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Vortex currents with both normal and superconducting components appear in a superconductor when 
transverse sound is propagated in it. The presence of a superconducting component of the vortex current 
affects the order parameter of the superconductor. We consider two effects associated with this. The first 
effect is the appearance of a nonstationary phase shift of the order parameter in a suitably designed 
superconducting measuring circuit, when the latter is connected to the superconductor. In this case, the 
phase shift is proportional to the sound amplitude. The second effect involves the presence of a current 
produced in the superconductor by nonelectromagnetic processes; it is connected with the influence of the 
vortex currents on the modulus of the order parameter. The nonstationary phase difference recorded by the 
measuring circuit in this case is proportional to the square of the sound amplitude and varies at double the 
sound frequency. 

PACS numbers: 74.20.Gh 

It has recently been shown in a number of papers that 
a phase difference in the order parameter can exist at 
the ends of a superconductor located in a nonequilibrium 
state. Such is the case, in particular, in the presence of 
a current of normal excitations, produced in a nonequili
brium state of the superconductor. The phase difference 
in this case is connected with the appearance of a vol
ume current of the superconducting condensate, which 
compensates the current of normal excitationsy,2 J It is 
possible to measure such a phase difference either di
rectly, by placing the sample in a super conducting cir
cuit with weak coupling, or by an indirect method. Thus, 
if we include the sample with the "nonequilibrium" 
phase difference in a closed, non-Singly-connected 
super conducting circuit, then an unquantized contribu
tion to the magnetic nux passing through it is produced. 
(2-4] The generation of such a contribution in the case 
in which the normal current has a thermoelectric nature 
was studied experimentally by Zavaritskii. I3 J Thus the 
nonequilibrium phase difference is an observable quan
tity. 

In a recently published paper, (5J the development of 
oscillations of the phase X of the order parameter was 
predicted in the propagation of longitudinal sound along 
a thin super conducting conductor, the thickness of which 
is smaller than the penetration depth of the magnetic 
field. These oscillations are connected with the presence 
of a dependence of the modulus of.the order parameter A 
on the relative change in the volume div u in deformation 
in the sound wave (u is the lattice displacement vector). 
As a consequence of this, the modulus of the order 
parameter and consequently, the effective number of 
"superconducting" electrons NS(6 J are modulated by 
the sound wave. The electric current in the supercon
ductor is proportional to the product of Ns by the phase 
gradient of the order parameter, vX. Therefore, if an 
extraneous current passes through the superconductor, 
by virtue of the equation of continuity, the phase gradient 
of the order parameter is also modulated by the sound 
disturbance. Consequently, between points of the sample 
separated by distances equal to an odd number of half 
wavelengths, a nonstationary phase difference is de
veloped. It is not difficult to establish the fact that a 
similar effect should also occur in a bulky superconduc
tor, and the order of this quantity should be about the 
same as in the thin wire. 
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The aim of our note is to consider two effects similar 
to that described above, which arise in the propagation, 
along a superconductor, of transverse sound, not ac
companied by a relative change in the volume. 

The first of these can be called the nonstationary 
acoustoelectric effect. In the propagation of transverse 
sound in a superconductor, vortex currents arise, di
rected into the interior of the superconductor, perpen
dicular to the sound wave vector and the surface of the 
sample (see (7 J). These currents are closed in a thin 
near-surface layer of thickness of the order of the 
penetration depth. The vortex currents have both a 
normal and a superconducting component. The latter, 
as is well known, (6J is proportional to the so-called 
"superconducting" velocity vs: 

11 ( 2e) v.=- Vx--A , 
2m lie (1) 

where e and m are the charge and effective mass of the 
electron, c is the velocity of light, and A is the vector 
potential of the electromagnetic field. However, since 
the super conducting currents that are generated are 
vortical, it is not generally possible to introduce the 
super conducting velocity potential and consequently a 
gauge-invariant phase difference. Actually, the quantity 

• 2e 
6,,= f dr(VX-"hc"A) 

depends on the path of integration and in this sense 
there is no analogy with the case considered above. At 
the same time, we see that in the expreSSion for the ob
served quantities, measured in corresponding fashion by 
the construction of a measuring circuit, an integral ap
pears that is calculated along an entirely determined 
path. 

