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A diffusion approximation of the quantum kinetic equation for conduction-band electrons is obtained and 
the region of its applicability is investigated. The main regularities of development of the electron avalanche 
are investigated on basis of the solution of the derived equation, and critical field values are determined by 
taking electron scattering by acoustic and optical phonons into account. 
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1. INTRODUCTION 

One of the possible mechanisms of damage to trans
parent solids by high-power laser pulses is the electron 
avalanche, a process most widely discussed of late. 
The interest in this mechanism is due primarily to the 
fact that the electron impact ionization is an inherent 
property of pure substances, and by the same token es
tablished the maximum endurance of materials to laser 
radiation. On the other hand, if the experimentally ob
served damage is indeed due to a sharp increase in the 
absorption of electromagnetic energy as a result of an 
avalanche-like increase of the carrier density, then it 
becomes possible to obtain, albeit indirectly, very valu
able information on the dynamics of the electrons in 
the conduction band of dielectrics. To realize this pos
sibility, and also to ascertain whether an electron 
avalanche is the dominant mechanism of laser damage, 
it is obviously necessary to have a consistent theory of 
this process, capable not only of giving numerical esti
mates of the damage threshold but also of helping to 
ascertain the main regularities, such as the dependence 
of the threshold on the electromagnetic field frequency 
G, the pulse duration tp , and the initial lattice temper
ature T. Such a theory should be based on the solution 
of the quantum kinetic equation. 

For the case when the electromagnetic field frequency 
exceeds appreciably the frequency v = l/T of the elec
tron-phonon collisions (T is the relaxation time of the 
longitudinal component of the electron momentum), 

Q»v, (1) 

and the multiphoton processes inside the conduction 
band are insignificant, 

eE~p 
Roo ~ hmQ' «1, (2} 

the problem of cascade ionization in solid transparent 
dielectrics was solved in[tl. 1) The process of cascade 
ionization in a wide range of electromagnetic-field fre
quencies, from the visible band to constant electric 
fields, was considered in[2l, where the dependence of 
the breakdown threshold on frequency and temperature 
was analyzed with allowance for the scattering of elec
trons only by acoustic phonons. 
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The present paper is aimed at a complete analysis of 
the breakdown of transparent dielectrics by avalanche 
ionization, on the basis of a solution of the quantum 
kinetic equation for the electrons of the conduction band 
in the diffusion approximation. 

In Sec. 2 we derive the diffusion equation cited in[2l 
and obtain general expressions for the connection be
tween the avalanche development constant and the elec
tric field strength. 

In Sec. 3 we investigate the regions of applicability of 
the diffusion approximation. Next, in Secs. 4 and 5, 
we study the role of the optical phonons in cascade 
breakdown under the influence of an electromagnetic 
field. Finally, in the analysis of the results in Sec. 6, 
we discuss the dependence of the critical field on the 
duration of the electromagnetic radiation, a dependence 
typical of avalanche ionization, and discuss experi
ments that can determine the role of the considered 
mechanism in laser breakdown of optical materials. 

2. DIFFUSION APPROXIMATION FOR THE 
QUANTUM KINETIC EQUATION 

We start from the quantum kinetic equation 

Df(p,tL~~ \"1 B'(q) ~ In'( eEq-r(p) ) {[f(p+q) (N.+1) 
ut h- ..:::... ..:::... hmQ(HQ'-r' (p)) 'J. 

"-j(p)N :lb(e (p+q) -e (p) -hOl.-nhQ) 
+ [/(p+q)N.-j(p) (N.H)].s (8 (p+q) -8 (p)+hOl.-nhQ)}. 

(3) 

This equation is analogous to that derived in[4l, except 
that the arguments of the Bessel functions contain an 
additional factor nT/(1+n2T2)1/2, introduced to take into 
account the longitudinal component of the momentum 
resulting from electron-phonon collisions. 

