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A solution is found to the problem of particle creation near the singularity and the resulting reaction of the 
metric in the homogeneous vortex model considered by one of us earlier (Lukash, 1974). A complete 
picture of the evolution of the vortex model with allowance for matter production is constructed. It is 
shown that particle creation near the singularity for t ~ tp/ has the following effects: a) It strongly reduces 
the primeval vortex velocity of the matter, which is then quite inadequate for the vortex theory of the 
origin of rotation of galaxies; b) it does not lead to compensation of the total angular momentum of unit 
volume of matter by the angular momentum of the created free particles (gravitons); the angular 
momentum of the gravitons oscillates with an increasing amplitUde. Bounds are deduced on the parameters 
of the vortex model from observations of the chemical composition of prestellar matter and the isotropic 
microwave background. 

PACS numbers: 95.30.+m 

1. INTRODUCTION 

In this paper, we consider the spontaneous process of 
matter production in vortex cosmological models near 
the singularity and the effect of this process on the evo­
lution of the models. The interest in vortex motions of 
matter in cosmological models is due to theories of 
galaxy formation from primeval vortices. These theor­
ies were already developed by von Weizsacker, [1] 

Gamow, [2J and Oort. [3] 

The development of vortex motions of matter as smail 
perturbations of the Friedmann model (filled with a per­
fect fluid) was considered by Lifshitz. [4] The theory of 
the formation of galaxies in a hot model of the Universe 
from primeval vortices was developed in detail by 
Ozernol, Chernin, Chibisov, Rees, Tomita, et al. [5-9] 

One of the main difficulties of this theory was a fact es­
tablished by Lifshitz [ 4]: Despite the constancy of the 
vortex velocity of matter with equation of state p '" E/3, 
the vortex perturbations of the metric increase when the 
singularity in the past is approached. ll This means that 
in the past the vortex perturbations of the metric must 
have been large and the cosmological model near the 
singularity was not the isotropic Friedmann model but 
something quite different. 

It has become necessary to solve the problem of con­
structing a cosmological model that is essentially non­
Friedmann near the singularity but during expansion 
goes over into a Friedmann model with vortex motions. 
One model of this type was constructed by one of the 
present authors in [11]; in this model, the choice of the 
vortex velocity profile in the form of a circularly polar­
ized wave made it possible to preserve the spatial homo­
geneity at all times, including near the Singularity, 
which greatly simplifies the mathematical investigation. 

In the present paper, we solve the problem of cosmo­
logical expansion with allowance for particle creation 
near the singularity and the problem of the reaction of 
the metric to the particle creation in such a homogeneous 
vortex model. The importance of matter production in 
the vortex model was pointed out by Zel'dovich. [12] He 
conjectured that particle production at t ~ t I ~ 10- 43 sec 
would rapidly isotropize the cosmological e~Ransion and 
transform the solutions to the so-called (see [13]) quasi­
isotropic solution (see also [14]). 

The process of matter production in anisotropic 
models without vortex motions was investigated in a pre-
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ceding paper, [15] in which it was shown that the influence 
of the gravitation of the created particles on the metric 

. leads to a rapid isotropization of the expansion. It is of 
particular interest to consider matter production in the 
presence qf vortex motions in connection with Chibisov's 
conjecture of "zero vortices". [16J In principle, this con­
jecture permits one to have fairly strong vortex motions 
of the matter at the onset of galaxy formation but at the 
same time avoid the dilemma of a non - Friedmann start 
of the cosmological expansion. This is achieved as fol­
lows. It is assumed that near the singularity the vortex 
motion of matter with hydrodynamic energy-momentum 
tensor is exactly compensated by the oppOSitely directed 
vortex motion of free particles (gravitons). The total 
vortex is therefore zero and the metric of the Friedmann 
model is not destroyed. During expansion, this compen­
sation is conserved in practice until the vortex dimension 
j( is greater than the horizon length t (we assume 
throughout B1TG = c = ti = 1). Mter this time, gravitons 
from different vortices are mixed, their distribution 
becomes isotropic. and the vortex motions of matter 
with hydrodynamic tensor remain. However, these vor­
tices have little influence on the metric since 11: < t. In 
this model, the compensation of the vortex motions of 
the matter by the motion of the gravitons is specified as 
an initial condition. 

Chibisov conjectured that this compensation (vanish­
ing of total angular momentum because of the counter­
streaming flux of gravitons) arose automatically during 
the spontaneous creation of particles (and, in particular, 
gravitons) near the singularity. On the face of it, such a 
conjecture has serious arguments in favor of it; for we 
know that particle creation due to a strongly anisotropic 
deformation near the singularity rapidly eliminates the 
anisotropy of the deformation. It was assumed by analogy 
that the presence of vortex motions modifies the particle 
creation in such a way that the particles acquire a mo­
tion opposite to the motion of the primeval particles and 
that the process continues until the total vortex is zero. 
Since the created moving flux includes gravitons (as well 
as interacting particles), vanishing of the total flux would 
entail the existence of compensated counterstreaming 
fluxes of ordinary matter (the primeval flux plus the 
created interacting particles) and the created gravitons, 
i.e., Chibisov's idea would be realized. 

In this paper, the process of particle creation in vor­
tex models is calculated on the basis of the existing 
theory of particle creation. (14] We find that in the vortex 
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models the matter is produced on the average virtually at 
rest (see Sec. 4 for details), and the primeval vortex is 
not compensated. The later evolution of the model leads 
to oscillatory variations of the total vortex (in which the 
sign reverses) with an ever increasing amplitude. 2) 
Thus, a process which in a certain sense is the opposite 
of Chibisov's vortex compensation idea occurs. 

