever the y-active nucleus does 
not lie at the center of mass of the molecule. When the 
y-active nucleus does lie at the center of mass of the 
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molecule, however, one can treat the vibrational· tran
sitions alone, neglecting the rotational transitions. 
This approximation is of especial importance for mole
cules in which the position of the y-active nucleus at the 
molecular center of mass is not accidental, but is due 
to the symmetry of the molecule. 

For experimental purposes it is important to know 
the probabilities for molecular quantum transitions due 
to recoil, for these determine both the change in the 
molecular state and the structure of the y spectrum of 
the nucleus in the molecule. The foundations for a 
general theory of the emission and absorption of y ra
diation by nuclei in symmetric polyatomic molecules 
were developed in[1l, where the case of a molecule of 
type XYz was treated without allowance for the degen
eracy of the vibrations. The purpose of the present 
paper is to discuss the y spectra of nuclei at the centers 
of mass of the symmetric polyatomic molecules that 
are of the greatest experimental interest, and to derive 
specific formulas for the vibrational-nuclear transition 
probabilities with allowance for the symmetry of the . 
normal vibrations as well as for the degeneracy of the 
vibrational levels that is inevitable in the case of poly
atomic molecules. In what follows we shall discuss 
only a few frequently encountered types of molecules, 
namely: triatomic molecules of type XY2 (D .. h ), tetra
tomic molecules of type XY3(Dsh), pentatomic mole
cules of type XY4 (Ta), hexatomic molecules of type 
XY3 Zz(D3h), and heptatomic molecules of type XY6(Oh)' 

2. GENERAL _RELATIONSHIPS. EXCLUSION OF 
ROTATIONS 

In the z'eroth approximation in the molecular Hamil
tonian, the probability for a molecule having a y-active 
nucleus1) at its center of mass to execute a transition 
from state a to state b as a result of recoil incident to 
the emission or absorption of a y quantum is determined 
by the matrix element[5] 

2lf(b, a)=<blexp (-ik,.u) la), (1) 

in which a and b are sets of quantum numbers specifying 
the vibrational and rotational states of the molecule be
fore and after the interaction, kl' is the wave vector of 
y quantum, and u is the displacement vector of the nu-
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cleus from its equilibrium position at the center of 
mass of the molecule, referred to a coordinate system 
fixed in space. The energy Er of the emitted or ab
sorbed photon is determined by the change Eb - Ea in 
the internal energy of the molecule, and in the non
relativistic approximation it is given by 

E,=E,"±R+nk,v± (Eb-E,) , (2) 

in which ~ is the nuclear transition energy, R = (~)2 / 
ZMc2 is the recoil energy of the molecule (M is the 
molecular mass), v is the velocity of the molecule be
fore the interaction, and the plus and minus signs 
correspond to y-ray absorption and emission. 

Let us determine the average energies expended in 
exciting molecular vibrations and rotations when the 
nucleus at the center of mass of the molecule emits or 
absorbs a y ray. 

If we neglect the molecular rotations and assume that 
a coordinate system fixed to the molecule is also fixed 
in space, we can express the displacement u of the y
active nucleus in terms of the normal coordinates of 
the molecule. If we also assume for simpliCity that 
only one nondegenerate normal vibration is excited 
(vibrational quantum liw) and that the molecule was 
initially in the vibrational level va =0, we can use the 
results obtained in[l] for the probabilities P(Vb' va) for 
molecular vibrational transitions due to recoil. The 
average energy expended in exciting one normal vibra
tion of the molecule is given by the formula 

EVil = 1: hOl (v+ ' /,)P (v, 0) -hOl/2 = 1: t'Ol(V+I/,)P(v. 0) -hOl12 
v=O 

1: z" nOl 1 (M-m) = nOl(v+I/,)-e-'--=-R -- , 
vI 22m 

~=O 

(3) 

in which m is the mass of the y-active nucleus, M is the 
mass of the molecule, z = (R/liw) (M -m)/m) cos2{J, 
where {J is the angle between the displacement vector 
of the nucleus and the wave vector of the y quantum, and 
the bar indicates averaging over the molecular orienta
tion or, what is the same thing, over the angle {J. 

