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A method is proposed for solving the Eliashberg equation for anisotropic superconductors in the 
temperature technique at T = T,. The solution is found by successive calculation of the terms of order 
Aln(CIlDI Te). A. A2 •...• where A = Ao/(1 + Ao) is the renormalized electron-phonon coupling constant. A consistent 
way of taking the Coulomb interaction of the electrons into account is described and a definition of the 
Coulomb pseudopotential in the anisotropic model is given. A general expression for Te. induding 
corrections of order A. is given. The dependence of the effective mass on the energy gives a contribution to 
the corrections of order A2 and higher. For the Einstein model T, is calculated to order A'. For a model in 
which the phonon spectrum consists of two Einstein peaks the equations are solved numerically and the 
dependence of Tc of the frequency CIlI of one of the peaks is determined. It is shown that as CIlI-oO this peak 
gives a finite contribution to Tc if AI-CIlI'. If AI-CIli'+v. where v>O. the contribution from the low­
frequency peak vanishes in the limit CIlI-oO. 

PACS numbers: 74.30.0. 74.10. 

There are a large number of papers devoted to de­
riving an approximate analytic formula for the Tc of 
strong-coupling superconductors. (Such attempts are 
undertaken with the purpose of going beyond the frame­
work of the BCS apprOXimation, in order to describe the 
experimental situation.) The best-known is the empiri-
cal formula of McMillan (1] : . 

T,=~exp [- 1.04 (1+A.) 1 
1.45 . Ao-J.l.·(1+0.62A.)· 

(1 ) 

which was obtained by fitting the results of a numerical 
solution of the Eliashberg equation to a Simple analytic 
forml2 ]. An electron-phonon interaction function 
a2( w) F( w) extracted from tunneling measurements on 
niobium was used. Here, 

Ao=2 S a'(oo)F(oo)doo/oo 
o 

is the electron-phonon coupling constant, fJ.* is the 
Coulomb pseudo-potential and ® is the Debye tempera­
ture. Although formula (1) is valid just for niobium, it 
is often applied to any superconducting metal, even 
though in such cases there are no adequate reasons for 
preferring the McMillan formula to the BCS formula. 
The attempts to obtain an empirical formula of the same 
type for other superconductors are well-knownl3-7 J. 
These formulas differ from (1) in the numerical coef­
fiCients, and all of them are nonuniversal, since they 
pertain to superconductors with specifiC phonon spec­
trum. In recent papers l8-11], expressions of a more 
general type for Tc are derived. In these formulas, 
functionals of (l!2( w) F( w) appear in the role of the nu­
merical coefficients. To derive these formulasllO,ll] 
one uses approximate solutions of the Eliashberg equa­
tion, obtained, e.g., by substituting a step function or 
the Morel-Anderson function(12] as a first approxima­
tion for the gap function ~ (w). No attempts are made to 
estimate the accuracy of the approximation, inasmuch 
as the procedure turns out to be extremely cumbersome 
even in the first stage. In essence, such a procedure 
corresponds to determining the first correction in the 
constant A = hoi (1 + AO) to the exponential factor 
A - fJ.* and is valid for sufficiently small ho. In particu­
lar, it cannot be used to elucidate the question of the in­
fluence of the low-frequency phonon peaks on the mag­
nitude of Tc if the coupling constant for the coupling 
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with the low-frequency mode is large. The erroneous 
result obtained inllO,ll] concerning the role of the soft 
phonon modes is connected with this fact. 

It should be noted that the solution of the Eliashberg 
equation, like the form of the equation itself, is consid­
erably simplified in the temperature techniquel13 ], 
since in this representation all quantities are real and 
the kernel has no singularities. Formulas for Tc going 
beyond the framework of the first approximation were 
obtained in the temperature technique in[14] for phonon 
spectra with one and two Einstein modes. 

In this paper we shall describe a regular method for 
solving the Eliashberg equation in the temperature tech­
nique for the general case of an anisotropic supercon­
ductor with an arbitrary phonon spectrum. The solution 
is represented in the form of a series in powers of the 
electron-phonon interaction. We shall derive a strong­
coupling formula for Tc in the anisotropiC model and 
shall calculate T c in certain particular cases; we 
shall also consider the question of the effect on Tc of 
the low-frequency phonon peaks. 