As an example, we consider the measuring circuit 
shown in the drawing, that is essentially analogous to that 
considered in (2,3 J• We assume that the magnetic field, 
created by the vortex currents that accompany the sound 
wave, does not permeate the measurement circuit 1-1'-2. 
This can be achieved, for example, by locating this cir
cuit in the yz plane, as is shown in the drawing. We can 
then write down the usual expreSSion for the super con
ducting current density js: 

2m ( 2e) '--j.= Vx--A . 
eN.h he 

(2) 
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Since j s = 0 in the interior of the circuit outside the 
sample, by integrating this relation over the closed cir
cuit 1-1'-2, we obtain 

ill Sl 2mj. (3) 
2n - = 2nn - .--dr 

ill, j eN.'h ' 

where <P is the magnetic flux passing through the circuit 
and <Po is the magnetic flux quantum. Thus, for example, 
by measuring the current in the measurement circuit 
(and, consequently, the magnetic flux), we determine the 
quantity 

S' 2mj. 
81.= ·--dr. 

1 eN.tt 

The quantity e 1 is directly connected with the value of 
the superconducting current in the given cross section 
of the sample at a specified instant of time. One can 
conceive of other types of measurement schemes with 
the use of weak coupling, such as Clark galvanometer 
or the Zimmerman-Silver and Mercereau interferome
ters. It is important to note that for any type of measur
ing circuit in which: 1) the contacts are located in a plane 
perpendicular to the wave vector of the sound, and 2) the 
measuring circuit is not linked with the magnetic field 
of the sound wave, the result of the measurement will be 
expressed in terms of the quantity e, which is directly 
connected with the superconducting current. As is easy 
to see from our discussions and Eq. (3), from the point 
of view of the measuring circuit, the sample behaves as 
a source of nonstationary phase difference1 ) e1' In par
ticular, if we insert in the measurement circuit a 
Josephson junction with a sufficiently small critical 
current, then a phase difference 2m - e will exist at the 
junction (see the Appendix). In this case, there is an 
analogy with the effects considered in [1,2]. We see that 
since the current lines are closed near the surface ofthe' 
sample, there exist components of the super conducting 
current parallel to the surface. One can imagine a 
measuring circuit with contacts on the same face of the 
sample, in which is measured the quantity ell connected 
with the parallel component of js just as the quantity e1 
is connected with the perpendicular component. 

We now proceed to the second effect, which is in 
known degree similar to the effect suggested in [5]. It 
is well known ([8], p. 130) that the value of the modulus 
of the order parameter of the superconductor depends 
on the currents flowing in it. Therefore the vortex cur
rents should bring about a change in the modulus of the 
order parameter. We now assume that a lateral current 
flows along the superconductor. This current can be 
described with the help of the phase, since the field of 
the velocities Vs corresponding to this current, is a po
tential one. In this case, just as in [51, oscillations 
.should arise in tlle phase difference of the order parame
ter between two pOints which lie on the same side of the 
sample. The frequency of these OSCillations, as we shall 
show, is equal to twice the sound frequency, 2w. 

Thus, our aim is to investigate the two effects noted 
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and to compare them with the effect suggested in [5). 

We consider a plate of a superconductor with an iso
tropiC energy spectrum, in which transverse sound is 
propagated, polarized perpendicular to the surface of 
the sample (see the figure). Let 

u-exp i(qx-oot) , 

and we assume that the conditions 

are satisfied, where I is the mean free path of the elec
trons in the normal state and ~o is the coherence length 
at zero temperature. If these conditions are satisfied 
we can obtain the following expression for the electric 
current density J (with the help of the kinetic equation, or 
by the density matrix method) 

j,=i.eN,u, (1- ~:) - :n K, [A, + ": (i.+ :') u.]. (4) 

Here No is the total concentration of the electrons, mo is 
the mass of the free electron, X. is the dimensionless 
constant of the deformation potential (the transverse part 
of the tensor of the deformation potential is written in 
the form xPipWm), A is the gauge-invariant combination 

- lic 
A=A-2'e Vx , 

Kq is the response function of the superconductor, de
termined by the expression2 ): 