We use the following notation: e and m are the 
charge and mass of the electron, pee) is the momentum 
of an electron with energy £, B(q) is the matrix element 
of the electron-phonon interaction, N. is the number of 
phonons with wave vector q, Ifwq is the energy of the 
phonon, TI (e) is the relaxation time of the longitudinal 
momentum component of an electron with energy II in 
the absence of a field. The relaxation time T(e) is de
fined by the equation 
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p' _ 2n '\"1 B' ~ I' ( eEq,(p) ) 
,(p) -T ~ (q)qp.~ n nmQ(1Hl',')" 

q fJ=_OO 

X{Nq/l (e (p-q) -e (p) -nwq-nnQ) + (Nq+1) /l (e (p-q) -e (p) +!iwq-nnQ)j. 

a ot(e, t) 
-a;S(e,t)=g(e)-' o-t-' 

[ or(e,t) ] 
see, t)=-g(e) [5(e)-f}-e-+ Q(e)f(e, t) 

(7) 

(4) with the following coefficients: 

We assume, bearing in mind a derivation of the diffu
sion approximation, that 

The distribution function f(p) can be obtained, gener
ally speaking, only by simultaneously solving Eqs. (3) 
and (4) as well as the corresponding equation for the 
phonons. To be able to disregard the latter, we as
sume an equilibrium phonon spectrum, an assumption 
justified in most cases because of the high frequencies 
of the phonon-phonon collisions at a lattice tempera
ture 50 oK and higher. 

We seek the solution of the kinetic equation in the 
so-called diffusion approximation. To this end, we 
must make the following assumptions: 

1. The anisotropic scattering described by Eq. (3) 
is replaced by some isotropic scattering: 

( eEq, ) • ( eEq, ) I' ..... 1'· xdx 
n nmQ(1+Q','),h f n nmQ(1+Q2,'J'i' . 

This assumption seems to be equivalent to assuming 
smallness of the asymmetrical part of the distribution 
function in comparison with the symmetrical part. 

2. The symmetrical part of the distribution function 
is expanded in the form 

of (e) 1 o'f{e) 
f(dLle) "'f(e)+Lle--+-(Lle)'--, 

OB 2 OB' 

where 

LlB =±nnQ±nwq. 

It is assumed here, obviously, that 

l-"eDf (e) lile I «fCe). (5) 

It is clear that this inequality cannot be satisfied for all 
energies and parameters of the n quanta. For the 
error due to this assumption to be negligible, it is nec
essary to satisfy the condition 

(6) 

where nmax is the maximum number of quanta whose 
probability of simultaneous absorption remains signif
icant. Relation (6) will be analyzed in Sec. 3. 

Changing in (3) and (4) to integration with respect to 
q and using the summation formulas 

x' L: n'ln'(x)=T' 

we obtain an equation in the form 
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Q(e)=QO(E), D(e)=[5.(e)+[5"(e), 

e'E'p'(e)'t(e) 
[5.(e)= Gm2 (1+Q',') , 

(8) 

where j)O(e) and QO(E) are respectively the diffusion co
efficient and the power loss in the absence of an elec
tromagnetic field, and g(c) is the density of the number 
of states. 

We note that under our conditions Eq. (4), which is in 
fact an equation defining TI i. e., the relaxation time of 
the longitudinal component of the electron momentum, 
remains unchanged in the diffusion approximation when 
the electromagnetic field is turned on. The derived 
Eq. (7) with coeffieicnts (8) goes over in the limit as 
n -0 into the known equation for the symmetrical part of 
the distribution function in a constant electric field.[IS] 

We shall use henceforth the dimensionless variable 
x = E/r (I is the ionization potential) and the coefficients 
of the kinetic equations D(x) and Q (x) without the tilde, 
which have the dimensionality sec-I: 

D(x) =[5 (e)Il', Q(x)=Q(e)I/. 

To solve the obtained equation we use the successive
approximation method developed in[l]. According to 
that paper we have in first order in the ratio y/Q the 
following expression for the avalanche-development 
constant: 

1,=Q(1)g(1)io(1) / J g(x)/o(x)dx, (9) 

fo is the stationary distribution function. Numerical 
calculations show that up to values y- O. 2Q(l) we have 

i. e., the first appr oximation is quite adequate if y < 1011 
sec· l • We shall use (9) subsequently to obtain concrete 
expressions for the critical field in Secs. 4 and 5. 