1. DERIVATION OF THE EQUATIONS 

The Coulomb interaction of the electrons in a super­
conductor has been taken into account most conSistently 
by Batyevl15] in the framework of the isotropic model. 
We shall formulate the corresponding result, having 
modified it for a variant of the temperature technique, 
without assuming that the interaction is isotropiC. The 
equation for the determination of Tc has the form 

(2) 

where 
nm '" oo~. D ,= _ .~,)gj I" J,P-P • 
pp . PP' wf, p_p' + 0)~1'J\ t (3) 

~ppl is the total (with allowance for all the Coulomb 

corrections) amplitude for scattering of an electron by 
a phonon with the j-th polarization; KpIr is the total 
Coulomb amplitude; Rnp = GnpG-n,-p where Gnp is the 
normal electron Green function, which near the Fermi 
surface has the form 
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Gn,=. a. 
tWn-/n.-B, (4) 

The residue as (at the point s on the Fermi surface) 
and the electron spectrum Ep are determined without 
allowance for the electron-phonon interaction. The 
function fns is defined by the expression 

/ .. =inTN (0) L S dT •• a.D::':a,.sgn m; 

ds 
dT.= (2n)'v.N(0) . (5) 

where Vs is the velocity and NlO) is the density of states 
at the Fermi surface, without allowance for the elec­
tron-phonon interaction. It is well-known that formulas 
(2)-(5) are valid to within terms ~A;.)DI EF. 

Owing to the existence of two characteristic interac­
tion dimensions (wD for the electron-phonon interac­
tion and EF for the Coulomb interaction), it turns out 
to be possible[lSj to represent the function ~np in the 
form of a sum 

dn,=1D no-x., (6) 

of a rapidly varying contribution ~ns, concentrated in 
the region of frequencies \ Wn \ :S wD, and a smooth con­
tribution xnp with a characteristic region of variation 
~EF. The dependence on p is smooth for both contribu­
tions. From the definition of the functions ~ and X, 
Eq. (2) breaks down into two equations, which we shall 
write in the symbolic form 

ID=DR(ID-X); x=KR(ID-x). 

After integrating over the energy, we obtain for the 
function ~ns an equation in which the smooth part is 
represented by its boundary value (in both variables) 
XOs on the Fermi surface: 

1D •• =-nTN(O) 1:, f dT,·D.:": a •. ' IDm.·-Xo.· . 
m Iwm+/m.·1 

(7) 

(8) 

In the equation for Xnp the term KR~ contains, un­
der the integral, the rapidly varying function ~, which 
brings the integral out on to the Fermi surface. We 
shall represent the function R in the form R = RC + ~R, 
separating out the contribution from the electron-phonon 
interaction. This contribution, like ~, is concentrated 
near the Fermi surface. Now the equation for X takes 
the form 

(1 + KR') x=K (RID-xdR). 

The left-hand side of this equation contains a term that 
depends logarithmically on the temperature. This term 
arises from the summation in the region of low frequen­
cies. Indeed, for \ wm\ « EF, 

na ,2-f R,(p' Wm)dB,'= 10l~1 

and subsequent summation over the frequencies gives 
the logarithm. With the aim of determining the Coulomb­
pseudo-potential with the aid of the equation for X' we 
shall separate out the contribution from the low fre­
quencies in explicit form. For this we shall introduce 
the function 1J wo = w:n/(w~ + win), which cuts off the Wm 
lower limit of the sum over \ Wm \, and write 

(9) 

-WO 1 Wo 21 (2 2) Th f where 1Jwm = - 1Jwm = Wo Wo + wm . e requency 
W ° ~ W D will be defined below. In the right - hand side 
of Eq. (9) the sum over the frequencies wm and the in-
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tegral over the energy E' converge in the region 
E', \ wm \ :S wD. Therefore, the amplitude KBW in the 
right-hand side of the equation can be put equal to 
KnO . 

pS" and the boundary value XOs' substItuted for the 
smooth function xnp'. We shall write the right-hand 
Side in the form 

where 

b .= nT ~ [ IDm.·-Tjm"'X,,· + (_1_ _ 1 ) 'I] "'x .] 
• ~ I wm+i/m•· I Iwml I wm+i/m•· I m " . 