In determining the average energy expended in excit
ing molecular rotarions, we obviously cannot neglect 
the molecular vibrations, since it is precisely on ac
count of them that the angular momentum L = kru sin{J 
transferred to the molecule by the y quantum does not 
vanish. We assume as before that the nucleus is cou
pled to only one nondegenerate normal vibration and 
that the vibrational state of the molecule does not 
change (va =Vb =0); then the average energy expended in 
exciting rotations is the average over the vibrations of 
the rotational energy of the molecule: 

.E.o,=(BL'>=Bk,'(u'> sin' f}='i2R(B/nOl) [(M-m)/ml. (4) 

Here B is the rotational constant of the molecule and, 

molecule was initially in the vibrational ground state 
are not important and cannot affect the order of magni
tude of the results obtained in Eqs. (3) and (4). Thus, 
it turns out that 

(5) 

i. e., when a nucleus at the center of mass of a poly
atomic molecule emits or absorbs a y ray, the ratio 
of the average energy expended in exciting molecular 
rotations to that expended in exciting molecular vibra
tions is equal in order of magnitude to the ratio of the 
energy of a rotational quantum to that of a vibrational 
quantum. Since typical values of B/liw for polyatomic 
molecules lie in or near the range 10-4_10-2, it is a 
good approximation to neglect the molecular rotations 
and treat the y. spectrum of a nucleus at the center of 
mass of a polyatomic molecule as the spectrum of 
vibrational-nuclear transitions. 

,As was mentioned above, neglecting the molecular 
rotations means identifying a coordinate system fixed to 
the molecule with a coordinate system fixed in space. 
Hence the displacement u of the y-active nucleus can be 
expressed in terms of the normal coordinates Qsa of the 
molecule: 

u = l~ 1: b .• Q .. , (6) 

where m is the mass of the y-active nucleus, while the 
components of the nuclear displacement vector bsa 

representing the displacement of the nucleus due to the 
(J component of the s -th normal vibration of the mole
cule are elements of the matrix b[6l that effects the 
orthogonal transformation of the normal-coordinate 
matrix Q of the molecule to the matrix q of the mass
weighted Cartesian components of the nuclear displace
ments. In accordance with (6), matrix element (1) can 
be written as a product of matrix elements-one for 
each normal vibration of the molecule that contributes 
to the displacement of the y-active nucleus: 

M(b,a)= :r:r < v.' I ~ exp(-ik,b"Q,,/l'm) I v,'). (7) 

We note that if the normal vibration Sf does not con
tribute to the displacement of the y-active nucleus (e. g., 
if it is the fully symmetric vibration of a molecule 
having the y-active nucleus at the center of symmetry) 
the corresponding matrix element vanishes except for 
transitions in which the vibrational quantum number of 
the corresponding normal vibration of the molecule 
does not change: v~, = v~ 

In the approximation we are considering, neglecting 
the molecular rotations also means neglecting the rota
tions associated with degenerate vibrations, Hence the 
molecular wave function should be written in the form 

as before, we have averaged over the molecular orienta- Iv.>=il>,.(Q.) (8) 

tion. Of course the assumptions made above that only 
one molecular normal vibration is excited and that the for a nondegenerate vibration, in the form 
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(9) 

(with V 8a1 +V8a2 =vo) for a twofold degenerate vibration, 
and in the form 

lu,>=( 2 
(v,-t-J) (1',+2) 

(10) 

(with V8a1 +voa +vsa =vs ) for a threefold degenerate 
2 3 

vibration; here the <Pv (Qsa) are linear harmonic oscil-
lator wave functions. sSince explicit expressions are 
available for the wave functions I v~) and I v~>, the 
calculation of matrix element (7) reduces to the calcula
tion of matrix elements for each component (J of the 
normal vibration. These matrix elements have been 
calculated in, [3] but in view of their importance for sub
sequent applications, we give an expression for them in 
terms of associated Laguerre polynomials: 

( t,,,,"!) ',', { 1, } 'r/2 , 
= -,-I Cxp'~ -------=-- Z.r, (0'-;- eL, ZS(f cos~ '2.0 

'
" .! 'J 

" . -

(11) 

Here zsa = (R/nw.) (M/m) b!", OI sa is the angle between 
the vector ky and the direction of the displacement of 
the nucleus due to the (J component of the s -th normal 
vibration of the molecule, and m =0, 1, 2, .... 

