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We consider hot transfer (HT)-the transfer of electronic excitation in activated crystals and solutions in 
an unrelaxed (hot) vibrational donor state. We give calculations in the framework of: a) semi-classical, and 
b) quantum theory. Assuming a strong electron-phonon interaction we find the probability for HT as a 
function of the frequency of the excitation. We apply the results to both inter- and intra-center processes. 
We show that HT can serve as a cause for the Weber effect and also can explain the way the intercenter 
depolarization of luminescence depends on the frequency of the excitation. 

PACS numbers: 71.85.Ce 

1. INTRODUCTION 

In condensed systems some part of the energy of an 
electronic excitation turns into heat. The corresponding 
relaxation process is, as a rule, very short; 10-11 to 
10-15 s, much shorter than the lifetime of the created 
electronic excitation. Because of this one usually con
siders the subsequent electronic transitions, among 
which is the transfer of the electronic excitation between 
centers, under conditions of a thermal distribution 
among the vibrations, However, if the interaction energy 
v between centers is sufficiently large, the excitation 
may go over from the first center (donor) to a second 
one (acceptor) before the vibrational relaxation in the 
donor is finished. [1-3J The above-mentioned process of 
the transfer of electronic excitation is below called 
HT-hot transfer. since it proceeds in a hot (non-equili
brium) vibrational state of the donor, 

We note the following important property of HT, which 
distinguishes it from the transfer after vibrational re
laxation; in the HT mechanism there can not be an en
ergy loss between the photo-excitation and transfer 
processes. HT is therefore effective when the absorption 
spectra of the donor and the acceptor overlap. The usual 
transfer, which is effective provided the luminescence 
spectrum of the donor and the absorption spectrum of 
the acceptor overlap, may in this case be absent because 
of a shortage of energy. An important distinguishing HT 
property is also the dependence of its probability on the 
excitation energy. This dependence gives a simple 
means for experimental detection and study of HT. 

We shall give an estimate of what the interaction must 
be in order that HT be reasonably probable. We stipulate 
that here and below we shall deal only with incoherent 
HT which requires a smaller interaction energy v than 
the coherent HT, i.e" with the case when tc < Il/v. 
(This condition means that the damping time of the phase 
correlation tc ~ (a1 + a 2)"1, also called the transverse 
relaxation time, is smaller than the characteristic time 
Il/v of the coherent HT; al and a2 are the half-widths of 
the donor and acceptor absorption bands.) The charac
teristic time of incoherent HT equals n2/tc v2• Its proba
bility will thus approach unity if this time is larger than 
or of the order of the (longitudinal) energy relaxation 
time to. This gives the following estimate for v; 

v?li(tcto)-'''. (1) 

If we take to :;;:: w-1• tc ~ 0.1 to, W ~ 1013 S-l (W is the 
average vibrational frequency), we have v ~ 10-2 ey. We 
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note that (1) does not violate the condition that the HT is 
incoherent. tc < Il/v, as tc:S to. 

The estimate (1) shows that HT may play an important 
role in intra-center processes where the interaction of 
the magnitude stated here is already guaranteed by the 
adiabaticity operator. As an example we encounter the 
depolarization of the luminescence of mercury-like ions 
in alkali -halide crystals during vibrational relaxation, 
leading to a strong dependence of the degree of polariza
tion on the excitation frequency. [4J In the case of inter
center transfer the estimate (1) imposes a limitation on 
the distance R between donor and acceptor, In particu
lar. for a dipole-dipole interaction (v ~ M1M2/R3; Ml 
and M2 the donor and acceptor electronic matrix ele
ments) condition (1) is satisfied for distances 
R::; (3_5)/ 213 (R and 1 in nm), where I = (M1M2/e 2)1/2 
characterizes the linear dimensions of the excited 
states. Hence it follows that for small radius lumines
cence centers (l S. 0.2 nm) in crystals and solutions HT 
can proceed only at distances up to L 5 nm, and in the 
case of large molecules with I ~ 2 nm at distances up to 
7 to 8 nm. For slowly relaxing molecules (centers) R 
can also be larger. provided there is resonance between 
the vibrational levels of the excited electronic states of 
the donor and the acceptor. 