The function a~'bs' can be eliminated from Eq. (9) if 
we seek the solution in the form 

(10) 

(11) 

We note that in the left-hand side of Eq. (9) it is 
pOSSible, making an error of order (lTTI Wo )2, to change 
from the discrete variables Wn and Wm to continuous 
variables x and y and replace the sum by an integral. 
USing this fact and substituting (11) into (9), we obtain 
an equation for IPPs': . 

• 1 f~ f dpi %11 C tOo 1/ :0 '1',.-+-;;- 0 dy (2n)' K",R •• , '1], ¢ ... ·=N (0) K ... , (12) 

which does not depend on the temperature and contains 
the variable s' as a parameter. Eq. (12) has a single 
solution. IntrodUCing for the boundary value <p~s' the 
notation 

• 0 

J1u'=a."fJ .. ·a ." (13 ) 

we obtain the following equation for X Os: 

(14) 

The relation (13) together with Eq. (12) determines 
the Coulomb pseudo-potential f-L;s'. The matrix f-Lss' is 

symmetric, since the kernel ~~, is symmetric. We 
shall not concern ourselves with solving Eq. (12), since 
this has only a formal meaning, inasmuch as it is im­
pOSSible, generally speaking, to calculate the Coulomb 
kernel K. We note, however, that Eq. (12) has a small 
parameter In-\ EF I wo), which arises owing to the 
logarithmic contribution of the low frequencies to the 
integral in the left-hand side. In the leading approxima­
tion in In- 1 (EF I wo) it is necessary to take <p on the 
Fermi surface. For example, in the isotropic model in 
this approximation, 

-::- ( 1 ~ dpt ---:-, ) -I 

!1·=a'N(O)K .. · H-;;-f dyS (2n),K."R",'I]."" (15) 
o 

The bar denotes averaging over the Fermi surface. For 
a system of high denSity, when the random-phase ap­
proximation is valid, we obtain from (15) the well­
known result(l2] 

1 
!1o=-lnnv. 

2nv 

Here v is the Fermi velocity in atomic units and 
II lTV is the small parameter of the high-density model. 

In order to bring Eqs. (8) and (14) to a form conven­
ient for analYSiS, we introduce the notation 

(16) 

and represent the function ifns in the form 
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m ° 
The sum over m is expressed in terms of the logarith­
mic derivative of the gamma-function. Using its 
asymptotic form for large values of its argument, we 
find, with error ~(1TT)2/(w~ + w2 ), 

~ • ron 
nT .t..J 1].-m sgn m=ro arctg -;;;-. (17) 

By means of formula (17) and the notation 
W 

A,O(ro)- f A,~'(ro)dT'" A,o= f A.'(ro)dro', (18) 
, 

the quantity I Wn + ifns I is brought to the form 

1 ro.+i/ •• 1 =lro.1 (iH.') (i-A,q •• ), (19) 

where 

f ,A.'(ro) (ro ro.) q •• = dro --0 - i--arctg- . 
A. (On ro (20) 

The quantity A~ is the phonon renormalization of the 
electron mass at the point s on the Fermi surface. The 

. function Asqns describes the frequency dependence of 
the effective mass. In the entire region, 0 < qns < 1; 
as I Wn I - 0 we have qns ~ w~; as I Wn I - "" we ob­
tain ~s - 1. The function w2A ~s' (w) generalizes the 
well-known function 

a'(ro)F{ro)=ro' f dT.dT,'A.~,(ro). 
to the case of the anisotropic model. 

Going o,Jer from the functions cl>ns and xOs ~o the 
functions cl>ns = as( 1 + A~ rl/2c1>ns and XOs = as ( 1 
+ A~ rl/2xOs and denoting . 

A.:' = (iH,O)-'1. A.'., (ro) (1H:')-''', 

11.:'= (1 H.')-·"!l.:, (1 H:,) -'J., 

we write Eqs. (8) and (14) in the following form: 

- ~f " [ ~",·-1]m··X,,· , 
x,.=nT ~ clT.· dro 11 .. ' lroml (1-A.'qm.') 

( f f) _] + _. -- fI .. "X,,· . 
i-A.' i-A.' qm.' 