In accordance with (11), the vibrational-nuclear tran
sition probabilities are entirely determined by the pa
rameters zoa. The main difficulty in calculating these 
parameters comes from the necessity of determining 
the bsa-the normalized displacements of the y-active 
nucleus from its equilibrium position. When the mole
cule has only one normal vibration of a given symmetry 
type, the corresponding quantities bsa can be easily 
determined from the molecular symmetry, the Eckart 
conditions, and the normalization condition, but when 
there are several normal vibrations of the same sym
metry type one can evaluate the bsa, generally speaking, 
only if the constants of the secular equation I G F - AE I 
= 0 of the molecule are known. [7] In discussing specific 
molecular types below, we shall determine the bsa only 
for those vibrations that are the only ones of their 
symmetry type. Expressions for the remaining bsa in 
terms of the constants of the secular equation of the 
molecule-in particular, in terms of the Coriolis t; 

constants-can be derived from the elements of the 
matrix 1 that effects the inverse transformation from 
the matrix q to the matrix Q, and by now such expres
sions have been tabulated for all molecular types of 
practical interest. Because the transformation effected 
by the matrix 1 is orthogonal, the components b~a, b~a, 

and b:a of bsa are elements of the transposed matrix 1+ . 

Finally, the energy of the absorbed or emmited y 

quantum is given in the present approximation by Eq. 
(2) with 
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where the Vs are the vibrational quantum numbers of 
only those normal vibrations that contribute to the dis
placement of the y-active nucleus. 

'3. TRIATOMIC MOLECULE OF TYPE XY 2 

The linear symmetric triatomic molecule of type XY2 

belonging to the point group D"h is the only triatomic 
molecule that satisfies condition (5) and is the only one 
of the symmetric polyatomic molecules considered 
here for which all the parameters zsa can be evaluated 
from the molecular symmetry alone. We choose a co
ordinate system with the Z axis coinciding with the Coo 
axis of the molecule and the origin at the equilibrium 
position of nucleus X. Then the displacement of the 
central nucleus along the Z axis will be due to the anti
symmetric vibration V3 of symmetry type ~:, and the 
displacement in the xy plane, to the twofold degenerate 
bending vibration of symmetry type nu; as was noted 
above, the fully symmetriC vibration V1 of symmetry 
type ~; does not contribute to the displacement of nu
cleus X. Thus, the displacements along the coordinate 
axes are 

(13) 

where, in accordance with the symmetry of the mole
cule and the normalization condition, 

(14) 

In these formulas mx and my are the masses of nuclei X 
and Y, According to (14), the vibrational-nuclear tran
sition probabilities will depend only on the two 'param
eters 

(15) 

As an example, let us calculate the transition prob
ability from the state V2 = 0, v~ = 0 to the state v: = 1, 
v~ = O. According to Eqs. (8) and (9), the wave func
tions for these states have the form 

10,> =<1>,(Q,,) <1>0 (Q,,,) , 

1 
11,> = -=[ <1> i (Q,,) tDo (Q,,) +tD, (Q,o) <1>i (Q,,) ], 

1'2 ' 
10,>=<1>,(Q,). 

According to (11), matrix element (7) is given by 

M (10,00)=(1,1 exp{-ikTxbQ,om:;:'''} 

(16) 

Xexp {-ikTybQ"m~"'} 10,> (O,lexp {-ikT,bQ,m-;""} 10,> 
=-i(z2I2r' (cos ax + cos au) exp {-ii, (z, cos' ax+z, cos' au+z, cos' a,)}. 