As an example of intercenter HT, where the condition 
(1) is satisfied at distances ~ 7 nm we can mention solu
tions of chlorophyll molecules in which Bauer and 
Rabinowitch[5J (see also[6J) have recently shown that 
energy transfer in a hot vibrational state, indeed, plays 
an important role. Even earlier Gueron, EiSinger, and 
Shulman [7J arrived at the conclusion that energy trans
fer processes occurred in an unrelaxed vibrational state 
in polynucleotides. We shall show in the present paper 
that hot transfer also causes the Weber effect [8J -a de
crease in the probability of self-transfer in the long
wavelength side of the absorption spectrum, often ob
served in solutions of aromatic compounds.1) 

Apart from the above mentioned papers [1-3, 5-7J 
HT has also been discussed in [11, 12J. General formulae 
describing HT were obtained. It follows from these 
formulae that if we neglect the dynamical correlation of 
the donor and the acceptor 2) the probability for HT is de
termined by the overlap integral of the acceptor absorp
tion spectrum with the total photon spectrum emitted by 
the donor in the vibrational relaxation process. The lat
ter can be split into resonance scattering and hot lumin
escence (HL)[13J (plus interference effects between 
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them). The possibility of such a division is caused by the 
difference in speed of the transverse (phase) and the 
longitudinal (energy) relaxations: emission after the 
damping of the phase correlations, but before the finish 
of the energy relaxation correspond to HL, while emis
sion before the damping of the phase correlation corre
sponds to scattering. 

The theory of the hot luminescence and resonance 
Raman scattering spectra has been developed in a num
ber of papers (see, e.g., [13-16]). The formulae determin
ing these spectra are, in the general case, complicated 
and as a consequence we shall perform the evaluation of 
the probability for HT analytically only for a few simple 
cases. One such case-the case of a strong interaction 
of the donor and the acceptor with the nuclear vibra
tions-is of considerable interest and is considered in 
the present paper. 

2. SEMICLASSICAL THEORY OF HT. WEBER EFFECT 

We consider first of all the intercenter HT at dis
tances such that the dynamical correlation effects are 
unimportant (we note that these effects diminish like R-3 

with increasing R [17]). We assume that the donor and 
the acceptor are characterized by a strong electron
phonon interaction and have overlapping broad structure
less absorption bands with a Gaussian shape: . 

XiI"~ (00) =.K,:"n-' (2lta,~,,) -'I. exp [ - (oo-Q,(,,) '120:(" J. (2) 

Here '2 1(2) is the frequency at maximum, and U1(2) is the 
variance of the donor (acceptor) absorption band, 1 1 (2) 
a normalizing factor which determines the donor (accep
tor) electronic matrix element. In this case 
tc ~ {w/[S(2n + 1)]}-1 and the time during which the 
donor energy while relaxing remains in resonance with 
the acceptor absorption band equals to 
~ {w[S/(2ii' + 1)]1/4t1 (here S » 1 are the dimensionless 
Stokes losses of the donor, ii' = {exp(nw/kT) - WI, 
U1 ~ U2 ~ w.J{S(2n + I)}; for an estimate of to see below), 
i.e., the characteristic damping time of the phase corre
lations is much shorter than the time during which HT 
can proceed. A small part of the energy, which gives a 
contribution to the overlap integral for the HT probabil
ity, goes therefore to scattering; the main part of the 
energy is the HL itself. 

It follows from what we have said that in the case 
considered 

(3) 

where K2(W) is the acceptor absorption spectrum in 
which 1Un2 = 1 (such a choice of 12 corresponds to 
normalizing the area of the spectrum to unity), IHL,l is 
the donor HL spectrum determined by the probability 
that the donor emits a photon of frequency w while it re
laxes, Yo is the radiative damping coefficient of the ex
cited electronic state of the donor. 