3. REGION OF APPLICABILITY OF THE DIFFUSION 
APPROXIMATION 

In fields close to critical, the following relation 
holds: 

In the quasi-stationary approximation (y« Q) the func
tion j(e) and its derivative j' (e) are connected, accord
ing to (7), by the following approximate relation: 

Sliwo (1 +Q',') 
fo' (e) '" - e'E'I'(2No+1) f, 

where nwo is the average energy of the phonons that take 
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part in the absorption of the electromagnetic quanta by 
electrons. (We have used the known expressions for 
QO and DO; see, e. g. , [5,6J. ) 

Since the Bessel function J~(x) decreases exponential
ly with increasing n in the region n> x, it follows that 

n max -eElIfLQ (1 +Q',') 'I, 

and the condition (6) takes the form 

eEIi (1+Q',') "'»nw,/ (2No+1) -fLw,. (10) 

In scattering of electrons by acoustic phonons, the con
cept of "average phonon energy" can be made more 
precise, as a result of which we obtain 

eEli (1 +Q'1") '1'»mu.'I1kT, (lOa) 

Vs is the speed of sound. 

As will be shown below, the critical field at a fixed 
pulse duration has (apart from small corrections) the 
following dependence on the frequency of the electro
magnetic field: 

(11) 

Comparison of (10) with (11) shows that in fields close 
to critical the condition for the applicability of the dif
fusion approximation is satisfied in the entire frequency 
region if it is satisfied at anyone frequency. Since, as 
shown in[7J, the diffusion approximation for the elec
trons of the conduction band of dielectrics can be used 
in constant fields, the presented analysis shows that it 
can be used also in the study of the breakdown of optical 
materials under the influence of laser radiation. We 
note that at first glance it appears that the diffusion 
equation may not hold if the energy of the light quantum 
is of the same order of or larger than the average elec
tron energy (e). This statement, which to all appear
ances is valid when many processes connected with the 
dynamics of electrons that are not too hot in the con
duction band (e. g •• transport processes), becomes 
meaningless when it comes to consideration of an elec
tron avalanche. The avalanche-development constant y 
is determined in this case by the ratio of the number of 
electrons capable of effecting ionization to the total 
number of electrons in the conduction band. It is there
fore important only that the approximate electron ener
gy distribution function f(e) be close to the real one in 
the greater part of the range of energies lower than the 
ionization energy I. From this requirement we obtain 
directly the second basic condition for the applicability 
of the diffusion approximation: 

1H2«J. (12) 

In spite of the fact that in the electron energy region 
E $; 1m the number of the electrons can be large if 

the error in the calculation of the cascade development 
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constant by the method oft1J will be contained, if con
dition (10) is satisfied, only in the pre-exponential fac
tor, which is of little importance. 

An additional limitation can arise at high energies as 
a result of avalanche development due to single absorp
tion of no electromagnetic-radiation quanta, so that 

The avalanche-development constant y' in such a pro
cess is estimated from the formulas of[SJ. Compari
son of y and y' shows that for transparent dielectrics, 
in fields close to critical, the electron avalanche de
scribed by (7) is more effective if 

no>5, 

and less effective if 

n,<4. 

In the intermediate case no = 4-5 it is necessary to 
carry out a comparison in each concrete case. 

4. DEVELOPMENT OF ELECTRON AVALANCHE IN 
SCATTERING BY ACOUSTIC AND NONPOLAR 
OPTICAL PHONONS 

In scattering by acoustic and nonpolar optical phonons 
in the absence of an electromagnetic field, the coeffi
cients of the kinetic equation (7) take the form 

D '(x) - 4v,'m X'I • 
• , - (2mJ)"·l.ae ' 

Q '(x) = 2u.'(2mI)'I·x "· 
ac kTlac I 

o ( _ (liwopl' '" 
Do> x) - llop(2ml)''' x , 

Q ,(). 2hwop 
op x = (2Nop+l) lop(2mI) 'I, x'''. 

The quantities pertaining to scattering by acoustic, 
polar, and nonpolar optical phonons are labeled by the 
subscripts ac, po, and op, respectively: wOP is the fre
quency of the optical phonon, l." and lop are the electron 
mean free paths in scattering by acoustic and nonpolar 
optical phonons, respectively. 

We introduce the additional notation 

l-'=lop-'+lae-', 11=2I1ml'(I)Q', 

e'E' 2e'E'J 
qae= 6m'u,'Q" qop= 3m(hwo.,J'Q' ' 

6. = E.. 1> = Iiw op(2Nop+1) 
ac I' op 21 ' 

Q=Qac(1) +Qop ( 1), s=Qae(1)/Q· 

Equation (3) then takes the form 

~{( ['lae1>acS+%pllop(1-s) lx' +oaesx2 +(1-s)6 .x) f'{x) 
ax 1+1]x op 

+(sx'+(l-s)x)j(x)}= ~f(x), j(x,t)=j(x)e". 