(17) 
U sing the identity COS2 01x + cos2 OIy + cos2 01. = 1, we write 
the square of the modulus of the matrix element in the 
form 

IM(10,OO) I'=i/,z,(cosax+cosay)'e-"exp {(z,-z,) cos' a,}. , (18) 

It is convenient to do the angular average in spherical 
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TABLE 1. Vibrational-nuclear transition proba
bilities for molecules of type XY 2 (D .. h). 

Vibrational transition 
V2a, r,a _1'~h, l',lb 

0,0-0,0 
0,0-1,0 
0,0-0,1 
O,O~2,O 

0,0-0,2 
1,0-1,0 
1.0-0,1 
0,1-0,1 

1El(1/'!.. 3,':!, Z2- Z3) 
1Ft (ll:!. 5.'2. z:! - Z3) z2/3 
d'l (3 '2, ;i,':!, Z2 - Z3) z3/3 
d Il I /:!, ; ;1. Zl - Z3) Z22 /9 
d'l (1i/2. '/2. Z2 - Z3)Z32 /10 
I I' (00,00) - 26 (10,00) + ';' 1'(20,00)] ," 
IFI (3/2 , i ,'2. :.':2 - Z3) z2z3/15 
Ii' (00,(10) -'. 21' (02 ,00) ,- 21' (01 ,00)] e" 

coordinates, writing 

cos a;c=sin '\~ cos cp, cos Cty=sin {} sin <p, cos az=cos ft, 

After integrating we obtain the following result: 

1 S z, P(10,00) = 4:rt 1M (fO,OO) I' sin t} dt} d<p =Te-" ,F, ('I" 'I" z,-z,) , 

(19) 

where lFl{a, b, c) is the confluent hypergeometric func
tion. 

Table 1 gives the calculated vibrational-nuclear tran
sition probabilities for molecules of type XYa(D .. h ) be
tween states in which not more than one vibrational 
quantum is excited. Transition probabilities of this 
type that are not listed in the table can be obtained from 
the relations between the probabilities for direct and 
inverse transitions: 

(20) 

4. TETRATOMIC MOLECULES OF TYPE XY 3 

The normal vibrations of a symmetric tetratomic 
molecule of type XY3 (point group D3h ) are distributed in 
symmetry types as follows: 

A,'+A," +ZE', (21) 

We choose a coordinate system with the origin at the 
equilibrium position of nucleus X, the z axis along the 
C3 axis of the molecule, and the x axis passing through 
the equilibrium position of one of the nuclei Y. In ac
cordance with (21)" only the bending vibration I)a of 
symmetry type A~' contributes to the displacement of 
nucleus' X along the z axis, while the two twofold de
generate vibrations 1)3 and 1)4 of symmetry type E' de
termine the displacement in the xy plane. The com
ponents of the displacement u of nucleus X from its 
equilibrium position are 

Here only one element can be determined from the sym
metry of the molecule and the normalizing condition: 

b,'= (3my/M)". (23) 

The vibrational-nuclear transition probabilities between 
states v:, v~, v~ and vg, v:, v: will depend on the 
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five parameters 

(24) 

The calculated vibrational-nuclear transition prob
abilities between states in which not more than one 
vibrational quantum is excited are listed in Table 2. 
The calculation procedure is similar to that outlined in 
Eqs. (17)-(20). Transition probabilities that can be 
obtained from the listed ones by obvious permutation 
of the vibrational quantum numbers referring to a single 
normal vibration or, in accordance with the equivalence 
of the vibrations 1)3 and 1)4, by exchanging indices relat
ing to these two vibrations, are not included in the 
table. It is obvious, for example, that 

P (001,001) =]5 (010,010) (v,= .1-t·,=O,t:,=O-v,= 1,z""~z,,,z,,-z,,) 
=]5(000,000) -2]5(001.000) 