We assume that after absorbing a photon the donor 
falls into a strongly excited vibrational state. Quantum 
effects are small in that state. We can therefore find the 
HL spectrum which interests us using the semi-classical 
approximation. [18] According to that approximation the 
electronic transition takes place with conservation of 
the coordinates and momenta of the nuclei (Franck
Condon principle). The frequency w of the transition at 
the coordinate q is then determined by the difference in 
the adiabatic potentials V(q). Hence 
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(4) 

where p (q) is the probability that in the relaxation proc
ess following the absorption of a photon of frequency Wo 

the system reaches the coordinate q. Bearing in mind 
that this probability can be written in the form p (q) 
= l/ldq/dtl, and using for the difference in the adiabatic 
potentials the linear approximation in terms of the 
nuclear displacement V(q) = n('2 L + aq) we write this 
formula in the form 

(4a) 

Here tk is the solution of the equation w - '2L - aq(t) = 0 
with q(O) = (wo - '2L)/a ~ 2SW/a; '2L is the frequency at 
the maximum of the luminescence spectrum (see Fig. 1). 
Equation (4a) expresses the well-known fact that the 
main contribution to the spectrum comes in the semi
classical approximation from the region near the turning 
points where the absolute magnitude of the velOCity 
Idq/dt I is small. 

The t-dependence of q in the turning point region has 
a simple form: 

q (/) ~q;[ l- I/ 2w' (t-t;)'), 
I I-I.! ~2,,/w 

(qi == q (ti) is the coordinate and ti the time when the 
i-th turning point is reached; we neglected in (5) the 

(5) 

i -dependence of w which is unimportant in the actual 
range qo - qi «qo). Hence it follows, in particular, that 
the time during which V(q) changes by an amount 
~ U ~ w.J{S(2n + I)} is, as far as order of magnitude is 
concerned, larger than or equal to 

1 (2it+!) '.', 
t o-- -- • 

l;' S 
(6) 

Substituting (5) into (4a) gives the following formula for 
the HL spectrum in the actual region Wo - w ~ u: 

(7) 

(Lli = a(qo-qi)' Llo = 0; oW = 1, if i = 0, Ow = 0, if i ~ 0, 
!i(x) = 1, if x > 0, !i(x) = 0, if x < 0), where we must here 
sum only the contributions from those turning pOints for 
which Ll i ;S, W v'So (We assumed in (7) that for an excita
Hon in the donor absorption band Wo - '2L '" 2S(;), see 
Fig. 1.) 

We note that in the case of centers with a fast vibra
tional relaxation we must take into account in (7) only 

FIG. I. Potential curves and 
transitions leading to hot lumines
cence; K( wo): absorption spectrum. 
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the term i = 0 as here ~i ~ wS, i ~ 1. In that case Eq. 
(7) is in the region Wo - w »w the same as the more 
exact formula for the HL spectrum obtained in [12J in the 
framework of quantum theory. However, in those cases 
when there are high-frequency local vibrations it may 
turn out to be important to consider several terms in (7). 

To find the probability for HT it remains to sub
stitute the expression obtained for HL of the donor into 
Eq. (3) and use (2). We then get 

v' (2nV2 )'1'1: • LU H (00,,)=--:;- --.- (2-liiO)T(x-~,), 
T tr Sw'a. - , 

(8) 

where the function 

T(.r)=~ S~"XP(-(z-X)')~ (9) 
? ~l 
~ , " 

determines the probability for HT as functions of the 
dimensionless excitation frequency 

x=(w,,-Q,)/a,iz, ~'="';a,iz. (10) 

This function is shown in Figs. 2c and 3, from which can 
be seen that this is a strong dependence. 

It is clear from Eq. (8) that taking the non-zero turn
ing points into account is important only for the short
wavelength edge of the above-obtained x-dependence of 
wHT' One must. however. stress that the number of 
turning points which must be taken into account in (8) 
depends strongly on the nature of the vibrational relaxa
tion. The non -vanishing terms with ~ i ~ 1 in (8) (see 
Fig. 2) will be present only in those cases when there 
are high-frequency local vibrations. We note also that 
not only in those cases when there are high-frequency 
local vibrations, but also in those cases when they are 
not present. there can be deviations in the short-wave
length region of the frequency-dependence of the proba
bility for HT from the simple dependence given by the 
function T(x). Indeed. if in (6) we take into account the 
next term in the expansion we must in (8) replace the 
function T(x) by the function 

1 - dz 
T,(x)=--;l f--;c;exp(-(z-x)') (1+~z) (9a) 

({3 = U2/ 25i2SW ~ S-1I2) which differs appreciably from 
T (x) only in the region x » 1 (see Fig. 3). 