Conclusions from calculations of the evolution of 
anisotropic cosmological models with allowance for 
matter production are compared with astrophysical 
data. It is shown that for all initial data in the models 
the vortex motions of matter at the time of galaxy forma­
tion are very weak and quite inadequate to explain the 
formation of galaxies in the vortex theory.3) 

In Sec. 2 we write down the metric and the equations 
that describe the evolution of the homogeneous vortex 
model. [1l,17J In Sec. 3, we consider the evolution of the 
vortex model without allowance for particle creation. In 
Sec. 4, we construct the complete picture of the evolution 
of the vortex model with allowance for matter production 
near the singularity. In Sec. 5, astrophysical conclusions 
are drawn. 

2. METHOD AND EQUATIONS OF THE 
EVOLUTION OF THE HOMOGENEOUS 
VORTEX MODEL 

We shall consider a homogeneous model with vortex 
motion of the matter. The matter velocity field is a cir­
cularly polarized harmonic: As one moves along the z 
axis parallel to the wave vector k = {k(]!} = {O, 0, k}, 
the velocity vector, which lies in the xy plane, is rotated 
through an angle k~z. In the late stage of evolution, this 
model is a flat Friedmann model containing vortex mo­
tions of the matter (vector perturbations in Lifshitz's 
classification [4J). The metric of this model is Binachi 
type Vila with Tg == 0 (Tr is the energy-momentum ten­
sor) and can be written in the form[ll,17J 

ds'=dt'-g.,dx~dx', x'''''x. 
X2!!!1!!!!!!;.Jj, x:~z; ga~='YQbea.ae,b; 

(
I.., 0 0) 

r_.(t) = 0 A, VA, 
o VA. 1..,+'11'1.., 

(

COS kz sin kz 0) 
e.-(x) = - sin kz cos kz 0 ; 

o 0 1 (1) 

k = const is the wave number, and the size of the vortex 
is ~ = 2"X, J( = ~~/2/k. 

The curvature of three-dimensional space is charac­
terized by J1. == Y2ln (~1/~2)' If J1. = 0, the section 
t = const is flat. The principal directions of the metric 
tensor g a{3 are oriented along the moving frame. 4) The 
function lI(t) uniquely determines the orientation of the 
moving frame relative to the fixed frame e~ (see [17J ). 
The metric tensor when projected onto the moving frame 
has diagonalform: {~ab(t) = diag{~a} (~1,2 are defined 
to within an arbitrary common factor). 

If 11 = const, a transformation of the coordinate system 
reduces the metric (1) to diagonal form [17J: 

g.,="".e.·(i) e,' (i). x=x- (v/k) cos kz, 
y=y+(vlk)sin kz, z=z 

(2) 

(in what follows, we assume 11 - 0 as t - 00). Therefore, 
the rotation of the moving frame is characterized by the 

758 SOy. Phys.·JETP. Vol. 42. No.5 

function L(t) related to the derivative of lI(t) by[1l,17J 

L=~~r"'=~~ (3) 
2 A, 2 1..,' 

The dot denotes the derivative with respect to t and the 
prime denotes the differential operator d/dT = yl/2d/dt. 

In the metric (1), the follOWing nondiagonal components 
of the energy-momentum tensor of the matter are non­
zero: 

'Y"'T,'=kL, 

r"'T.3=-L 

(4a) 

(4b) 

Thus. L is the total angular momentum of the matter in 
the scale of the wavelength ~ = 2" ~~/2 /k per unit 
Lagrangian volume. 

Finally, we write down the diagonal Einstein equations 
proje<;ted onto the moving frame (y = det{ga{3} = ~1~2~3, 
T = T~): 

1 

(InA,) "+k'(I..,'-I...')='Y(T-2T,'), (5) 

(lnl..')"-4£'~+k'(I.."-1..1')='Y(T-2T,a), (6) 
A, 

(lnl...)"+4£' ~: -k'(I..,-I..,)'=r(T--2T,'). (7) 

!i. A,' +~ 1...' + ~,' 1..,' -4£'~- k'(I..,-I..,)'=4yTo'. 
1.., 1... 1.., 1... 1... A, 1..2 (8) 

Equations (8) and (4a) are first integrals of Eqs. 
(4b)-(7), which completely determine the evolution of 
the model. 5) The Bianchi identities are obtained by dif­
ferentiating Eq. (8) and eliminating the function L from 
Eqs. (4): 

( "'T')' 1..' 1..' 1..' I.. _r __ , _=_' T.'+-'-T,'+-'-T.'+2L.":"'T.' (9) 
y'. 21.., 21... 21..3 1..,' 

(y"·T,')'/r"·=-k'Y"·T.'. 

In a Pascal fluid without viscosity, T~ == 0 and 
L == const; the presence of viscosity (T~ f. 0) changes L 
and the matter flux J = TU~e2 = kL/y1/2;~t/2 related to it, 
the change in the flux being always colliUl3ar to the initial 
flux [see Eq. (4)]. [1l,17J 

To explain the physical meaning of the metric (1), it 
is helpful to consider the case when it differs little from 
a homogeneous Friedmann model. 6) In thi.s case, apart 
from the vortex mode of perturbations (in accordance 
with Lifshitz's classification), which is characterized by 
velOCity vF at the start of the Friedmann stage [for 
p = E/3, the velocity v = {:)/(1 - (32)1/2 is constant, where {3 
is the 3-velocity], there also exist perturbations of the 
type of standing gravitational waves on the background of 
the flat Friedmann model. These waves are circularly 
polarized like the vortex mode with wave vector 2k 
parallel to the z axis; in addition, there is also an 
axisymmetric (relative to z) anisotropiC perturbation 7) 

with infinite wavelength. [11,17, 21J 

Perturbations of the type of gravitational waves can be 
written in the form 

, 
"""A sin T) + B cos T) T) = J (j) dt. 
r t'l. t/2 ' (10) 

and of axial type in the form 

1.../(1..,1...) "''''const (1+Clt'''); 

w = 2k /~~12 is the frequency of the gravitational wave, 
and A, B, C are constants. 
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Thus, for small deviations from the Friedmann model, 
the model (1) is characterized by four constants; 
vF (the vortex motions of the matter), A and B (gravita­
tional waves) and C (axial mode). The constants must be 
small but are otherwise arbitrary and can, in particular, 
be zero. If A = B = C = 0, there remains only the vortex 
mode of perturbations. It is natural to call this the 
"purely vortex" model. 