2 S" " 'I +--e-" ,F,(3,'/,,!!) (z,:: cos<p+z,; sincp)'dq:. 
15:t 

(25) 
o 

5. PENTATOMIC MOLECULES OF TYPE XY 4 AND 
HEPTATOMIC MOLECULES OF TYPE XY 6 

Molecules of types XY4 (point group Td ) and XYs 
(point group 0h) belong to groups of the cubic system 
and can be treated together. For molecules of both 
types, only the threefold degenerate normal vibrations 
1)3 and 1)4 contribute to the displacement of nucleus X; 
these vibrations are of symmetry type Fa for the XY4 
molecules and of symmetry type Flu for the XYs mole
cules. We choose a coordinate system with its axes 
coinciding with the three rotation-reflection axes 54; 
for the XY4 molecules these are the 54 axes of a tetra
hedron, and for the XYs molecules, those of a cube. 
Then the displacement of nucleus X can be written in 
the form 

TABLE 2. Vibrational-nuclear transition probabilities for 
molecules of type XYS(DSh)' 

Vibrational transition I 
l'ta , l""a. 1,.a_ r1b, t'3b ,Vtb 

O,(J,O-O,O,O 

0,0,0-1,0,0 

0,0,0-0,1.0 

0,0,0-2,0,0 

1,0,0-1,0,0 

1,0,0-0,1,0 

" 
::~ ~d'll1. "2, u)dIP 

o 

",2 f 
Hj" J,l d1. 1'2, ,,) dlf 

o 
Ii' (000,000)- 21' (100,000) + 21' (200,000)]'" 

" 1;: ~ lFl (2, 7 ·'2. u) (z;~ COS <t' -+ z;!~ sin cp)'o! d<t, 
o 

0,1,0-0,1,0 [I' (000,000) -21' (OIO,OOO)Jez,+ 15~ ~'F' (3,'/2, u) (,;:;coslf 
o 
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TABLE 3. Vibrational-nuclear transi
tion probabilities for molecules of 
types XY 4 (Td ) and XY 6 (Oh)' 

Vibrational transition 
1"/1, ,.~a_!,.,b, t'tb 

0,0-0,0 
U,O-1 JJ 
\'0-1,0 
\'0-0,1 

x=m~" (b,./Q,,+b,,'Q,,). 

y=m;;'f, (b,,'Q, .. +b,,'Q,,), 

Z=IIl~';' (b,o'Q,.+b,/Q, .. ), 

(26) 

for the molecules of both types, where, in accordance 
with the symmetry of the molecules, we have 

(27) 

Thus, for the molecules under consideration the vibra
tional-nuclear transition probabilities from the state 
v;, v~ to the state v~, v: will depend only on the two 
parameters Z3 and Z4' 

As an example, let us consider the calculation of 
P (10,00), i. e. the transition probability from the state 
V3 =0, V4 =0 to the state V3 = 1, v 4 =0. According to (10) 
the wave functions have the form 

10) =cD., (Q, .. ) cD, (Q .. ) cD., (Q,.,), 

11,)=;)- [cD,(Q,.)(jl •. (I))(\l.,(Qk) 

+(DD (Q,,) cD, (Q".) cD o (Q,.) +cD" (Q" )CD" (Q,,) cD, (Q,.) ], (28) 
10) =<D" (Q.,) cD. (Q,. ) til" (I),,); 

and according to (11), matrix element (7) is given by 

;If (10.00) = (1,1 exp {-i":.b,Q,,,IIl~·') 

X('"p{-ik,,,b,Q3 .. IIl;'·'}exp{-ik,J)3Q,.IIl~"} !O,><o, I exp {-ik1AQ,"m-;"/'} 

Xpxp{-;k,.b,Q".m~'· }""P {-ik,J! .. Q,. m~'} 10) 

= (z/3) 'f, (cos ax + cos a" + cos ",,j exp[ - (z,+z.) 12]. (29) 

Averaging over the angles is a trivial task because of 
the spherical symmetry, and we finally obtain 

p (W.OO) = 1 J!( 10,00) 1'= 1/3:' "xp {- (z,+:,)} 
x(cos a,+cos "'.,+C05 a,J'=1/3:' exp{- (:,+z,)}. (30) 

Table 3 gives the vibrational-nuclear transition prob
abilities between states in which not more than one 
vibrational quantum is excited. For brevity we have 
omitted transition probabilities P (v:, v:, v3v~) that 
can be obtained from others by substituting Z4 for Z3' 

For example, by the substitution Z3 - Z4 we obtain 
P(Ol, 00) = (1/3)z4' We have also omitted transition 
probabilities that can be obtained from the relations 
between the probabilities for direct and inverse tran
sitions. 