(WO-W)"'fl"Z 0 

FIG. 2. a) HL spectrum in the case of fast vibrational relaxation 
(~i ~ a, i;;' I); b) HL spectrum taking into account the turning point 
for which ~1 = 3a/2; c) probability for HT as function of the excitation 
frequency (in units v2(211'/2)112/h2(Sw 3a)1/2) for ~i ~ a, i ;;. I; d) the 
same as c) but taking into account the turning point with ~1 = 3ay1L. 
"2 is the acceptor absorption spectrum. 
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FIG. 3. The function T(x): full drawn curve (see Eq. 9)), and the 
function T l(X): dash-dotted curve (see Eq. (9a», evaluated for 13 = 0.04 
(S = 20). "l(X) is the acceptor absorption spectrum (x = (wo - nl)laxJ2~ 

We estimate the magnitude of wHT. When the excita
tion is in the region of the maximum of the acceptor ab
sorption band (x = 0) T(x) ~ 0.9. The factor (Sw3U2rli/2 
is approximately equal to 

1 (2;;;+1) 'i. tcto---- --- . 
a,w S 

As a result we have, in accordance with the above 
given qualitative considerations wHT ~ tctO(V/tl)2. 

A dependence of the probability for energy transfer 
on the excitation energy, similar to the one obtained 
above, was observed in 1960 by Weber [8J in solutions of 
aromatic molecules. It is important to emphasize that 
not only the spectral dependence of HT, obtained above, 
but also its probability agree with Weber's experimental 
data. Indeed, for self-transfer in the case of dipole
dipole interactions (v = kM2/nR3, n: index of refraction, 
k2 = %: orientation factor) 

WHT(X)=B(:o)'( R~QJ61: (2-liiO)T(x-~,). 
, 

(11) 

B = ~ 2'I·rr.'''k'S-·!· (2ii+ 1) -'f. 
16 

(we used M2 = 3Y0112c 3/4nilI). Defining the transfer 
radius as the distance Ro at which w = 7'2 we find for a 
phenol solution (ilL = 1015 s-l, U = 4.5 X 1013 s-1, yo = 2.5 
X 107 s-l, n = 1.5) for excitation in the region Ix I ~ 1 
that Ro = 1.8 ± 0.2 nm which completely agrees with 
Weber's experimental estimate [8J Ro = 1.7 nm. 

3. QUANTUM THEORY OF HT. GENERAL FORMULAE 

We take into account that when evaluating the proba
bility for incoherent transfer we can restrict ourselves 
to the weak interaction approximation. We can then find 
the probability for incoherent HT in which we are inter
ested from the following second order formula: 

_ 2n.~ . ~ 1 ~ <2,/IHint I1, m><l, mIDIO, i>I' Ii(E +1ioo -E) 
W(wo)- It l...z'l... l... E,-Em+iltlm/2 '0 J 

11m 

(12) 

(this formula describes the probability for the excitation 
of the acceptor when the donor absorbs a photon of fre
quency wo). Here 10, i), 11, m), and 12, f) are vibrational 
states of the crystal (solution) with, respectively, unex
cited donor and acceptor, excited donor and unexcited 
acceptor, and excited acceptor and unexcited donor; 
Ei' E , and Ef are the energies of the states 10, i), 
11, m), and 12, f); Ym is the donor damping constant in 
the state 11, m), D is the operator of the interaction be
tween the optical electrons in the donor and light, Hint is 
the operator of the donor-acceptor interaction, zi 
= exp(-E/kT)/~exp(-E/kT). We can rewrite Eq. (12) 

1 
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in invariant form, if we use the formulae 

l!(x)=(2n)-' S du-''', 

1 • , 
( +. 1 ) (' . ) 2 Sdt Sdsexp[i(x-x')t+i(X+X')s-'ft ] 
x l'f 2 x -1'f/2 0_' 

and introduce the vibrational Hamiltonians Ho, H1, and 
H2 in the electronic states 10),11), and 12), respectively. 
We then get 

2.K'~ ~ , . 
W(wo)=y S dt S dT S dsexp(-iwoT-'ft)A(t,T,S), (13) 

o _00 _t 

VI ! 