2. CALCULATION OF T c 

(21) 

(22) 

(23) 

The system of equations (22) and (23) can be solved 
by the perturbation method, if we note that, after ex­
panSion of the factor (1 - As'qms'r1 in a geometric 
series, the right-hand Sides of the equations will be 
series in powers of the electron-phonon interaction. 
The leading term of each such series contains, besides 
a first power of A, a large logarithm that arises from 
the summation in the region of small I Wm I and has the 
order of magnitude A In (WD/TC> ~ A/ (A - J.L*) !:. 1. The 
next term is of order ~A2, since for this term the low­
frequency region is cut off by the factor qms'. Our aim 
is to calculate, in the general case, the correction of 
order A to the leading term, or, in other words, the 
leading correction to the BeS formula. Therefore, we 
shall put qms' == 0, i.e., neglect the frequency depend­
ence of the electron mass. In this approximation Eqs. 
(22) and (23) take the specially simple form: 

(25) 

We have omitted the sign ~ and, to abbreviate the 
formulas, have introduced the following notation for in­
tegrals over dw 2 and dTs': 

f X-yo dro'=XW* Y·, f X .. ' Y.' dT,=X .. , :Y'" 

We shall separate out the logarithmic terms in the 
sums by means of a device proposed by Zubarev[l6]. 
For this we write cl>ns - xOs in the form 

(26) 

where lis is the boundary value of the function (26) on 
the Fermi surface. With regard to the function ans, we 
can assume that it depends on the continuous variable 
Wn - x, and, in expressions containing ams, go over 
from sums to integrals. The error from this operation 
will change Tc by an amount of the order of 
T c( 1TTc )2/ wh. By definition, the function axs satisfies 
the boundary condition aos == O. Substituting (26) into 
(24) and, as in (17), calculating 

1: 1]:-.. (2'Yro . ron ron ) nT --I =1].- In--+In l'1+(oo./oo)'+-arctg-
100m nT 00 00 

(27) 

( 2'Yoo ). +fw dy. • 
6.+x,,=a,,+1]z· In nT +<pz· *A .. ,.6 .. -_

oo 
2y 1]z-.*A .. ··a •• '. (28) 

Here we have changed to continuous variables and have 
denoted 

<pz'=In Y1+(x/ro)'+(x/oo) arctg (x/oo); 'Y=1.78 ... 

is the Euler constant. 

Using Eq. (24) and formula (27) and writing 
In (2yw/1TTc) = In(2ywo/rrTc + In(w/wo), we find (25), 
exact to the first two terms of the expansion in A: 

( 2'Yro,) • ( 00.) Xo,=ln -- J.1u'· 6"+ln-*Aa","O,, . 
nTc COo 

(29) 

We denote E = In- 1 (2ywo/1TTc) and substitute (29) into 
(28). As a result we obtain the equation 

E6.=Ea .. +1]x·· A.~' ·6.,-J.L:.' ·6., 

( ro)" .00. +E In-+<pz· *A .. ,·6.'-J.L .. ,·ln-*A",,6., 
Wo 000 

, fW dy _" • 
-E -2 flz-•• A .. , 'a •• '. 

-,;, y 
(30) 

Assuming that E, A and J.L* are of the same order, we 
find, in the first approximation, 

For x = 0, taking into account the boundary condition 
a&s == 0, we obtain the equation 

(31) 

E,6.'= (A .. ,-J.L:") ·6.,', A .. ,= fA:'. dro'. (32) 

An equation of this type was obtained by Pokrovskii [18] 

in 1961. The magnitude of Tc is determined by the 
maximum eigenvalue 

(33) 

The brackets in the latter equality denote the average 
over the eigenfunction corresponding to Eo. Substituting 
(32) into (31), we obtain 

Writing out the second-approximation terms in (30) for 
(24) x = 0, we shall find the correction to Eo. Since abs == 0, 
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E,6,O+E,6.'= C\,,·-~L;.') 6,"+E, In ~*A.:. ·6," 
w, 

We shall denote the integral in the last term by 

S~ dy . 1 w' w' 1 -1]:1]: =-2 -, -" In----;;-=-2 A •• ·. (34) 
, y w -w w 

Since O~ is orthogonal to O~ and the kernel A - jJ.* is 
symmetric, folding the latter equation with O~ we ob­
tain 

E,=E, (In :, *Ao) - (f.t·In :, *A") - '/,(Ao*Ao.·*Ao·). 

