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An expression is found for the critical temperature in a regular system of hybridized sf-electrons with 
strong intra-atomic correlation U that is taken into account exactly. It is shown that when there is a 
localized level El positioned below the Fermi level EF there is an effective attraction between the s-electrons 
via the f-Ievel. which is accompanied. however. by scattering of the effective-exchange type. which hinders 
the formation of Cooper pairs. The condition for the existence of superconductivity is changed in 
comparison with that in the molecular-field approximation and is found to be substantially asymmetric 
with respect to the poliition of El relative to EF' The results obtained correspond to the appearance of 
superconductivity in Ce when it undergoes the a-a' phase transition under pressure. 

PACS numbers: 74.10.+v 

As is well-known, in the treatment of Cooper pairing 
in transition metals it is necessary to take into account 
the interaction of the conduction electrons (s-electrons) 
with the stronl!ly localized electrons of unfilled shells 
(f-electrons)[l 51. Of special interest is the case when a 
narrow band or a slightly broadened f-electron level is 
situated near the Fermi surface; this case, apparently, 
is realized in U and La, and also in Ce under pressure. 
In this case it is important to take into account the sf
hybridization interaction, which leads to the admixture 
of a certain proportion of f-states into the s-electrons 
at the Fermi surface. An important role is also played 
by the Coulomb repulsion between localized electrons 
at the same site. This repulsion is usually treated in 
the molecular-field approximation. In this case, owing 
to the hydridization, there arises an additional repulsion 
between the conduction electrons, which hinders the 
Cooper pairing[4, 5 l . 

In the present paper it is shown that the situation is 
substantially altered in the case when the Coulomb inter
action is strong and the Hartree-Fock approximation is 
inapplicable inasmuch as the Hubbard splitting of the lo
calized levels cannot be correctly taken into account in 
it. We shall take the strong correlation of the f-electrons 
into account exactly, treat the hybridization interaction 
as a perturbation and analyze the cases of strong and 
weak hybridization, when the levels of the localized el
ectrons are positioned both above and below the Fermi 
surface (only the paramagnetic case is considered). 

The elementary excitations in the subsystem of lo
calized electrons are the charge (and spin) density fluc
tuations at the sites. A result of the motion of the s-elec
trons is the "polarization" of the intrinsic degrees of 
freedom of the f-states, and the interaction of the conduc
tion electrons via the localized electron states can lead 
to an additional effective attraction in the framework of 
the hybridization Hamiltonian, even when the mechanisms 
associated with the sf Coulomb and exchange interactions 
are not taken into account[6, 7l. However, as will be shown 
below, in the case when such attraction arises it is ac
companied by scattering of the conduction electrons by 
the localized f-electrons, this scattering having the 
character of effective exchange. The latter mechanism 
decreases the electron-phonon interaction constant, in 
the same way as paramagnetic impurities hinder Cooper 
pairing in normal metals181, and the additional attraction 
turns out to be insufficient to compensate this decrease. 
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We shall take the Hamiltonian of the system in the 
form 

ll~H<+H!+H"+ll.,, f{,~ !:ekaCka+Cka. .. 

!f.,~gN-··' ~ (rikmc,,,+am.+h. c.) 

kom 

~g.\'-" E [r'kmCka+(Zm"a+~(JZm-O')-Hl. el. 
t,m 

(1) 

Here cka and ama are the second-quantization operators 
of the s- and f-electrons, m is the coordinate of a lattice 
site, g is the sf-hybridization constant, U is the para
meter of the intra-atomic Coulomb interaction of the 
f-electrons, which is assumed to be the largest energy 
in the system; Hs is the Hamiltonian of the s-eiectrons, 
which we describe by one broad conduction band, Hf is 
the zeroth-order Hamiltonian of the localized f-electrons, 
including their strong correlation at the same site. We 
assume that f-electrons belonging to different sites do 
not interact, and neglect their degeneracy with respect 
to the components of the orbital angular momentum. Hss 
describes, in the framework of the BCS theory, the at
traction of the s-electrons that is due to the phonons 
(>< > 0), and the summation in this term is restricted to 
the energy region of width 2wo about the Fermi surface. 