A (t, T, s) = !i'<exp [i (t-s)H,/1i ]exp[i(T+2s)H,IIi] (14) 

x exp[ -i (t+s)H.lIi]exp[ -iTHo/li] )0, 

where .it = (lIDIO) = (E' M) (E is the electrical field 
stre~gth of the light), v = (2IHintI1), ( ... ) = Z'(} 
= Zo Tr{exp(-Ho/kT)}, Zo = Tr{exp(- Ho/kT)}. We 
neglected in (13) the dependence of.it and v on the vibra
tional coordinates. In that case Ym = Y = const. We note 
that for transitions which are allowed in the dipole ap
proximation the Condon approximation .it = const is well 
satisfied. The approximation v = const may turn out to 
be inadequate at small distances between the donor and 
the acceptor. It has been shown in [12J , however, that in 
the case of a strong electron-phonon interaction taking 
into account the dependence of von the vibrational coor
dinates leads in first approximation simply to replaCing 
v2 by (v2) 1 in (14), where 

<",>,=Zt-'Sp[exp(-H./kT) ... ], Z,=Sp[exp( -H,/kT)]. 

We must then also replace Y by 

y=Zt-t L, 'f~exp(-EmlkT). 

One can give the follOWing phYSical interpretation of 
the integration variables T and s occurring in Eq. (13): 
T describes the phase difference in the excited donor 
state after absorption of the photon, and s the phase dif
ference in the excited acceptor state after the transfer 
of the excitation. The variable t also has a simple phys
ical meaning: it describes the time the excitation stays 
at the donor. [l1J Thus, the correlator A(t, T, s) consid
ered as function of T and s describes the phase (trans
verse) relaxation in the excited states of the donor and 
the acceptor, while its dependence on t corresponds to 
the longitudinal (energy) relaxation of the donor. From 
what has been stated an important conclusion follows for 
the division of the normal and the hot transfer: HT 
corresponds to the integration in (13) in the small time 
region t « Y -1, and the normal transfer to integration in 
the long time region t ;::: Y -1. 

We can easily check that this last conclusion is valid 
if we bear in mind that in the long time region t ;::: y-1 

we can use for the correlation function A(t, T, s) its 
asymptotic value as t - ao which is equal t03 ) 

A(OO,T,S)= ;: ( exp(; ,Ht] expl- ~ THo])o 

x( exp[ ~ (T+2s)H, ]exp [ -Ii- (,+2s)Ht]) ... 

(15) 

Substitution of (15) into (13) gives the following formula: 

Wo(Wo) =x,(wo)wo, (16) 
• .,.1(2 00 i i 

Xt(w,)= 2nh' S dTexp(-iw,T) ( exp ( h THt ) exp (-h THo ) ),' 
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v2 co' • 

wo=z;y_~ dT' (exP(TT'H,) exp (- ~ "H,), 

= (ZtY)-'L, exp ( - ~;) I <II H inti m) I' /\ (E,-E I ) , 

(17) 

m.1 

where Wo is the probability for the transfer of the elec
tronic excitation. The formula for Wo obtained here is 
the same as the original formula in Forster's theory for 
the transfer after vibrational relaxation in the donor. [19J 
This also demonstrates the conclusion that the normal 
transfer corresponds to integrating in (13) over the reg
ion of long times t. In the general case, however, we 
must take into account the region of both long and short 
times t. 

4. QUANTUM EVALUATION OF HT TAKING 
DYNAMICAL CORRELATION INTO ACCOUNT 

Below we shall obtain a formula for the correlation 
function A(t, T, s) valid for all regions in which t, T, and 
s can change in a model in which we take into account 
only the change in the nuclear equilibrium positions 
under electronic transitions in the donor and the accep
tor. In that model 

H,=exp(V<lHoexp (-V,)+hQ", i=1, 2, (18) 

Ho=~ ~w(-~+£,) 
2 ~' <1£/ ,. (19) 

Here ~j and w. are the dimensionless coordinate and 
frequency of t6.e j-th normal vibration, nOi is the fre
quency of the purely electronic transition in the donor 
(i = 1) or the acceptor (i = 2), exp \;'i is the unitary shift 
operator, where 

V,=~ £'i)~ 
~ OJ a~/ (20) 

~~) is the change in the equilibrium position of the j -th 

oscillator for an electronic transition in a donor (i = 1) 
or in an acceptor (i = 2). 