(We use the high-temperature approximation for scat-
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teringby acoustic phonons.) The solution of the equa
tion is determined by relation (9). To simplify the form 
of the subsequent expressions, we note that in aU real
istic cases the following conditions are satisfied: 

For the avalanche-development constant we obtain 

_, { 1]8 [1](1-8)+8] (1-8) } 
"(=8 exp ----------In [1+qlll(1-8) 6 ] 2q6 q{j q6 op, 

where (13) 

J' - { 1]8X' [1]O-8)+8]X}[ q{jx ]-<1_"/" 
8=Q-' dxYxexp ---- 1+---

o 2q{j q{j (jop(1-8) . 

(14) 

In many cases, the integral of (14) admits of simple 
estimates. Thus, if 

['l(1-8)+8]{jop(1-s) <1 
(q{j) , ' 

(15) 

then 

6:;(1-8) 'f'f ('),) f( (1-8)lq6-'I,) 
8=Q-' -'-'-----,-~:.:.-,--'-'-.,--.:...,..::'----"-

(q6)"'f ((1-8) I q6) 

1-8 3 
-->-

q6 :l ' 
(14a) 

_, (3) ( q6 ) 'I, 1-8 3 1]8q6 
8=Q f 2" 1](1-8)+8 ' --q6 < 2"' (1](1-8)+8)' -< 1, 

(14b) 

8=Q-' f('I.) (2qll) 'I. !.::: < 2- 1]8q(j. > 1 
2 1]8 ' q6 2' (1](1-8)+8)' . 

(14c) 

If s=l, then 

_1 ( q6 ) 'f. (3) (1) (1 ) 
8=Q -:;;- f 2 exp 41]6q D_'I. (1]6q)'" . (16) 

The inequality (15) is obviously satisfied at s = 0 and 
s = 1, so that we can expect it to be valid also in the 
intermediate cases. 

To obtain an expression for the critical field we must 
specify a criterion for the breakdown. We use the cri
terion obtained in[l]: 

(17) 

If nT« 1, then 

(17a) 

if nr» 1, then 

L=ln{1+-"(-_1 } 
. ~o<>no To'!~ , 

_ 2QI (q6) 'I. 
~oo--=-- - . 

Y"Cp To 
(17b) 

Here C is the lattice specific heat, p is the density, no 
is the initial number of electrons per unit volume, To 
is the initial lattice temperature, and T cr is the critical 
temperature at which damage sets in. Strictly speak
ing, it is necessary to take into account also the y(T) 
dependence, then L is decreased somewhat in compari-
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son with the values calculated by formulas (17), and 
the dependence of L on T cr becomes even weaker. We 
note also that for dielectrics in the case of breakdown 
in nanosecond pulses, the value of L ranges from 13 to 
20 and has a negligible effect on the critical field, so 
that in practical calculations we can approximately 
choose as the breakdown criterion the relation 

(17c) 

From (13), using (17), we obtain formulas for the 
critical field in the case of scattering by acoustic pho
nons only: 

Im'v' ( I) 
Ecr '=;\ 2/,;T:' Q2 + mi.; , 

,_,1 (tp) 
(18) 

"' =-In - ""1 12 L8 . 

As the first example, we consider an electron ava
lanche in an NaCl crystal. We assume the following 
parameters: the electron-phonon coupling constantC6] 

jl)1=10 eV, D=10·3 erg/cm, To=300oK, nWop =3.7x10·2 

eVe Then 

We can use the asymptotic form (14b) at the frequency 
corresponding to the neodymium laser (n", 2x 1015 rad/ 
sec), formula (16) at the CO2 laser frequency, and the 

_ asymptotic form (14c) at n =0. Allowance for the non
polar scattering by optical phonons changes the critical 
field insignificantly in comparison with the value cal
culated from (18): 

Ecr=0.97 Ecr .c, 0=0, 

Ecr =1.05 Ecr .c,0=2·1015 rad/sec 

where E cr "" is the corresponding threshold obtained 
when account is taken of scattering only by acoustic 
phonons. 

The energy of optical phonons is much lower, e. g., 
in RbI (-1. 3x 10.2 eV). In this case we have 

and the critical field is given by E cr =0.8Ecr "". 