6. HEXATOMIC MOLECULES OF TYPE XY 3Z2 

The normal vibrations of a molecule of type XY3Z2 
(point group D3h ) are distributed in symmetry types 
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as follows 

2A,'+2A," +3E'+E", (31) 

The vibrations 1/3 and 1/4 of symmetry type A~' and the 
vibrations 1/5' 1/6' and 1/7 of symmetry type E' contribute 
to the displacement of nucleus X. [BJ If we choose the 
coordinate system the saiIle as we did for tetratomic 
molecules of type XY3 we find that the vibrations 1/3 and 
1/4 contribute to the displacement of X on the Z axis (the 
corresponding normalized displacements being b; and 
b~) and the vibrations 1/5' 1/6' 1/7 contribute to the dis
placement of X in the xy plane (normalized displace
ments, b~a, b~b' be:, b~b' b~a, and b~b)' The vibra
tional-nuclear transition probabilities will depend on 
eight parameters ZS03 none of which can be determined 
unless the constants of the secular equation of the mole
cule are known. We shall not tabulate the vibrational
nuclear transition probabilities for this molecule be
cause of the large amount of space that would be re
quired. In fact, only three of the vibrational quantum 
numbers remain unchanged and the transition probabili
ties depend on the remaining five: V3' V4' V5, vs, and 
V7' Of course the calculation of the transition prob
abilities is similar to the corresponding calculation for 
XY3 molecules and, for example, the transition prob
ability P(OOOOO, 00000) can be obtained from the 
P(OOO, 000) of Table 2 by simply substituting Z3 +Z4 for 
Z2, z5a +zSa +z7a for z3a +z4a' and Z5b +ZSb +Z7b for Z3b +Z4b' 

We note that the tables represent three possible types 
of y-ray spectra for nuclei at the centers of mass of 
symmetric polyatomic molecules that can arise in the 
vibrational-nuclear transition approximation on aver
aging over the molecular orientation. For spherical 
top molecules the averaged transition probabilities are 
given by polynomials in the zsa; for linear molecules, by 
confluent hypergeometric functions; and for symmetric 
top molecules, by definite integrals of confluent hyper
geometric functions. 

7. VIBRATIONAL TRANSITION PROBABILITIES 

FOR OS04 

As an example of the use of the formulas obtained 
above, let us consider the probabilities for vibrational 
transitions of the 1BBOS1S04 molecule (point group T d ) 

incident to the emission or absorption of an E~ = 155 
keY photon by the. 1BBOS nucleus. Preliminary esti
mates[9l indicate that this molecule may prove to be of 
great interest for the experimental observation of 
vibrational-nuclear y spectra, and in particular, for 
observation of the modulation of the Os y radiation in
cident to the excitation of OS04 vibrations by the radia
tion from a continuous CO2 laser. [lOl 

The matrix l for an XY4 molecule belonging to the 
point group Td can be taken, for example, from. [1lJ 

Then from the expressions for Z3 and Z4 in terms of the 
elements of the transposed matrix zt = b, we obtain 

R my z3=4cz __ 
nOla mx' 

(32) 

in which c and s are functions of the molecular force 
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constants that are determined in[lll. Since we need 
only the absolute values of c and s to evaluate z 3 and 
Z4' we can use the following expressions for these func
tions in terms of the Coriolis constants i;3 and i;4: 

(33) 

Noting that we have R =0.051 eV for the recoil energy 
and assuming the parameter values W3 = 960 cm-t, w4 

= 329 cm-1, i;3 = O. 068, and i;4 = 0.432 in accordance 
With[121,' we find Z3 =0.054 and z-4 =0. 260. Then using 
Table 3 we obtain the following values for the first few 
transition probabilities: 