In the model considered the correlation function 
A(t, T, s) can be written in the following simple form: 

(21) 

where 

L=iQ"T+2i(Q,,-QOI)s+V.- V t(l-s) + V,(t-s) (22) 
- V ,(t+T+S)+ V, (t+,+8)- V t(T), 

P is the ordering operator which arranges the operators 
V'1, V'i (t - s), V' i (t + T + s). and V' 1 (T) from the left to the 
right in the given order (i = 1, 2). We used in (21) the 
fact that L is a linear operator and used the Bloch-
De Dominicis pair correlator theorem. [20J 

Substituting (22) into (21) we get 

. A(t, T, s)=v'h-'exp{iQ"T+2i(Q,,-QOI)S+g,(T) 
+g,(T+2s)+g,(-r+2s)+C(I, T, s)}, (23) 

where gi == gii' gi = gi - g12, 

go;' (x)=<V ,(V"-V,, (x)) >, 
= L,£o';' £i/" [ (nj+1) (exp(;w;x)-1)+nj(exp(-iUljX)-l)]: 

(24) , 
G (t, T, s) =it, (t-s) +g, (-t-8) -it, (t+T+S) -it, (T-t-S), 

,-/;= [cxp (fiul/kT) _1]-t, 

The function g12(X) describes the effect of the dynamical 
correlation of the donor and the acceptor, which de
creases at large distances R as g12(X) 0: R-3 • However, 
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at small distances R and in particular in intracenter 
processes g12 ~ gl(X), Le., this effect may be large (see 
also below). 

Equation (23) is exact in the harmonic approximation. 
However. it can also be used for weakly anharmonic os
cillations. The anharmonicity effects are then contained 
in anharmonic corrections to the average values (Vit'i') 
and to the correlation functions gu' (x), Equation (23) 
is applicable for any interaction force between the opti
cal electrons of the donor and the acceptor and the os
cillatiohs. We are here only ~nterested in the case of a 
strong interaction (Si = E j ~ oT » 1) and fast vibrational 

relaxation when we can use the expansion 

where 

~ (/) (/x). 
g,,'(x)= ~/1"'~' 

• 

(I) ~ (.) (")[ -(1+( 1)/)] / /1,,' = ~ ~'j S,) 1+nj -. 0',. 

(25) 

We note that Jl (l) == Jl (1) are semi-invariants of the donor 
i it 

(i = 1) and acceptor (i = 2) absorption bands. In particu-
lar. Jli 2) = a~ and Jl~2) = a~. As to order of magnitude 

2i,,+1= ~ (2ilj+1)s;/"IS,~,1. 
, 

Substituting (25) into (23) and taking into account 
terms up to and including third order we get 

A (t, T, s) = u'Iz-' exp{iQ,1:+i(Q,-Q,) Y-/1,(" 1:'/2 + fl;') TY 

where 

(26) 

It follows from Eq. (26) that the actual values of the 
phase relaxation times T and s (Le., the values which lie 
in the region which contributes the main part to the 
integral (13)) are, indeed. as to order of magnitude, 
equal to tc ~ (Jli2)r l12 ~ (w~SI(2ifl + l)fll2 and the actual 
value of the time t during which HT occurs is, as to 
order of magnitude, in agreement with (6) equal to 
to ~ (iJ:i3)TCflh ~ (WtSl/(2if1 + 1),-114 (as noted, it deter
mines the time during which the energy of the donor is 
in resonance with the acceptor absorption band). 

As the actual values of t in (13) are much larger than 
the actual values of Is I we can in the integral over s 
change the integration limits ±t to ± 00. As a result the 
integrals over T and s are elementary and we get 

(27) 

where 
v· ( 2'/'n ) 'I. 

WHT(ttl,)= fl' apY' T(x) (28) 

is the probability for itT, a = (Jl~2) - Jli2)O'~)1/2, 71(3) 

= Jli 3)(1- 0'3), O'z = JlHlIJl!l), 

x=[ (Ulo-Q,) (l-a,)+Q,-Q,]luy"2. 