Let us turn to the general case A I: 0, B F 0, C I: 0, 
vF f. 0. We shall consider the early stages of expansion 
of the models, when the deviations from the Friedmann 
model are large. In this case, all effects are nonlinear 
and it is no longer possible to make the subdivision into 
"gravitational-wave," "vortex," and "axial" modes. But 
the number of physically arbitrary constants remains 
the same. ConSidering the early stages in the evolution 
of the models, we shall classify as "purely vortex" those 
models that have A = B = C = ° during the evolution in 
the nearly Friedmann stage. It is clear that these models 
represent a strongly degenerate case among the complete 
set of models (1). 

If in addition to vF -I ° at least one of A, B, or C is 
nonzero, we shall Simply say that we have a vortex 
model (as opposed to a purely vortex model). 

3. EVOLUTION OF THE VORTEX MODEL 
WITHOUT ALLOWANCE FOR MATTER 

• PRODUCTION 

In this section, we shall conSider the evolution of the 
vortex model under the assumption that the velocity of 
the matter relative to the system (1) is low, v* « 1. As 
will become clear from what follows (see Sec. 4), it is 
only this case that is of interest when allowance is made 
for particle creation near the singularity. Except for a 
special case (which we shall point out), we shall also as­
sume that the energy-momentum tensor is hydrodynamic 
and p = E/3. 

The picture of the evolution of the model is shown in 
Fig. 1. In the most general case, there is a "vacuum 
stage" near the singularity for which the terms with T~ 
can be ignored in Eqs. (4b)-(8). The solution in the vac­
uum stage has an oscillatory nature (like the Belinskil­
Lifshitz-Khalatnikov model [22]), and the amplitudes of 
the oscillations of the functions 11.1/11.2 and A1/A3 decrease 
very rapidly as one moves away from the singular­
ity[1l,17-19,21-23]; in the intervals of monotonic variation 
of Aa we have a Kasner solution. [24] 

Let t* be the time at which the vacuum solution ends. 
At this time, E ~ lie. We shall assume that at t* the 
amplitude of the oscillations is still large and, in addi­
tion, the exponent in the dependence A3 ~ t 2q3 is not par­
ticularly close to unity: q3-11. We regard the fulfillment 
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FIG. I. Evolution of vortex 
model in the case v· « I (Ilo 
= jll"j = In (a/b) ~In (~/t)*); I is 
the quasi-isotropic stage, II is the 
damping stage, III is the Friedmann 
stage. 
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of these conditions as the most general requirement~H" 19] 
and shall not consider other cases here. .c I 

It follows from Eqs. (5)-(8) that at t ~t* 

"ve·lt";1. (11) 

We shall assume that x »t at t*. After the time t ~t* 
the influence of the gravitation of the matter rapidly' 
isotropizes the expansion. If tJ.o = 1tJ.*1 »1 at this time, 
the anisotropy of the spatial curvature is large. How­
ever, it still does not affect the expansion and the solution 
in the first approximation is the so-called quaSi-isotropic 
solution [tJ. (t) "" tJ. * = const; Aa ~ t]. We emphasize that 
the solution is not exactly quaSi -isotropiC (see [13]) but 
differsfrom it by small vortex corrections. 

The influence of strong anisotropy of the spatial 
curvature begins to be manifested at the time t ~ tD, 
which is determined by the condition etJ.o"" xlt » 1, and 
alters the rate of cosmological expansion in such a way 
that the anisotropy of the curvature and the deformation 
decrease in a power manner (the "damping" 
stage). [18, 19,21J During the damping stage, teitJ.ljx 
= const "" 1, and this stage continues until X ~ t(ltJ.i ~ 1), 
after whi~ there begins the Friedmann stage of expan­
sion (with small perturbations), in which the gravitation 
of matter plays the principal role (0 "" 1). We write"; 
down the laws of expansion during the damping stage 
(a2 = 11.1,2 »b2 = A2,1' c2 = A3) under the assumption ~at 
at the time t ~ tD the Universe is filled by:, 

1) a perfect fluid with E y = 3p y (the index y denotes 
all interacting particles); then; 

a....,t\ b, c_t5/., "(lfJ::::;:abc_t/J j 

te l• I/X""Y3[4, 8,""21/32t'; 

, ., 
(12) 

2) by free massless particles (gravitons) Eg with dis­
tribution function that is isotropic at this time. Then 

a-t"', b, c-t*\ "('I'::::;:abc-t'l.; 

te'•'/'1-.""2i2/3, 8,"" (-Tee) ,,,,,2/3t';> (-T,') ,""( -To') ,. (13) 

During the Friedmann stage (X < t), one can assume 
that Al = A2 ~ A3 ~ t, EglEy"" const in the principal 
approximation. We shall consider this stage in more 
detail. 

In Table I we give the values of the vortex velocity v 
at different stages of the cosmological expansion. It is 
important to note that vF does not depend on the equation 
of state, Le., on the law of evolution in the damping stage 
[see (12) and (13)] and is uniquely related to v* and tJ.o. 