P (00,00) =0.731, P(IO,OO) =0.013. P (01,00) =0.063, 

P(IO,IO) =0.704. P(Ot,OI) =0.614. (34) 

8. CONCLUSION. INTENSITIES IN THE 'Y SPECTRUM 

The vibrational-nuclear transition probabilities dis
cussed above directly determine the intensities of the 
components of the y spectrum of a nucleus in a mole
cule. In the case of a single emission line centered at 

E(=E,'-R-~ liw'(i, (35) 

(As = v! - v~ is the change in the vibrational quantum 
number of the s-th normal vibration), the line shape, 
i. e. the number of photons of energy Ey emitted per 
unit time in the energy interval dEy, will be given by the 
obvious formula 

in which ry is the half-width of the nuclear transition, 
AED =Ey(2kT/Mc2)1/2 is the Doppler half-width of the 
nuclear tranSition, and nvsa is the number of molecules 
that contain y-active nuclei and are in the vibrational 
state specified by the quantum numbers v~. For ab
sorption spectra, the y-ray absorption cross section 
per molecule (per y-active nucleus) is of interest. The 
formula for it is a generalization of the well-known 
formula for the y-ray absorption cross section of a 
free nucleus: 
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(37) 

where 0'0 is the nuclear-transition cross section at max
imum, ~v= is the fraction of the molecules on the vibra
tionallevel v~, and ~ is the center of the absorption 
line corresponding to the transition of the molecule from 
state v~ to state v!: 

(38) 

Equations (36) and (37) together with the transition 
probabilities P(v!, v:) derived in this paper are sufficient 
for calculating y-ray emission and absorption spectra of 
nuclei at the centers of mass of polyatomic molecules. 

The authors thank M. R. Aliev for valuable dis cussions. 

1)Here and below we shall for brevity refer to the nucleus that 
absorbs or emits y radiation as the y-active nucleus. 

IV.S. Letokhov, Phys. Rev. A12, 1954 (1975); Phys. Lett. 
46A, 257 (1974). 

2L. N. Ivanov and V. S. Letokhov, Zh. Eksp. Teor. Fiz. 68, 
1748 (1975) [SOY. Phys. JETP 41, 877 (1975)]. V. S. Leto
khov, Phys. Lett. 46A, 481 (1974). 

3V. S. Letokhov and V. G. Minogin, Zh. Eksp. Teor. Fiz. 69, 
1569 (1975) [SOV. Phys JETP 42, 800 (1975)1. 

4V. S. Letokhov, Pis'ma Zh. Eksp. Teor. Fiz. 16, 428 (1972) 
[JETPLett.16,304 (1972)]; Phys. Rev. Lett. 30, 729 (1973). 

>W. M. Visscher, Ann. Phys. (N. Y.) 9, 194 (1960). 
6S. Cyvin, Molecular Vibrations and Mean Square Amplitudes 

Am. Elsevied, 1968 (Russ. Trans. Mir, 1971). 
lE. Bright Wilson Jr., J. C. Decius, and Paul C. Cross, 

Molecular Vibrations, the Theory of Infrared and Raman 
Vibrational Spectra, McGraw-Hill, N. Y., 1955 (Russ. Transl. 
Transl., IIL, 1960). 

BE. B. Wilson Jr., J. Chern. Phys. 2, 432 (1934). 
90 • N. Kompanets, V. S. Lethokhov, and V. G. Minogin, Pre

print Instituta spektroskopii AN SSSR (Institute of Spectros
copy, Akad. Nauk SSSR) , No. 6/138 1974. 

1°0. N. Kompanets, V. S. Letokhov, and V. G. Minogin, 
Kvantovaya elektronika, 2, 370 (1975) [Sov. J. Quantum 
Electron. 5, 2111. 

IIJose Herranz, J. Mol. Spectrosc. 6, 343 (1961). 
12R. A. Bonham and F. A. Momany, J. Phys. Chern. 67, 

2473 (1963). 

Translated by E. Brunner 

V. S. Letokhov and V. G. Minogin 416 