For convenience in taking the interaction U into ac
count in the zeroth apprOXimation, in Hf and Hsf we have 
changed to the second-quantization operators of the 
eigenstates of the f-shells[9]: 

ZmOO=ama + (l-nm_IJ). Z,:-o=2aamG +nm - o, ZIll2:!=nmanm_a, 

Z .. ""~nm.(1-nm_o). zm"~ (l-n ... ) (t-n m- o ) , (2) 

Z~I).JZ!"'·=Z!,1,.B).2)." ' .. =0,0',2. 

Two positions of the Fermi surface relative to the 
one-electron levels El and Ef = E 1 + U (below, all ener
gies are reckoned from the Fermi energy EF) are of 
interest: EF lies near El, or near Ef. Then, owing to the 
large value of U, in Hsf we may consider, res pectively , 
only the transitions 1 0) - J 0'), keeping the terms with 
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zgp and zRf, or only ~e transitions ja) -12), keeping 
the terms z fir" and Z~ . We shall discuss the first case, 
and the results for the second case can be obtained in 
an analogous manner. 

We shall seek, as usual[lOl, an expression for the 
s-electron vertex part ra{3 1I5(Pl, PI'; P2, P2') (P = k,w) 
of the two-particle Matsubara Green function Gll for 
PI + PI' = 0. The first nonzero term rCltpl, P2) of the 
perturbation-theory series in g, A is equal to 

r,lI (p" p,) =1'+1', 1'=-", 1'=1,+1" 
1, (p" p,) =28,Kg'cp,cp" l'(P', p,) =Mg'cp,~". (3) 

K=P.+P" A=P.-P,+K', qJ.=(w,'+e,')-" ~,,=6(w,-w,). ~=T-' 

Here we have omitted the spin indices corresponding 
to the singlet interaction, and also the conservation 
laws for the quasi-momenta and frequencies. The term 
"s corresponds to the Hss-interaction and yf to the 
Hsf-interaction. This term appears only in fourth order 
in g. The calculation of yf contains certain specific fea
tures arising from the non-Fermi commutation r~lations 
for the Z-operators (2). The details of this calculation 
are given in the Appendix. The quantity Pa is the proba
bility that there is an f-electron with spin a at the site, 
and Po is the probability that there is no f-electron: 

<. •. >,=Sp e-~H,(. .. ). 
(4) 

First of all we note that the vertex j'2 is nonzero only 
for WI = w2, while the vertex Yl changes sign on change 
of the sign of El and, for El < 0, the interaction described 
by it corresponds to the effective attraction of the s-elec
trons via an f-level that was discussed above. 

The problem of calculating r reduces formally to the 
BCS case, where the leading apprOximation is the ladder 
approximation[IO]: 

(5) 

Here the shaded and unshaded squares correspond to 
r and r (1) respectively, and the thin lines to the zeroth
order s-electron Green function Gkd(w), In our case, 
however, because Y2 is diagonal in WI and W2, the graph 
(5) corresponds to a system of two equations for the di
agonal and non diagonal parts of r. Because of the factor
ization of r(ll in WI and W2, the system (5) can be solved 
exactly. The condition for the existence of a pole of r 
corresponds to the vanishing of the determinant 

I i-a.. a" 1=0 
atll 'i-a". ' 

(6) 

where 

a,,=A~-' ~ B'" (w)R-'(w), a!f=-2e,Kg'~-' ~ qJ'(W)B'" (w)R-' (,ol. 

a"aj.=-2e,Kg'" (~-' ~ cp(W)B'OI(W)R-'(61) )', (7) 
w.lc~I<llIo 

B'OI(W)= ~G.'O)(w)G~:1 (-w)=prrlwl-', R(w)=l+Ag'cp(w)B(O} (w). 

• 
We emphasize that the appearance of the denominator 
R(w) in the expressions (7) is due entirely to taking 
processes that are diagonal in WI and w2 , i.e., the ver
tex Y2, into account. 

Before analyzing (6) and (7), we shall discuss what is 
altered by complicating the vertex part j'f and the s-lines. 
Complicating yf can lead only to a renormalization of the 
atomic level 101, and we shall assume that this has been 
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performed at the outset. It is more important to consider 
the influence of hybridization effects. To take this influ
ence into account it is sufficient to replace the zeroth
order s-electron Green function in (5) by(ll] 

G _ iw-e, 
• - (iw-e.) (Iw-e,) -Kg' 

(8) 

This leads to a change in the density of states of the 
s-electrons near the Fermi surface and to the replace
ment of B(O)(w) in (7) by B(W): 

rrp (00'+8,') 
(9) B(w) 

1001 (w'+et'+Kg') . 