The different stages of evolution following the epoch t* 
listed above occur when at the time t ~ t* the anisotropy 
of the curvature is large, tJ.o = 1tJ.*1 » 1. But if tJ.o ~ 1, 
then the Friedmann stage follows immediately after t*. 
If the purely vortex model is to be realized, then besides 
the condition tJ.* ~ -1, which removes the wave A, one 

TABLE I 

4' = 1..,'(fl. = fl 0) v 0:"; ( +),,-1" v 0,' (1'0-1')/' VF = v • ,'1'01. :,.; (-{-)" .-J>oIa 

~(-{-)' 
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must also remove the wave B or the perturbation C 
[see (10)]. For this, one must require that at t ~ t* 

v'l../t-1, (14) 

and th~ values of the Kasner exponents in the dependence 
.\a ~ t.GQa must have the following form as t* is ap­
proached from the left [see (19) and (20) below] : 

q,""'!.-17nvI81'3, q,,,,,'I.-1ly3+17nv/161'3, 
q''''''/3+1/i3+17nv/1613. (15) 

During the stage /l < 1 (t ~ t*) this solution is of the 
form 

1'''''-4 t-7 v r +17 + va (Sin t} Jco~ t} dt} - cos t} S Si~ t} dt}) ; 
~ 00 

t 

t} = f co dt""4tl'l.., v<1. (16) 

For t » X, it follows from (16) that 

W'" 'I, (Avlt)', (17) 

i.e., A = B = 0; see (10). For t* Rj Jcv < t « X 

( 'I.. )' 17n 'I.. ( 'I.. ) 1'''''-4 -v +--v'+68v' C-ln-
t 2 t 4t ' 

(18) 

where C = 0.57 ... is Euler's constant. 

The first two terms in (18) are determined solely by 
the rotation [the terms ~ L2 in (5)-(8)]; the corrections 
associated with the curvature and gravitation of the 
matter flux are small [~V2 in (18)]. Therefore, during 
the stage tosc Rj .\vr « t « ~ the solution in the princi­
pal approximation has the form 

(19) 

where A, Ao, AI, A2 are constants, A2 = 3A21 + A22, 
r = (3 + .,/3)/4. 

From the conditions of fitting to (18) [it is also neces­
sary to remember that the function .\3/( .\1i\2)1/2 does not 
contain corrections proportional to 1/yf," i.e., ~ T, during 
the Friedmann stage; C = 0, see (10)] we obtain 

A,""17n 3'{',\v/16<A, 
-A",""17nv/32<1, 

A,"" 1 (A,,""2'1..v/t<1). (20) 

For AT« -1 (t < t*) Eqs. (19) describe the Kasner 
stage with exponents (15) to terms of order ~V2. At the 
time Xv/t ~ 1 (-AT ~ 1) the Kasner stage is replaced by 
the Friedmann stage (16)-(20). At the time t ~ tosc 
Rj Xe/l Rj Xvr « t* we have the first oscillation (t - 0) 
of the oscillatory vacuum asymptotic behavior (see [11] 

and [17]), -/losc Rj r In (l/v) » 1; see Fig. 2. During the 
stage t > tosc ' v Rj vF = const « 1. 
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FIG. 2. Evolution of the 
purely vortex model with 
VF:: v* "" (t/1<)*« I 
(v "'" vF for t > tosd. I and 
II are the Friedmann stage, 
r = (3 +.,[r)/4, ql = 1/3, q2 

I! = -(YJ" - 1)/3, q3 
= (YJ" + 1)/3. 
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Thus, we have constructed the complete solution for 
the purely vortex model subject to the condition v « 1 
during the Friedmann stage. We empha.size once more 
that to eliminate the quasi-isotropic mode (A) of gravita­
tional waves from the general solution (1) it is necessary 
to specify an amount of matter in the model which is such 
that the time at which the vacuum stag~~ ends, t* = tF' 
coincides with a definite value of the curvature aniso­
tropy: see Eqs. (19) and (20), jJ. ~ -l1'or T ~ TF = A-I. 
To eliminate the Kasner modes (B and C) of gravitational 
waves it is necessary to make a special choice of the 
rate of cosmological expansion during lthe Kasner stage 
(15), (19). The amplitude of the B waves [at t -;; X, /lB 
Rj B/v't; see (10)] is directly related to the Kasner ex­
ponents during the stage (19), (20) (A = C = 0): 

1"3 ('I,-q,) 
q = 2[1-'I,('I,-q,)')," ' Iql<1. 

4. EVOLUTION OF THE VORTEX MODEL WITH 
ALLOWANCE FOR PARTICLE PRODlICTION 

(21) 

We consider the production of particle pairs near the 
singularity in the metric (1). Of course, the very formu­
lation of the problem of quantum effects in an external 
classical gravitational field is correct only when t > tpl 

= (Gn /c 5)1 12 ~ 1O-~ sec (then curvature invariants of the 
type RiklmRikZm have values less than tl~' In order to 
use the results obtained earlier in [14] a~bout the effect of 
production in a given external metric without allowance 
for the reaction of the metric to the cre,ated particles, 
we use, as in the foregoing paper [15], the following 
formal device: We shall assume that for t <to, where 

(22) 

there is no particle production; then, for t = to, when we 
can now correctly determine the vacuurn state (for ex­
ample, by diagonalizing the Hamiltonian of the quantum 
fields), the production. effect is switched on. One can 
then, as was done earlier in ref. 15, callculate the expec­
tation value (Tr>p of the energy-momentum tensor of the 
quantum fields for all t ?: to. The result obtained for 
(Tr>p' which is a functional of the given metric (1), is 
substituted into the right-hand side of Einstein's equa­
tions. Thus, for t ?: to one seeks a solution of the equa­
tions 

R"-'I,R6"=(T">p+T~(O) (23) 

with the initial condition (T~)p = 0 for t = to. The ad­
missibility of the classical description of spacetime is 
here guaranteed by the fulfillment of thEl condition (22). 
We shall assume that the classical primeval matter 
T~(O) needed if the vortex in the metric (1) is already to 

1 
have existed prior to the time to at which the production 
begins has the equation of state p = E/3. The total angu­
lar momentum L of the matter is equal to the sum of the 
angular momenta of the primeval (Lo = (:onst) and the 
produced (~) matter: L = Lo + Lp. 