By defining the frequency Wo by the condition 

(35) 

we finally obtain 

E=In-,2yw, =(A-f.t·)-(AIn~*A·) -...!.-(Ao*Ao •. *Ao'). (36) 
nT, Wo 2 

in the isotropic model, 
2yw, A' 

.In-'·--=A-f.t·-A-, AA'=A·*A •• ·*Ao· . 
. nT, 2 

(37) 

We shall consider the case of weak anisotropy. We 
shall assume that the only source of the anisotropy is 
the phonon spectrum. We separate out the isotropic 
part in A;S/( w): 

so that 
AO (w) = ~.(w) = S A~,. (w) dT,dT,., 

A! •. (w) = AO(~) + ~~ .. (w), ~~" (w) "'" O. 

Correspondingly, 

where 

f.t' 
Ii .. ' 

l' (H~.) (H~.·) 

A·=A'(w)/(1H,), ~; •. =~: .. (w)/(1H,), 

~ .. ,= S ~.:. dw', ~.= S ~", dT,', 1.,= S N «(i)) dw'. 

(38) 

(39) 

Substituting (39) into Eq. (32) and assuming t to be 
a small quantity, we find 

[ (1-1])'-] E,=1] 1+ -1]- ~' , 
1-1] 

6.'=1+-~ .. 
1] 

We recall that A = Aol (1 + AO) is the renormalized 
average coupling constant and jJ.'" is also divided by 

(40) 

1 + AO; ?;2 = (~m)21m2 is the mean square deviation of 
the effective mass. 

By means of the second formula in (40), we calculate 
the anisotropic correction to Wo and the last two terms 
in (36): 

(41) 

We shall give the formula for Tc for a model in 
which the frequency dependence of A~S' and the aniso­
tropy are separated, i.e., Ag~1 = A w( 1 + A-I ?;ss'): 

(42) 
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In the general case, anisotropy facilitates the raising of 
Tc. In the BCS approximation this follows from Eq. (32), 
Since, for the maximum eigenvalue Eo, the inequality 

Eo > A". - f.t;, .. 

is fulfilled. 

As mentioned above, the general equations (22) and 
(23) can be solved by the perturbation method, the suc­
cessive corrections to the solution being mutually re­
lated like AI (A - jJ.*), A, A2, .... For the simplest 
model with one Einstein mode it turns out to be possible 
to calculate the terms analytically to order A 2. The fre­
quency dependence of the mass makes an important con­
tribution to these terms. We give the relevant result: 

2yCll A' '(43) 
In-'-' -' =A-f.t·- -2 +O.61A'-1.52A'f.t·+O.65Af.t·'. 

I nTc 

We shall conSider a model with two phonon peaks 
WI and W2. Let the coupling constants be determined by 
the expressions 

(44) 

In this model, 

A'( (i) =1.,'6 (CIl'-CIl,') +1.,'6 (CIl'-oo,') , 1.,=1.,'+1.,'. 

From the condition (35) we determine the pre-exponen­
tial factor 

(45) 

Next we find 
plnp 2p A, (i),' (46) 

A=1+ p'-1 - (Hp)" p=~=~. 

For all p the quantity A differs little from unity and at­
tains its maximum Amax = 1.066 for p ~ 0.1. 

3. EFFECT OF LOW-FREQUENCY PHONON PEAKS ON 
THE MAGNITUDE OF T c 

The question of the behavior of Tc in a model with 
two Einstein modes under the condition that the fre­
quency W2 of one mode is fixed and the frequency WI of 
the other tends to zero was considered in[lO,l1l. Expres­
sions of the type (44) were used for the coupling con­
stants, and Tc was calculated by means of the general 
formulas obtained by approximating the gap function by 
a step functionPOl or by the Morel-Anderson function[l1l. 
As a result Tc vanished as WI - O. This physically in­
correct result is easily reproduced using formulas (37), 
(44), (45) and (46). Since, for Wl- 0, A~ - ao while Ag 
= const, we have Wo ~ WI, Al - 1, jJ.* - 0, A - 1. 
Therefore, for small Wh we have Tc = 1.14wlexP(-%), 
so that TC(Wl- 0) - O. This behavior of Tc(wd is 
connected with the fact that, in its calculation, for Z( w) 
and ~ ( w) approximations corresponding to the asymp­
totic behavior of these functions for WI» Tc were 
used. To obtain the correct result, it is necessary to 
calculate f( wn) and solve Eq. (7) without making the 
assumption that Tc is small compared to WI. We shall 
not touch upon the question of the dependence of the 
coupling constants on the frequencies for real systems, 
but, like the authors ofpo,l1 l, confine ourselves to a 
model with two Einstein peaks WI and W2, with W2 