K = ...!.[!'!.!.. + i mOOG, ] 
q 15' N, N,e' , (5) 

rl = 41re2No/mc2 is the London penetration depth for T 
= 0 (T is the temperature in energy units); the kinetic 
coefficients <{ and O'q are introduced in [9). Near the 
transition point T c they are of the order of the conduc
tivity in the normal state 0'0 for ql « 1 and ~O'ol ql for 
ql » 1, and in the case of a decrease in the temperature 
they fall off exponentially as exp (- MT). The second 
term in the square brackets in (5) in almost no case ex
ceeds lO-3 (for ql » 1 it is of the order of W/VF, and 
for ql « 1 it is of the order of WT « W/VF; w is the 
sound velocity, vF is the velocity of the electron on the 
Fermi surface, T is the relaxation time of the momen
tum of the electron in the normal state). We shall as
sume that the relative closeness to the transition point 
is e = (T c - T)/Tc » lO-3; consequently, the second 
term can be neglected. 

The first term in the expression for the current (4) 
can be interpreted as the current associated with the 
incomplete dragging of the electrons by the moving peri
odic potential of the lattice. Actually, in the case of fre
quent collisions of the electrons with impurities mOving 
together with the lattice, the mean velocity of the elec
trons relative to the lattice should be equal tozero. Ifwe 
use the definition of the quantity 0'1 from [91, it is easy to 
establish the fact that as ql - 0 the first term in (4) also 
tends to zero. The second term in the expression for the 
current has the form of the response of the current to 
the electromagnetic field with the vector potential 

_ mc( m,). 
A, + -e- i. + -;;; Ilq. 

According to [9,10), in the case of transverse sound, 
the role of the characteristic momentum of the super
conducting condensate, which enters into the self-con
sistent equation, is played by the quantity ps = - e1J c 
- mou. The electric current l is connected with this 
quantity by the relation 
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m . ( a.' N.) N. 
-j,=MnU 1---- +-P.. (6) 
eN. a. N. N. 

If we use the expression for the ratio Jq/ 0"0 obtained in 
[9 J, the relation (6) can be rewritten in t11e form 

m. -
-j,="-uml(ql) (1-n)+np" (7) 
eN, 

where for brevity the relative number of superconducting 
electrons NsiNo is denoted by the letter n, and 

I(x)= 2x'-3x-3(H.x')arctgx { ...... 1 as x ...... OO 

2x' ...... 'I,x' as x<1 (8) 

The condition for electric neutrality div j = 0 takes in 
our notation the form 

div P.=-(P. Vln n)+Amln(uVln n). (9) 

The distribution of the "superconducting" momentum 
Ps over the sample is described by the Maxwell equa
tions. With account of (9), these equations can be re
written in the form 

n [n-1 . . ] -. 
-V'P.-V(p.Vlnn)+6'p.=mM Tzu-Vn(uVlnn) +m.V'u. (10) 

The second terms on the left and right sides of Eq. (10) 
have an essentially nonlinear nature. They are connected 
with the dependence of the relative number of super
conducting electrons n on the coordinates and, in the 
linear approximation in the sound amplitude, they are 
absent. 

The boundary condition for Eq. (10) is the vanishing of 
the y component of the total current on the boundaries. 
For the variable Ps, this condition takes the form 

We first consider the case in which there is no 
extraneous current. For reasonable values of the 

(11) 

sound intensity, the value of PSVF/~' which determines 
the effect of the current on the modulus of the order 
parameter, turns out as a rule to be small. In the low
est, linear approximation in this ratio, we can assume 
the quantity n to be constant, equal to the thermodynamic 
equilibrium value. In this case, the solution of the sys
tem (9) and (10) with boundary conditions (11) gives 

{ n-1 (n-1 m,) ( ch(yIA) )} 
p • .'=mu A/--(qA)' "-1-+- 1---- , 

n n m ch(dIA) 
(12) 

, ( n-1 m,) sh(yIA) 
p. =imu(qA) A/-+- ---, 

• _ n m ch(dl.\) 
(13) 

where 

A= (q'+n/(j') -'I,.' 