The result obtained by solVing the system of equations 
(23) will depend on to as a parameter. In reality, one will 
expect that to ~ tpl; therefore, in the result obtained we 
set to ~ tpz, but t > tpZ' At the same time, we shall still 
be at the limit of applicability of the theory we have con-
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structed, and we can therefore hope that the results 
remain qualitatively correct. 

The program described above for solving Einstein's 
equations with allowance for particle production and the 
reaction of the metric to the created particles was im­
plemented in [15J for the case of the Bianchi type I model, 
in which the spatial curvature is identically equal to 
zero. The calculations of Zel'dovich and one of the 
authors [14J also referred to this model. It was found 
that the main contribution to <T~> is made by particles 
created at the earliest possible h£e, i.e., at t ~ to, 
these having had energy wp ~ tal at that time. In other 

words, the wavelength of the particles that make the 
main contribution to <T~> is of the order of the horizon 
at time t ~ to. It follow~ tIkt if we consider the metric 
(1) with initial condition 

~:>t for t=t, (24) 

(and it is a condition of this type that is physically inter­
esting)8) then the production in such a metric will take 
place in accordance with the same laws as in the Bianchi 
type I metric [to within small terms of the form (t/~.f 
and less]. Therefore, we can use the results obtained 
previously in [15J. In particular, we can assume that the 
production process ends at t ~ 3-5to; the created parti­
cles do not yet affect the metric. The reaction of the 
metric to the created particles becomes important only 
at t* ~ to; if the production occurred during the Kasner 
era with exponents ql :'5 q2 :'5 q3, then 

t* ~ to (to/tpZ)2/(1 + Iqll). At t ~ t*, quantum effects can 
be ignored and the tensor <T~>p has purely classical 
form; in particular, when t ~ t*, the tensor <T~> satis­
fies the energy dominance condition, which is viofated at 
t ~ to. 

Because the scalar curvature vanishes, R = 0, for the 
metric we are considering .(by hypothesis, the primeval 
classical matter has T = T~(O) = 0), the absence of con-

I 
formal covariance for gravitons noted by Grishchuk [25J 
is unimportant for the creation process. One must there­
fore expect that the gravitons are produced in about the 
same amount as the matter particles. 

The energy density of the created particles is ~t~zt<)4 
at t ~ to. Estimates of the cross sections [15J show that 
for all particles except gravitons ant ::2: 1 when t ~ to, 
and that then ant increases. We shall therefore assume 
that when t .~ to all matter particles are described by 
the equation of state p = E/3; at the same time, the crea­
ted matter is mixed with the primeval classical matter 
described by the energy-momentum tensor T~(O) . 

I 

For gravitons, ant < (tpz/tO)2 « 1 and ant decreases 

with increasing t, so that the gravitons always remain 
free. Their energy density is also ~t~lto4 at t ~ to, and 
the distribution function can be assumed to be approxi­
mately isotropiC, as we already assumed in [15J. The 
exact structure of the graviton distribution function is 
not important here; it is only important that this function 
decreases rapidly at energies Wg(to) > to1, i.e., when the 
wavelength of the created gravitons is less than the 
horizon. 

How does the vortex velocity of the matter change 
when new particles are created? Note first that if the 
created particles are at rest on the average in the sys­
tem (1) (Le., their center of mass in unit volume does 
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not move, ~ ;;;; 0), then once they have been mixed 

(have interacted) with the primeval matter the final 
velocity of the matter as a whole will be less than the 
primeval velocity. The change in the velocity can be 
readily calculated if one knows the ratio of the densities 
of the created and the primeval particles. At the same 
time, the total angular momentum L in unit volume of 
space is conserved. 9) 

The variation of L during the particle production and 
during the subsequent evolution of the model is a non­
trivial problem. It is difficult to calculate this variation. 
If L becomes equal to zero as a result of particle pro­
duction and subsequent evolution, this would mean that 
the total angular momentum is compensated by the 
counterstreaming motions of the matter and the gravi­
tons and that Chibisov's idea is realized. 

Let us consider the change of L during the particle 
production process. As we have already said, the produc­
tion process continues from the switching-on time to for 
a time that is, basically, of order to. We shall show that 
as a result of particle production the total angular mo­
mentum changes by an amount that is of the order of the 
primeval angular momentum Lo, i.e., that immediately 
after the particle production process has ended the total 
angular momentum is L* = Lo + I;.., ~ Lo. The mechanism 
by which L varies reduces to the {ollowing: In the pro­
duction process, viscous off-diagonal strains appear in 
the energy-momentum tensor (T~ ~ L), changing L. 
During the production process, the Bianchi identities (4) 
and (9) are satisfied. In addition, it is easy to show that 
for x »t 

[we have assumed everywhere 110 = lI(to) = 0; for T~ we 
ha ve used the estimate obtained in [14J. Hence, 

L 'loT 3_ /"2 'j, t • .' ( tPl )' L =-1 2 --V~1 -t-" AL-Lo t. ~ o· (25) 

Thus, during the production time ~t ~ to the angular 
momentum hardly changes. If we take to ~ tpz' then 

~L ~ Lo. However, analysis of the equation for L [see 
(26) below] shows that in the general case one cannot 
assert that ILo- ~LI « Lo, so that total compensation of 
the primeval angular momentum Lo during the time 
~t ~ to never occurs. Moreover, the sign of ~L is not 
always opposite to that of Lo , but depends on the sign of 
T~, which, in its turn, depends on the axis along which 
contraction takes place at the time t ~ to. Thus, under 
the condition A »t the created particles are almost at 
rest on the average. This enables us to determine the 
number of created particles on the basis of the results 
already obtained in [15J and, as we have pointed out above 
(in footnote 9), to calculate the change in the vortex 
velocity. In this way, we determine all the initial param­
eters for the subsequent integration of the Einstein 
equations (4)-(8) without any quantum effects. 