If we neglect the dynamical correlation (its measure 
is in this model indicated by the parameters O'l) Eq. (28) 
is the same as Eq. (8), obtained earlier (in which for 

309 SOy. Phys.·JETP, Vol. 42, No.2 

centers characterized by fast vibrational relaxation we 
must take into account only the term with i = 0). 

5. INTRACENTER HT 

The dynamical correlation effects are particularly 
important in intracenter processes. To check this we 
consider as an example HT between components of.a Tlu 
state of a cubic center. In the approximation which is 
linear in the nuclear displacements the electron-phonon 
interaction matrix has in this state the form 

(
aQt +b(Q.-Q.IV:1) cQ. cQ.) 

l'= cQ. aQt-b(Q.+Q.!Va) cQ, _' 
cQ. cQ, aQt + 2bQ3!V3 

(29) 

where the Qi are tlie symmetrized displacements of the 
A1g (i = 1), Eg (i = 2, 3), and T2g (i = 4, 5, 6) represen
tations; a, b, and c are the electron-phonon interaction 
constants (we have used in (29) as basis the Ix), Iy), 
and Iz) states which transform as the x, y, and z com
ponents of a polar vector). We assume that c «b. In 
such a case we can consider the effect of the T2g vibra
tions using perturbation theory in terms of transfer of 
the excitation between the Ix), Iy), and Iz) states. The 
probability for HT between these states will then be 
given by Eq. (28) in which 

v'=c'<Q.'>,. u'=2b'<Q,'>, (1 +a,)//i'. 

1l(3)=2b'//i. 

We note that in the case considered 
3a'<Q,'>,-2b'<Q,'>, 

a, = 3a'<Q,'>,+4b'<Q,'>, 

3a'-2b' 
a, = 311'+4b' • 

(30) 

(31) 

i.e., (lI2 and (lI3 can be appreciably different from zero. 
If we recognize that quantitatively the dynamical corre
lation effects can be characterized by the ratio 1/(1 - (liZ)' 
these effects can in the given case, indeed, be arbitrarily 
large. 

The transitions considered between components of a 
degenerate state lead to a dependence of the degree of 
polarization of the luminescence on the excitation fre
quency. In particular, in the case of A -luminescence of 
KCI-Tr type centers when excited by light polarized 
along the C 4 axis this dependence will be given by the 
formula [21J 

P( ) _ 1-3wHT(Ul,) . 
Wo - , 

3(1-WHT(ttlO)-Wo) 
(32) 

where Wo = wo(T) takes into account Ix) - Iy) transitions 
after relaxation. The obtained dependence of the degree 
of polarization on the excitation frequency is shown in 
Fig. 4. A Similar dependence is observed experimentally 
(see [4J ). 

The authors are grateful to K. K. Rebane, D. L. 

FIG. 4. The polarization P of 
luminescence as function of the dimen
sionless excitation frequency x = (wo 
- n) (I - 0I. 2)/aVl for the following 
values of the parameters: 01. 2 = 0.5; 
Wo= 0.25; wHT(wo) = 0.25 T(x); ,,(x) 
is the absorption spectrum. 
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Dexter, and R. S. Knox for discussions of the problems 
of HT theory. 

I)In a number of papers (see, e.g., [9]) the assumption has been ex
pressed that the effect observed by Weber is caused by the emission 
of dimers. However, a number of the regularities observed by Weber, 
such as the independence of the luminescence quantum yield of the 
excitation energy, can not be explained by the emission of dimers or 
of other associates (see [10] for a more detailed discussion of this 
problem). 

2Yfhe dynamical correlation takes into account that the vibrations of 
the environments of the donor and of the acceptor are not independent. 
For that reason the nuclear displacements occurring in the energy trans
fer theory when the excitation changes from the donor to the acceptor 
do not reduce to a sum of independent nuclear displacements for the 
electronic transitions in the donor and in the acceptor. 

3)To find A(oo, T, s) we must bear in mind that (exp(itHtlh) a exp(-itHti 
h)b)1 -+ (a}I(b)l, when t -+ 00. We'note that A(oo, T, s) determines the 
value of the correlation function after the relaxation. 
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