For qA « l(q/i « .fli.) we have P~x « p~y and the 
quantity P~y can be assumed to be independent of the 
coordinate y. Such a solution means the following: at 
each point of the crystal the total current is equal to 
zero-the drag current of normal excitations is entirely 
compensated by the super conducting current. In this 
connection, we note the following circumstance. Equa
tions (12) and (13) were obtained without account of the 
spatial disperSion Ns and therefore, generally speaking, 
are valid only for type II superconductors. However, 
the expression for the part of the super conducting cur
rent which compensates the volume current of the nor
mal excitations (the first term in (12», remains valid in 
the case of type I superconductors. At finite values of 
qA, the currents are not fully compensated, and a non
vanishing current exists in the- interior of the super
conductor:3 ) 
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.• ( n-1 m')(Ch(YIA) ) 
j.=eN.u(qA) M-n-+-;;:;- ch(d/A) -1 , 

• (n-1 m,) sh(yIA) 
j.=eN.ui(qA) "-1-;-+-;; ch(dIA)' (14) 

Such a current leads to the appearance of a magnetic 
field4 ) H: 

H -' A' 4neN.u ( 1 n-1 + m. ) 
,-Iq -c- "- -n- -;;;" . (15) 

In the interior of a bulky superconductor, far from the 
transition point and at q ~ 103 cm-\ and at a sound in
tensity S ~ 1 w7cm2 , the amplitude of this field is of the 
order of 5 x 1O-3 0e. It seems that such a magnetic field 
lends itself to experimental observation. We note that 
the presence of a magnetic field in the interior of a 
superconductor in no way contradicts the Meissner ef
fect, and is a consequence of the appreciable inhomoge
neity of the normal current. 

We now estimate the quantity 0, which has the mean
ing of the phase difference for the external (measuring) 
circuit. Using (12) and (13), we have the following es
timates for 01 and for the value of 0" corresponding to 
points on one face of the sample, separated by a distance 
equal to an odd number of half wavelengths: 

6 2mdu n-1 
.L=-h-M-n-' 

mAu ( n-1 m.) 6n=--- A/--+- . 
Ii n m (16) 

In the derivation of (16), we assume d »A. Taking A 
~ 10-5 cm, d ~ 1 cm, ;\ = 3, n ~ 1, S ~ 1 W/cm2 , and 
also, assuming ql ~ 1, we get: 01 ~ 10, 0Il ~ 10-4 • Near 
the transition point, for e « 1, the value of 01 increases 
by a factor ErI, and 0" by a factor of e-1/2 • Thus, the ef
fect is rather large, especially in the transverse direc
tion. Thus, for e = 10-2, a phase difference of several 
degrees appears in the longitudinal direction for a 
sound intensity 10-6 W / cm 2 , and in the transverse di
rection' the value of ° can evidently serve as a very 
sensitive method for the determination of the trans
verse sound intensity. We again recall that °1 depends 
periodically on time with the frequency of the sound 
frequency. 

We now consider the case of the presence of an ex
ternal current. Here 

P.=p+p.ll, +P.!tI. (17) 

The "superconducting" momentum P here is created 
by the external current (this current can be of the order 
of the critical current), p~) and p~) are the linear and 
quadratic terms, respectively, of the expansion in the 
sound amplitude. The momentum P is parallel to the 
sound wave vector q. It is easy to see that for ql5 « .fli. 
(which we shall assume to be satisfied) we can assume 
that p~) 1 q (since p~i « p~;). In order to calculate the 
phase change associated with the presence of the ex
ternal current, we must integrate the system (9) and 
(10) up to second order in the amplitude of the sound 
wave. It should be taken into account here that the quan
tity n depends on the square of the modulus of the vec
tor Ps or, more precisely, on the dimensionless quan
tity 

=v,' I I'_v,' [P'+( (")'+2P (Il] a ~' P. - ~. p. p.. 
(18) 

We shall assume that the modulus of the order parame
ter follows adiabatically the change in this quantity. 5 ) 
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It is simplest to obtain a solution in the case of a 
thin film, when all the derivatives with respect to the y 
coordinate can be omitted. In this case, iteration of the 
system (9) and (10), as is easy to verify, gives the fol
lowing result:6) 

c.) n'ln, [(PFf..f(n-1»)'..] 
P', =:-1+2 (Pvp)'n'/(n,Ll') P Lln (u'-(u'» (19) 

(the angle brackets denote averaging over the time). A 
result of the same order of magnitude is obtained in 
the case of a bulky sample. 