In obtaining (9) we have assumed that pg2 < I Ed, and we 
shall assume that this condition is fulfilled everywhere 
below. 

With (9) taken into account, the expressions (7) finally 
have the form 

1: tJ)2+-et2 
a - "rr -, 
.. -p ~ (w'+e,'+Kg') (lwl+2rrT.) , 

CII,I.I<~ 

afJ=-2pg'e,Krr~-' ~ [(w'+E,'+Kg') (e,'+w') (lwj+2rrT.) )-', 

(10) 

Q .• ,a,.= (-2pg'e,K)p" {rr~-' 1: [(w'+e,'+Kg') (lool+2rrT.) I-I r. 
_,I.l<",-

T.-Apg'/2(e,'+Kg') . 

In the expression for Ts we have omitted the I WI2 appear
ing with d + Kg2, bearing in mind that the principal con
tribution to the sums is given by the region of small 1 wi. 

We shall consider the case of weak hybridization 
(\ E 1 \> g). It is easy to see that in this case we can neg
lect the off-diagonal elements of the determinant (6). 
Then the critical temperature T c is determined by the 
equation 

e,' OOo+T. 
a .. =p"-.--,ln--=i. 

e,-+Kg Tc+T. 
(11) 

If the localized level El lies above the Fermi surface 
(101 > 0, P a = 0, Po = 1, Ts = 0), the role of the sf-inter
action reduces to an effective decrease of the electron
phonon interaction constant: Aeff = AEi/(e:i + g2). The con
stant Aeff is distinguished by the absence of the addition
al repulsion that arises in the molecular-field approxima
tion (cf. formula (14) of the paper by Kocharyan and 
Khomskiti 5])1l, so that exact allowance for the Coulomb 
interaction appreciably alters the expression for Tc. 

When the level El lies below the Fermi surface 
(£, < 0, P a= 1/2, Po = 0, Ts = 3/4pg4/(2d + g2)), Eq. (11) 
is soluble only under the condition E~ > pg4/TcO, TcO 
<::; woe-1/ PA . For low values of IEll Cooper pairing is 
impossible at any temperature. The appearance, for 
E, < 0, of a mechanism hindering Cooper pairing (Ts 
f 0) resembles, in its physical meaning, the situation 
with paramagnetic impurities in a normal metal, con
sidered by Abrikosov and Gor'kov(!I): in second order of 
perturbation theory in g there are terms corresponding 
to effective sf-exchange, which hinder the appearance of 
singlet Cooper pairs. For £, > ° and P a = 0 this scat
tering channel, associated with the vertex Y2, disappears. 
In our case Ts plays the same role as the inverse re
laxation time T~1 of conduction electrons interacting 
with an impurity subsystem [8]. 

It is possible to see this by representing Hsf from (1) 
in the form of an effective Hamiltonian of second order 
in g[l2]: 
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H=~N-t E E Itt·e-i(k-k')_Z~·O Cko+Ck'o' 

kk' • .. ' 
+N-t.E .E Jktei1'(·-·')Z.oOZ.~O t 

.... ko 

(12) 

We separate out from this Hamiltonian the partHsf cor
responding to the effective sf-exchange interaction. For 
£1 < 0, Po = 0, 

B.r=-2N-' E L1tt,e-,tk_k·)·S. (8) •• 'C" +c.·.·. 
1I;k' • .. ' 

We now find the contribution to the vertex part r from 
Rsf, to second order in J. By direct calculation we con
vince ourselves that, in the case of weak hybridization 
(Iwl, Ek < I Ed), the corresponding vertex coincides with 
Y2 from (3) (which determines Ts ), including the factor 
A, which, for Po = 0, is equal to S(S + 1). We note, how
ever, that full correspondence between Ts and T~l from [8] 

does not exist, inasmuch as we are conSidering a periodic 
system. 