= const. We shall examine different power laws for the 
variable coupling constant A~: 

1.,'= (Q/oo,) '-v, 0<v<2, 1.,'= (Q/oo,) '. (47) 

Qualitatively, the behavior of Td WI) as WI - 0 is 
very easily illustrated in the model with one peak W in 
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the absence of the Coulomb interaction. In this case, 
formulas (5) and (2) take the form 

. odd }"'(f)' sgn m odd }"'(f)' sgn m ~m 
cr.=!j./rrT,= '(1 , ,~ = '(1 ~- (48) 

~ (f)._m +(f)' • ~ (f):_m +(f)' lm+crml . 

We shall make the substitution An = ~n/\ n + an \ and in 
the equation for ~n carryover the term with m = n 
into the left-hand side: 

(In+cr.l-},,') li.=},,'(f)' '(1 lim . f:! ffi!_m +w2 
(49) 

Since 
1_1-1 1 

cr.= (,.'+2},,'(f)' '(1 ) sgnn, 
~(f)' +(f)' "_2 n_m 

we see that AO in the left-hand side of (49) is cancelled 
on ac count of an. We denote 1 = whrT c and A'12 = X and 
rewrite Eq. (49) with this notation: 

1'1-1 2 

( Inl+X E k'+Z') lin .-. 
E lim -x 

- (m-n)'+l' (50) 
m.,._ 

To each value of the parameter 1 corresponds a finite 
eigenvalue XU). As 1 - 0 we have X - Xo = const, 
i.e., for ,mall w, AOl 2 ~ const, whence it follows that 
Tc ~ Wv 2. Thus, for v = 0 we have Tc - const"" 0, 
while for v ;> 0 we obtain Tc - O. In exactly the same 
way it is easy to show that in the model (47) with two 
peaks, with or without the Coulomb interaction, the 
contribution to Tc from the soft mode WI is always 
positive and for small WI is proportional to w~. 

Figure 1 shows the results of the numerical solution 
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b 

of Eq. (50) for v = 0 (curve 1) and v = 1 (curve 2); tl1e 
dashed curve corresponds to formula (43) with IJ.* ~ 0 
and v = O. 

Figures 2a and 2b show the numerical results for the 
model with two peaks in the case v = 0 (Fig. 2a) and in 
the case v = 1 (Fig. 2b). All the frequencies and T care 
given in units of the scale frequency n. The curves 1, 
2, and 3 correspond to W2 = 1 (Ag = 1-strong coupling) 
and IJ.* = 0,0.1 and 0.2. The curves 1',2', and 3' corre­
spond to W2 = 2 (Ag = 0.25-weak coupling) and IJ.* = 0, 
0.1 and 0.2. In all cases the Coulomb pseudo-potential 
IJ.* is defined not in terms of the average logarithmic 
frequency Wo but in terms of the scale frequency ~l. 

We see that when an additional mode arises in the 
phonon spectrum of the superconductor, Tc increases 
in all cases; this is physically obvious, inasmuch as 
additional attraction betwen the electrons then appears. 
As this mode softens Tc increases monotonically, if 
the dependence of the coupling constant on frequency 
has the form A~ ~ W;:2, But if Al ~ w;2+v, where 
v ;> 0, then T c first increases and then, passing 
through a maximum, falls, and for WI = 0 the contribu­
tion to T c from the extra mode vanishes. The same 
result was obtained by Bergmann and Rainer[l71, who 
considered the case A 7 = const, i.e., v = 2. 

The authors take the opportunity to express their 
gratitude to Yu. Kagan for a discussion of questions 
associated with low-frequency modes. 
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