The result (19) has a lucid physical meaning. The ex
pression with the square bracket determines the rela
tive change in the order parameter. It follows from the 
equation of continuity that the change in the "super
conducting" velocity should be proportional to the pro
duct of the external momentum P and the relative change 
in the order parameter. In essence, this effect is analo
gous to that predicted in (5); however, in our case, it is 
quadratic in the sound amplitude and varies with time at 
twice the sound frequency. 

We now estimate the characteristic phase change 
over a distance equal to an odd number of half waves. 
Assuming n'/Ilo - 1 and PVF/ ~ - 1, we have 

C') Ll [PFf..f(n-1).]' p. m~' ('J..f(n-1»)· 
811 --- u =-- ---

liqvp Lln liq Ll n (20) 

The case of low frequencies and a pure superconductor 
is the most favorable (the condition ql ~ 1 is necessary 
so that the factor f will not be small). Under these as
sumptions, assuming q - 10-1 cm and S - 10 W/cm2 , far 
from the transition point (n - 1) we have 01~2) - 3 X 10-3. 
This effect is approximately of the same order as that 
predicted in [5) (for sound of the same frequency). How
ever, the effects have different temperature dependences 
near Tc. Thus the effect predicted in [5) is proportional 
to 0-112 near T c, while the effect predicted in the present 
paper is proportional to 0-512 • It is therefore natural to 
expect that near T c the transverse sound modulates the 
phase of the order parameter more effectively than the 
longitudinal sound. 

If the extraneous current ·changes with time, then, 
as was noted in [51, the phase difference will contain 
combination frequencies. In particular, a constant 
component of the phase difference exists when the fre
quency of change of the current equals twice the sound 
frequency. 

We thank V. L. Gurevich for discussion of the re
search and review of the manuscript and A. F. Andreev 
for discussion and valued critical comments. 

APPENDIX 

Let a Josephson junction be connected in the circuit 
1-1'-2 (it is shown as a dashed line in the figure). It is 
then easy to verify that in place of (3) we have (p is the 
phase difference at the junction): 

III s· 2mj, 2:n;- =2:n;n-p- --dr. 
Ill, 1 eN,;" (A.1) 

On the other hand, if the magnetic field of the vortex 
currents does not pass through the circuit, 

III -.!.LI.sinp, 
c 

where L is the inductance of the circuit and Ic is the 
critical transition current. Thus we have 
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2:n;L/. 
--sinp+p=2:n;n-8L • (A.2) 

Ill, 

If the dimensionless parameter 211'LIcl4>o is small, then 
the phase difference at the j unction is 21m - 01. 

We note that the result would not change if we were 
to choose another path of integration inside the sample, 
for example, the circuit 1-3-2. Actually, the integral 
over the closed path 

S 
1_3_2_t 

2mj. d 2e rh Ad -- r=-- 'j' r 
eN,;" ;" 1_'_'_1 

is completely compensated by the change in the magnetic 
flux through the circuit 1-1 ~2-3-1 in comparison with 
the flux through the circuit 1-1'-2-1. 

OWe note that this picture is very similar to the measurement of the 
voltage at the transverse boundaries of a normal metal in a similar 
situation. 

2)We shaH discuss below the problem of the necessity to account for 
spatial dispersion of the real part of the response function. 

3)We note that these formulas do not admit of limiting transition to 
the case of a normal metal since we have neglected the second term 
in (5) which is important as n -+ O. 

')We emphasize again that Eqs. (14) and (15) are exact for a type II 
superconductor and have the character of estimates for type I super
conductors. 

S}Such an assumption is valid when the sound frequency is less than 
the reciprocal of the relaxation time of the order parameter, associ
ated with the presence of inelastic processes. [11] 

·)We note that p~l* = 0 in the zeroth approximation in the parameter 
qA. 
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