Thus, the solution of the self-consistent problem 
(4)-(8), (23) for t > 3-5to ~ t*, when the production 
processes can be already ignored, reduces to a solution 
of the Einstein equations on whose right-hand side there 
is a sum of the energy-momentum tensors of the matter 
(T~).y with equation of state E y = 3py (created particles 
except for gravitons plus the primeval classical matter) 
and the free massless particles (T~)g (gravitons).10) The 
total angular momentum when t > t* is L = Ly + Lg. 
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Here, Ly is the angular momentum of the interacting 
particles with Pascal pressure and Lg is the angular 
momentum of the free particles (gravitons); Ly = const 
in the subsequent evolution [since (T~)y == 0], and L 
varies because of the kinetics of the noninteracting 5ar­
ticles. Thus, the total angular momentum L{t) changes 
only because L does. When t ~ t*, L ~ L* ~ Lo. The 
function vet), wiose derivative determines the function 
L{t) [see Eqs. (3) and (4)] , can be found from a second­
order equation (Which does not depend on k) from the 
known metric ~a{t): 

.. ( A,,,(I') 
v+" InT, -2v(T,'),=O. (26) 

We recall that v* < 1 when t* ~ to ~ tpl (see footnote 
9). The evolution of the metric with these initial condi­
tions was constructed in Sec. 3. Thus, the problem re­
duces to integrating Eq. (26) with the initial conditions 
L ~ L* ~ Lo for t ~ t* ~ tpl' Depending on the param­
eter ex = (Eg/Ey)*, the fraction of free particles, or 
gravitons (during the quasi-Friedmann stage the graviton 
distribution function is isotropic), one can have different 
~aws of variation of the total angular momentum L{t): 

1 t-'I. (1) 
a>7' v--~-sin6' L-t'l. cos6-11sin6 , 

a < ~ v _ 1-'10+01' [1- (~)-~/'] 
7 ' 2~ I, ' 

1'1.-01' [ 1-~ ( I ) ~/2 ] a 
L-~ 1- 1+~ t: ,(-T,'),= 4(a+1)t' ' (27a) 

s\= 4~ In"':"-, ~=(I1-7al/1+a)\ 
t, 

1'<t<ID , t,=const. 

In no cases are the vortex fluxes compensated: Although 
at the initial time t > t* a vortex flux does arise in the 
graviton distribution function, and this flux completely 
compensates the vortex motions of the matter at a cer­
tain time t = teq' at this time the viscosity {T~)g is maxi-
mal [t - {T~)g ! 0] , and at subsequent times the total 
vortex flux in the gravitons oscillates with increasing 
amplitude (see Fig. 3). During the damping stage 
(tD < t < tF ) the graviton distribution function in the 
momentum space takes the form of an ellipsoid of revo­
lution that becomes ever more prolate in the a direction 
(see Fig. 1). (At the end of the damping sta2e, the pres­
sure of the gravitons in the direction a is e f.J.o greater 
than in the perpendicular direction.) Therefore, the 

tnt 

FIG. 3. Evolution of the total angular momentum L = Ly + Lg for 
Cl' = (€~/€r)* - 1 during the stage tp/ < t* < t < tp -'X (see Pig. 1, 
X! = b ). 
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graviton energy Eg >:; (-Ta) ~ (-Tb) >:; (-TC) in-
ag bg cg 

creases in this stage compared with the energy E of the 
radiation. If a 2 = .\1 > ~2, then L >:; const since in"this 
case (-T~)g decreases rapidly compared with E yet) 
[i.e., the viscosity T~ = {T~)g can be ignored]. In the 
opposite case, a 2 = ~2 > '\1, (-T~)g >:; E~~ >:; 2/3e > Ey 
[see (13)] and from Eq. (26) we obtain 

v- sin ( ~In t+q>o) , 
f3 

where cpo and Lmax are constants. 

(27b) 

Here the viscosity plays an important role since the 
powerful counterstreaming flux of free particles (-T~) 
in the direction perpendicular to the vectors k = {O, 0, \} 
and V = {v, 0, O} in the presence of rotation in the 
2-3 plane (v - v* ~ VAt ~ Lo f. 0; we recall that we as­
sume throughout Vo = 0) leads to the appearance of a 
component of the flux in the direction 3 {the direction of 
k)-to the appearance of a strong obliqUE! flux in the 2-3 
plane {T~)g >:; V{-T~)g' 

Let us dwell in somewhat more detail on the physical 
nature of the resulting angular momentum Lg (the inter­
pretation is due to Zel'dovich). The occurrence of the 
component T~ in the energy-momentum tensor signifies 
the appearance of oblique counterstreaming fluxes of free 
particles in the 2-3 plane, i.e., the principal directions 
of the energy-momentum tensor of the gravitons are not 
oriented along the axes 2 and 3 (see Fig., 4). Suppose that 
at t = to there are no directed particle fluxes in the gravi­
ton distribution function (all the fluxes are counter­
streaming, of equal magnitude in opposite directions), 
{T~)o = O. Suppose, for simplicity, that the gravitons 
move toward one another in the 2-3 plane perpendicular 
to the axis 1 at an angle 8 to axis 2 (see Fig. 4), 
{k 2 = ±ko cos 8, k3 = ±ko sin 8} are the c:ovariant com­
ponents of the wave vector of the gravitons. To terms of 
order ~ (t/'X)2, ko and 8 are integrals of the motion and 

( T ') - e. ( T ') _ eli 
- , ,- 1 +,., tg'a/A, ' - 3 ,- 1 +A, ctg' alA,' 

e,ctg a 
(-T,'),= 1+A,ctg'a/A,; 

where Eg is the energy denSity of the gra,vitons, and 

(28) 

n = const is the number of particles in unit Lagrangian 
volume. 