The super conducting properties of a periodic sf-ex
change Hamiltonian have been considered in detail in 
papers by Izyumov and Skryabin[lS] (in the ferromagnetic 
case). As we have seen, the hybridization model reduces 
partially to an effective sf-exchange Hamiltonian only in 
the case of weak hydridization (IE11/g > 1) and for 
E 1 < O. Both the possibility of the appearance of an ef
fective attraction as a result of polarization of the in
trinsic degrees of freedom of the f-shells (the vertex 
part Y1) and the hybridization effects are then lost. Also 
lost is the possibility of treating the disappearance of 
localized moments on change of the sign of E1' The fact 
that, unlike Izyumov and Skryabin [13] , we have chosen 
the paramagnetic state of the system to analyze the super
conducting properties is also connected with the incom
plete reducibility of the Hamiltonian (1) to itsf. The mag
netic properties of the system (1) in the simplest apprOXi
mation were analyzed in a paper by Smith[14T, who showed 
that, in second order in g, the system is paramagnetic 
when E1 < O. The fact that the paramagnetiC state is en
ergetically favored is mainly connected with the hybrid
ization effects (with the last term in H (12), which de
scribes jumps of f-electrons from site to site across 
the s-band). The effective exchange gives a contribution 
to the magnetic energy only in fourth order in g, and, 
evidently, cannot change the magnetic properties of the 
system. 

In the case of strong hybridization (I E11/g < 1) the 
determinant (6) is always nonzero, whence it follows that 
in these conditions the normal state is stable against 
Cooper pairing at all temperatures. 

Thus, the region in which the sf-interaction com
pletely eliminates the possibility of Cooper pairing is 
essentially asymmetric about the Fermi surface: 

- (pg'/T,,) '1,<£.1 g<t. (13) 

Thus, if we want to take a non-superconducting transition 
metal over into a supprconducting state, we must try to 
increase El. Such a situation is apparently realized in 
Ce, which becomes surrconducting in the ~-a' transi
tion under pressure[lS . 
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In conclusion we note that the results obtained above 
are carried over automatically to the case when the 
level Ef of the second f-electron lies near EF (see the 
Appendix). For this it is sufficient to change to a hole 
representation, which reduces to replaCing E1 by-q 
in (13). 

The authors thank E. G. Maksimov and D. I. Khomskir 
for useful discussions. 

APPENDIX 

The vertex part ~J3 y6(PIP2, PSP4) obtained by exe..and
ing the S_-matrix to ord~r g4 in the expression for aJl 
contains four Z-operators: 
(TZm ~(Tl)ZinSy(Ts)Zm2(3(T2)Z~41i(T4»f' where Z~a 
== Z~ and Zma == Z&P'. The averaging is performed in
dependently at each site, and therefore there are two 
possibilities: either all four operators refer to the same 
site, or they refer in pairs to two distinct sites. 

In the first case the contribution to yf is proportional 
to the Fourier component with respect Tl> T2, Ts, T4 of 

N-' E (TZm• (1:,)Zm,+ ('t,) z .. , ('t,)Zm'+ ('t,) ), exp{i (k,-k,+k,-k.) m}, 

a method for calculating which is given in [16] using 
the example of the Anderson model. Carrying out the 
Fourier transformation, we obtain an expression in the 
form of two terms: 

, (-1)g'[i(w,+w,)-2£,] (P,,+I'.) 
1,+12 = (6.,6,.-6.,6,,) . . . . 

('W,-f,) (",',-£,) (1(03-e,) ('Oh-f,,) 

+ pg' 
( . ) (' ) [6.,6,"(I'"~",",,,,-P"~'t:'12,) 
lWl-E'1 l(t)~-E'I 

-0.,6" (P."" ,,!i, .. -P,"" , .,!i,,,) 1 ~,,+k,.k,+.,. 

In the second case the contribution to yf is proportional 
to the Fourier component of an expression of the form 

N-' E (TZm,.(T,)Z;'T(T.,»,(TZm,,(T,)Z!,,(T.». 
m,m,! 

'm,-.-m~exp {i (k,-k,) m,+i (k,-k..) mol. 

We represent the sum over ml and m2 for ml f m2 in the 
form of a sum over all ml and m2 of (1 - lim m ). Here 

1 2 (1) 
only the second term is related to the vertex part r 
and leads to 

The sum of Y2 and Y2 gives Y2 in (3). 

We note that if we had considered the case in which 
the level €f lies near the Fermi surface, the expressions 
for Y1,2 would have differed from those given above only 
by the replacement of El by -Ef and of Po by P 2 =<Z~) 
= {1 + 2 exp ((3q)}-l. 

1)TI!is formula can also be formally obtained in our case, if Eq. (6) is 
replaced by I - ass - aff = O. 
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