The value D = 10.3 erg/cm is a very crude estimate. 
At best it is of the right order of magnitude. Our re
sults, however, depend very strongly on D. If we 
assume a value of D only three times larger than above, 
then, for example, for the breakdown of RbI we obtain 

It is clear from the foregOing analysis that in this case, 
if experiment confirms that the cause of damage by 
high-power laser radiation is an electron avalanche, 
then comparison of experiment with the present theory 
will make it possible to estimate such an interesting 
quantity as the electron-phonon coupling constant D for 
deformation scattering by optical lattice vibrations. 
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5. EFFECT OF OPTICAL POLAR PHONONS ON THE 
DAMAGE THRESHOLD 

The kinetic equation that takes into account scatter
ing by both acoustic and polar optical phonons is very 
complicated. Its solution is determined by formula (9), 
but in general it is impossible to obtain concrete esti
mates without resorting to numerical calculations. We 
confine ourselves therefore to one particular case, 
which incidentally corresponds to many real situations. 

We estimate the ratio Qp,/Qac (the subscript po will 
henceforth label quantities pertaining to polar scatter
ing) for NaCI, i. e., for one of those crystals where 
this ratio is the largest as a result of the high energy 
of the optical phonon and the large difference X;;,I_X(j1 

(the dielectric constants at n = 1014 _1015 sec-1 and n = 0). 
At an electron energy equal to the ionization energy we 
have Qp/Qac'" 10-2, and this ratio becomes of the order 
of unity at e< 1 eV. On the other hand, the energy ac
quired during the average time between the collisions 
with the phonons AE is of the order of eEl, which is of 
the order of 0.5 eV even at the minimal threshold 
fields. It is clear from the results of Sec. 2 that from 
the quantum point of view this means that the multi
photon processes that cause the electron to acquire an 
energy A£ have a high probability. All this seems to 
indicate that the additional energy losses connected with 
the scattering of the electrons by the polar optical 
phonons playa negligible role. We shall consider 
therefore the case when such corrections can be ne
glected, and take into account only that kinetic-equation 
term which is connected with scattering by polar optical 
phonons and enters in DE. 

In analogy with the procedure used in Sec. 4, we ob
tain the following expression for the critical field: 

E ,_ lm'v.' {, l /,(o.)} 
cr -A 2kTe' /,(0.) Q + ml'(1) /,(0.) . 

Here 

( 1+0.) /,(0.)=1-20.+20.'ln -;;:- , 

Q,,(1) 

The value of A can be estimated from the formulas of 
the preceding section. Since 

0</,(0.)<1, /,(0.)//,(0.»1, 

it follows that the critical field decreases somewhat in 
the entire range of electromagnetic-field frequencies, 
but this change itself is more pronounced at high fre
quencies and depends quantitatively on the value of a. 

By way of examples, we consider cascade ionization 
in NaCI and in sapphire. For NaCI we have a = 0.016 
and 

Im2v Z 

Ec,'=0.93A 2kT;' {Q'+1.03l!ml'}, 

i. e., the critical field is practically unchanged in com-
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parison with the case when scattering by only acoustic 
phonons is taken into account. An analogous result is 
obtained also for RbI crystal (in contrast to scattering 
by nonpolar optical phonons). The critical field in 
polar scattering does not depend on the energy of the 
optical phonon in the high-temperature limit. 

In sapphire, the speed of sound is large, and this 
leads to a certain lowering of the critical field as a re
sult of polar scattering: 

/, (a) "'0.8, /,1/,""1.1. 

6. DISCUSSION OF RESULTS 

Our theoretical investigation of avalanche ionization 
in solid transparent dielectrics has explained the main 
regularities of this process, and these can serve as a 
basis for an experimental determination of its role in 
laser breakdown of optical materials. Notice must be 
taken, above all, of the essentially different tempera
ture dependence of the critical field in those cases when 
the field frequency is higher or lower than the electron
phonon collision frequency, This fact is discussed inl21. 
For the sake of completeness we present here an ex
pression for the critical field in the case of scattering 
by acoustic zero-point vibrations only: 

E '-A mv. (2mI) 'f. (' 21) 
cr - Q 22 Q +--2 ' e 5mlac 

where 

A'-'=~ln(~) "" 1 
15 L8 ' 

8=Q-'4q'8 o', QT::l>1, 

2 (3) (q8 'f, 8=Q-'"5f"5 -;;) , QT<1, 

8o=4mv.l5 (2ml) 'f,. 