It is easy to calculate the energy flux density Jg of 
the gravitons that arises at an arbitrary point of space 
(A). At time t at the point A (z = 0) particles arrive that 
at t = to were at points with coordinates ::IoZ (see Fig. 4). 
where 

(29) 

Obviously. the uncompensated part of the momentum 
carried by these particles to the point A is always col­
linear with the velOCity V and equal to k1 = ko kz cos 8. 
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Thus [see (28) and (29)] 

1= (T,O),= kokzcosB n =_k_.J' E 'I, (Sin'B+COS'B)-'" 
, ")",'1' ")"." 1'1, (1")".) 'I, ,1 ")", ")", 

t, 

( ")" ) -'I. dt k t 

xcosB 1+ "),,: ctg'e """i:;h=- (")",1)'1, J l'I'(T,'),dt. 
~ 

(30) 

This equation completely recalls the physical meaning of 
Eqs. (4), which describe the evolution of the angular mo­
mentum L. It only remains to add that the occurrence of 
(T~)g is due to the rotation in the 2-3 plane [Ii f. 0, see 
(3)] _ i.e. the primeval vortex velocity v: 

(T,').",,-(v-vo)'?::" (T,')., 
")", 

so that v(t) - v(to) has the meaning of -tan e in Eqs. (28). 

5. ASTROPHYSICAL APPLICATIONS 

In the foregoing sections, we have constructed the 
evolution of the vortex model subject to the condition 
that the spatial homogeneity is preserved. This last con­
dition necessarily restricts direct applications of the 
model to processes in the real Universe. Nevertheless, 
the model does enable one to draw important conclusions. 

First of all, as we have already emphasized in Secs. 2 
and 3, the purely vortex model is extremely degenerate 
even in the framework of the homogeneous model. The 
purely vortex model differs little from the Friedmann 
model if xv/t < 1. If allowance is made for matter pro­
duction at the time to ~ tpl and the conditions for the ex­
istence of the purely vortex model are satisfied, the 
Friedmann stage begins, as we have shown, at the time 
to and continues until t = 00. However, the vortex veloci­
ties which result are then extremely small [see (34) 
below]. In the general case of homogeneous vortex 
models, the Friedmann model can be continued into the 
past only to the time t F, which is determined from the 
condition J( ~ t. Before this, the anisotropic stage oc­
curred. This condition in conjunction with the observed 
degree of isotropy of the microwave background imposes 
strong restrictions on the parameters of the model (see 
the end of this section). 
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The circumstance that we have succeeded in con-

FIG. 4. Spatial structure of the 
vortex model. 
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structing a complete solution with vortex motion from 
tpl to the contemporary t allows us to consider the 
formation of chemical elements in the model. Compar­
ison with observations gives a new restriction on the 
parameters of the vortex motion. 

We introduce the following notation: l is the contem­
porary value of J( in centimeters, K is the ratio of the 
density of gravitons to the density of photons at the con­
temporary time: K = EglEy = ae 2j.1.0/3; !j.1.! :::l j.1.0 = const 
during the quasi-Friedmann stage (tpl < t < tD), see 
Fig. 1. 

The evolution considered in Sec. 3 with allowance for 
the initial conditions at to ~ tpl in Sec. 4 enables us to 
calculate (K 2: 1) 

tF""10'x'" (lII0") 2 sec, 
tD~'X-'/:tre-3fUJtF' 

(31) 

(32) 

In the estimate we have assumed that at tpl the number 
of created gravitons is of the order of the number of 
interacting particles, a = (Eg/EY)O:::l 1. 11) IftD > 1 sec, 
chemical elements are formed during the stage of quasi­
isotropic expansion and the outcome of the nuclear reac­
tions is the same as in the Friedmann model. About 
30% He 4 by weight is formed. If tD < 1 sec, the chemical 
elements are formed during the anisotropic stage (13). 
The amount of He 4 can be estimated by the method indi­
cated earlier in [28J. For there to be less than 50% of 
He 4 (the contrary would strongly contradict observations) 
it is necessary that tD > 10-3 sec, and from (32) we find 
that 

x<lO' (lI10") 'I,. 

[We recall that Eqs. (31)-(33) apply for K ;G 1 since 
a ~ 1.] 

(33) 

Thus, the energy density in the gravitons can at the 
contemporary epoch be of the order of the matter den­
sity in galaxies, which still does not contradict observa­
tions of the chemical composition of matter. We recall 
that according to the estimates of Shvartsman [29J there 
is a much stronger restriction on K in the case of iso­
tropic expansion: K < 3-5. In our case, K becomes 
much greater than unity during the damping stage. For 
t > t F- the gravitons are distributed anisotropically: 
Up to the time t < t Fe 2j.1.0 :::l t F K 3 the distribution function 
has the form of an ellipsoid elon~ated in the direction a 
(see Fig. 1); by the time t ~ tFe j.1.0 the anisotropy of the 
distribution in the 1-2 plane is equalized out, after 
which the distribution function in the momentum space 
has the form of an ellipSOid of revolution that is oblate in 
the direction of the wave xector k (the direction c) with 
semiaxis ratio :::lej.1. 0 :::l K3 2. 