A second essential feature of damage due to the de
velopment of an electron avalanche is the very weak de
pendence of the critical field en the pulse duration, as 
follows from (17) and (18), Unfortunately, there are at 
present practically no data on the dependence of Ecr on 
the pulse duration in a wide range of the latter. An ex
ception is!91, where it is indicated that the dependence 
on the pulse duration is much stronger than predicted 
by the theory presented here. 

If we do not assume anomalously short electron mean 
free paths, then the theoretical dependence of the crit
ical field on the frequency differs from the experimental 
one. It is interesting to note, however, that the maxi
mum increase of the threshold with increasing field fre
quency was obtained in precisely such crystals as RbI, 
for which one can expect such a behavior, according to 
Sec. 4, in the case when electron cascade is responsible 
for the damage. 

Thus, even though it is impossible at present to draw 
final conclusions concerning the role of the electron 
cascade as the laser-damage mechanism, our results 
make it possible to organize task-oriented experi
ments for this purpose. If the dominant role of this 
damage mechanism is experimentally demonstrated, it 
will become possible to estimate a number of interesting 
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parameters, such as the mean free path, the electron
phonon coupling constant, etc, 

I>The diffusion equation was solved for the first time for laser 
breakdown of solids in t3], but no account was taken there of 
the energy lost in electron-phonon collisions, which can not 
be neglected, as shown in[t], for the considered range of 
pulse durations (10-11 _10-7 sec). 
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Weakly bound excitation states in a crystal 
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It is shown that the formation in crystals of bound states by two elementary excitations (two phonons, a 
phonon and an electron) is possible for an arbitrarily weak interaction between them. This occurs near 
points in the quasi-momentum space of the excitations at which the two effective masses for the relative 
motion of the excitations become infinite. The mathematical situation here is similar to the situation that 
obtains in superconductors during the formation of Cooper pairs. The binding energy turns out to be 
exponentially small in the coupling constant. 

PACS numbers: 71.10.+x, 71.85.Ce 

1. INTRODUCTION 

It will be shown in this paper that the formation in 
crystals of bound states by two elementary excitations 
(two phonons, a phonon and an electron) interacting ar
bitrarily weakly with each other is possible. This oc
curs near certain special points in the quasi-momentum 
space of the excitations. 

The question of the formation of bound states by ex
citations has attracted considerable attention in recent 
years. In Wortis's paper[l] two-magnon bound states 
were investigated. Cohen and Ruvalds, [2] Ruvalds and 
Zawadowsky, [3] and Agranovich[4] have studied the 
bound states of phonons. In the cases considered by 
these authors, however, in order for the formation of 
bound states to be pOSSible, it is necessary that the 
phonon interaction energy exceed some threshold val
ue. Another situation obtains, as is well known, in 
liquid He4• There, two rotons with an arbitrarily weak 
attraction between them can form a bound state. [5-7] 

This is explained by the fact that the energy of the roton 
as a function of its momentum has a minimum on a 
whole sphere in momentum space. Thus, this phenom
enon is closely connected with the isotropy of the liquid. 
Kozhushner[S] has discovered that two excitons form a 
bound state when they interact arbitrarily weakly with 
each other in a special model in which only the inter
action with the nearest neighbors is taken into account. 
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Some examples of bound-state formation in crystals 
under conditions when the interaction is weak have been 
considered by Rashba and Levinson. [9,10] These authors 
were, however, concerned either with phenomena that 
occur when the optical-phonon dispersion is neglected 
or with electrons in a magnetic field, when the situa
tion becomes one-dimensional. Meanwhile, as we shall 
see, the formation of weakly-bound excitation states is 
possible in crystals with the most general properties 
and, thus, should be the rule, rather than the exception. 

To see this, let us consider the Simpler case when 
two identical excitations form a bound state. (Phonons 
belonging to one and the same branch.) Let the disper
sion law for the excitations forming the bound state 
have the form w(k), where w is the excitation energy 
and k is the quasi momentum. Henceforth, instead of 
quasi momentum, we shall always speak of momentum. 
In this case the question determining the bound-state 
energy has, as will be shown in the following section of 
the paper, the form 

I. S d'q/(2n)' = 1. 
8-(0 (p/2-q) -(0 (p12+q) +iO 

(1) 

Here A has the meaning of an effective coupling con
stant, e is the bound-state energy, and p is the bound
state momentum. The function e(p) determined by this 
equation is the dispersion law for this bound state, 
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