From the inequality (33) and Table I we obtain an 
upper bound on the vortex velocity vF during the quasi­
Friedmann stage: 

v ~ (-.!....). x"" (!.!:.-)'j, x'/."" 10-26 (...!-)-' x'''<l0-21 (_l ) -'I. (34) 
FAt F 10" 10"-

which is obviously quite inadequate for the vertex theory 
of the origin of rotation of galaxies. 

Note also that the upper bound on K that follows from 
the fact that at the contemporary time we undoubtedly 
have n = dE < 4 and therefore K < 105 is weaker than 
the bound (331 associated with the chemical composition. 

We now turn to the restrictions that follows from ob-
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servations of the isotropy of the microwave background 
radiation. For a model with gravitational waves (V = 0) 
with K = 0 the expressions for AT/T obtained earlier 
in [20] holds. Let Z1 be the red shift at the time when the 
Universe became transparent for the radiation. From 
observations there follow bounds on the large-scale 
anisotropy of the radiation: 

(35) 

According to our earlier results, [18-20] we obtain the 
following bound at the time tF: if zl ~ 103, then tF ~ ~l' 

For the purely vortex model AT/T ~ vi. [Recall that 
in the models we are considering one always has n "" 1 
and the anisotropy of the background radiation has a 
quadrupole nature.] 

In the case when K :;;:: lone can use Eq. (31) and for 
AT/T we then obtain (for simplicity, the graviton dis­
tribution function is approximated by a counter streaming 
flux in the direction a; see Fig. 1) 

t:..T "" (~) 'I, {x·I'.1O-'(Z,/10')"', z,<10'/" 
T 10" x'I •. 1O-' (z.l1O') "', z,>10'/" . (36) 

Obviously, this model can be reconciled with the obser­
vations only if K and l are small. 

We are very grateful to Ya. B. Zel'dovich, at whose 
initiative this work was carried out, for numerous dis­
cussions. 

I)Zel'dovich and one of the present authors (10) have shown clearly 
that this growth of the perturbations is due to the growth in the 
anisotropy of the deformation of the model. 

2lThe total vortex is reversed because of the reversal of the vortex of 
free particles (gravitons) on account of the kinetics of their motion 
(see Sec. 4). The vortex of the interacting particles remains un­
changed. 

3)We assume that among the created particles gravitons do not form 
the overwhelming fraction of all particles. If this is not so, the velocity 
of the vortex motion need not be small in the late epoch. However, in 
this case the energy density of gravitons at our epoch would exceed 
by many orders the density of the microwave background and the 
density of ordinary matter, which in incompatible with the estimate 
of the age of the Universe. 

4)The transformation S = {S~ (det S = I) determines the moving 
frame e' = {e~'} relative to the fixed frame e = lea}, e' = eS,ifit 
leaves invariant the structure constants C~ab = e~~ (a(if~ - aae~) 
reduces the metric tensor to the diagonal form 'Y = SAS ,where 
'Y = {'Yab}, A = diag {Aa} (see (17)). For the metric (I), the following 
components are nonzero: CJ3 = cjl = -k, SI = S~= S~ = I, S~ = v. 

S)Note that the function vet) does not occur in the basic equations 
(4)-(8) and is determined independently from (3). This splitting of 
the equations holds for all homogeneous metrics. (17) 

6)During the evolution, all models of this type approach the Friedmann 
model with critical matter density. [",17-20) In what follows, we 
shall assume that the matter is described by a hydrodynamic energy­
momentum tensor with p = 1:/3. 

7)If Jl. == v == 0, the three-dimensional section t = const is flat and the 
metric (I) describes an axisymmetric model of type I. The perturba­
tions in the Friedmann stage, &xf3 - t(Bcxj3 - hcxj3), are of the form 
hcxj3 = CPcx[3/t I 12, where Pcx[3 = diag {I/3; 1/3; -2/3}. The tensor Pcx[3 
can be obtained by a passage to the limit (n -+ 0) from either the 
scalar mode (and then Bl:n -+ 0, Vn ~ 0): 

( 1 n.n~ ) 
Prxr. = lim -Ba~ - -,_ e ir1z , 

11-+0 3 n 
n~ {n.} ~ (0, 0, n), 

or from the two tensor modes: 
p., ~ lim ['/,e;"'% diag to, 1, -I} + '/,e;"" diag {t, 0, -t}]; 

n,~{n" 0, OJ, n,~{O, n" OJ, n,~n,~n. 

S) As we shall see in Sec. 5 (see [20)), if we take to - tpl and 1\ - to for 
t = to and Jl.o - I, then at the present time (t - 10 18 sec) 1\ - 10-1 cm. 
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But if we take -lI: equal to the mean distance between galaxies, X - 3 
Mpc - 1025 cm, then (t/K)o - 10-26. 

9)From the condition that the total angular momentum L of unit 
volume does not change appreciably during the production process, 
At - to, see (25), one can readily estimate an upper bound for the 
vortex velocity of the matter after the end of the production proces­
ses of particles and their mixing with the primeval matter. For t «A, 
we obtain from Eqs. (4)-(8) the inequalities 

I:v(l + V2)II2AteJl.:::;: I, telJl.l:::;: A, 

and, in addition, when to"" tpl we have I: - I/f p12, i.e., t* - tpl , and 
to estimate v* it is sufficient to use Eq. (II): 

v* :::;: te-Jl./A::; I, t - t* - tpl. 

IO)Note that when t » to the wavelength of the gravitons that make 
the main contribution to the energy-momentum tensor is much less 
than the horizon and therefore these gravitons are well defined 
classical entities, i.e., short gravitational waves on the background of 
the metric (I), and they can be treated, for example, by Isaacson's 
method. (26) 

II) According to generally adopted theories, 0/ does not differ strongly 
from unity. (27) Estimates for arbitrary 0/ can be rea.dily obtained from 
Eqs. (12) and (13). 
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