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We construct a theory for the fluctuation kinetics in pure superconductors below the transition point. We 
assume that the frequency and wave vector satisfy the conditions hw<~, q< ~/h VF' The cause of the 
fluctuations is the collisions of the normal excitations with impurities and phonons. We study the spectrum 
and the spatial dispersion of the fluctuations in the absolute magnitude of the order parameter, in its phase, 
and in the superfluid velocity. We formulate fluctuation-dissipation theorems which connect the spectral 
densities of the fluctuations in these quantities with the corresponding impedance. We discuss the 
fluctuations in the magnetic flux in a superconducting ring and the effect of fluctuations in phase on the 
line width of the Josephson effect. 

PACS numbers: 74.30.H 

1. INTRODUCTION 

The present paper is devoted to a study of the fluc­
tuation kinetics in pure superconductors. Practically 
the whole theory of fluctuations near equilibrium in 
normal metals reduces to giving the correlators of the 
random currents. As there are two new variables in 
superconductors which characterize the state of the 
superconductor, the phase X and the absolute magnitude 
~ of the order parameter, the theory is more compli­
cated. All classical fluctuations in superconductors 
(and those are just the ones we shall consider in the 
present paper) are connected with the fluctuating motion 
of the normal excitations, on which the random poten­
tials 4> = Y2aX/at + ecp (cp is the electrostatic potential), 
Ps = Y2(VX - 2eA/c) and ~ act; these potentials them­
selves depend on the distribution function of the normal 
excitations. 

We use the Langevin method for such a system, find 
general expressions for the equal time correlators, and 
formulate for a superconductor fluctuation-dissipation 
theorems which connect equal time correlators with the 
corresponding response functions. Moreover, we study 
the frequency dependence of the fluctuations in the whole 
temperature range up to the transition pOint and discuss 
the effect of phase fluctuations on the line width of 
Josephson radiation and the form of the current-voltage 
characteristics of a Josephson transition. Furthermore, 
we discuss the problem of magnetic flux fluctuations in 
superconducting rings. 

There are atthe moment a large number of papers, 
starting with the one by Aslamazov and Larkin(1] which 
are devoted to the effect of fluctuations near, and 
usually above, the transition point on the electrical 
properties of superconductors. Larkin and Ovchinni­
kov[2] have studied the order parameter fluctuation 
spectrum below the tranSition point when ~ « T in 
dirty superconductors. However, as far as we know, the 
fluctuation kinetics in the whole temperature range be­
low the transition point in pure superconductors has not 
been considered. 

2. LANGEVIN'S METHOD FOR DESCRIBING 
FLUCTUATIONS IN A SUPERCONDUCTOR 

We use Langevin's method to describe fluctuations in 
a superconductor. If the wavevectors and frequencies of 
the excitations satisfy the conditions 1) w « 1 and 
q «~/VF, the complete set of equations describing the 
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behavior of the superconductor conSiSts, as was shown 
earlierp] of 

a) the kinetic equation for the distribution function of 
the excitations: 

where 

an,. a~, an, a1!, on, 
-+-----+I{n,}=O at ap ar ar ap , 

~,=e,+p.v. e,= (~,'+Ll') ''', 

~,=s,+<D+p.'/2m. s,=p'/2m-/1. 

(2.1) 

(2.2) 

P is the quasi-momentum of the excitations, I{nnt is 
the operator for collisions of the excitations with pho­
nons and impurities: 

d'q· 
l{n,}=-2n S (2n)' IC.I'{(i-n,)n,_.(u,up_o-v,v,_.)'· 

. [ (1 +N-.l II (1',-~,_q+w.) +Nqll (~,-1!,-.-w.l I 
-n, (1-n,_0) (u,U,_q-V,vP_.) 'IN-oil (E,-1!,_.+w.) 

+ (1 +N q) II (~p-1!p_.-Wq) 1+ (upVp_q+up_qv.) ~II (~p+1!-p+q-w.) . 

. [(i-np) (1-n_p+q)Nq-npn_p+o(1 +Nq) J} 
(2n)' d'q· . 

-2nN,----;;;;-S (2n),IAql'(n.-q-n.) (UpUp_q-VpVp_q)'II (1!,-f,_.), (2.3) 

Ni is the concentration of impurity atoms, Cq the 
matrix element of the electron-phonon interaction, Aq 
the amplitude for the scattering of an electron by an 
impurity atom in the normal metal, 

u.'='/,(1+s,le,), v.'='/, (1-1,1e,) ; 

b) the equation for the absolute magnitude of the 
order parameter: 

A S d'p 1-2n. 
1 = -2 (2n),---e;--' 

(2.4) 

(2.5) 

where A < 0 is the effective electron-electron repulsion 
constant; 

c) the continuity equation or the electro-neutrality 
equation, which is equivalent to it for a superconductor 

IIN=II {S dT,[~p'n,+v"(1-n_p) I }. =0,' (2.6) 

where dTp = 2d3p/ (21T il. Together with the Maxwell 
equations, Eqs. (2.1), (2.5), and (2.6) form the complete 
set of equations. 

When the superconductor is in a state of thermody­
namic equilibrium, we can write the fluctuating correc­
tion to the distribution function of the normal excitations 
in the form 

an. 
IIn,=6E, - + I,. 

iJe. 
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This correction leads to the appearance of the fluctua­
tion potentials ~,ps, and lit.. Here 

Iif. =!!.. (I.l+p.v + ~M. (2.8) 
8, sp 

Linearizing (2.5) and (2.6) in terms of onp and the po­
tentials we find that 

where 

N. s~ I)n, 
-=1+2 d6.­
N 0 1)8. 

is the fraction of superconducting electrons. 

(2.9) 

(2.10) 

To find the connection between ps and fp we use the 
Maxwell equation 

rotH=4:tllc (2.11) 

and the expression for the current 

l=ev.N.+e S dT. v/ •. (2.12 ) 

Changing to the Fourier components as far as r is con­
cerned and using the fact that H = -c curl ps Ie, we 
find that 

(2.13 ) 

where A L = 41Te2 Ns I mc 2 is the square of the reciprocal 
of the London penetration depth. Or, introducing the 
matrix 

we have 

(2.14) 

To obtain an equation for f~ (t) we linearize the 
kinetic equation. It is then important that the collision 
operator vanishes if we substitute the equilibrium dis­
tributi.)n function no (Ep). The linearized kinetic equa­
tion then takes the form 

( I) . Q. . ) 1)1i~. I)n, • 
-+UJV-+I. t .. (t)+----=G.(t), 
at B. at a8. 

(2.15) 

where J p is the collision operator (2.3)-linearized 
with respect to the distribution function-taken in the 
zeroth approximation with respect to the fluctuating 
potentials. We have added in (2.15) the random force 

G3 (t) in accordance with the Langevin method. 

Changing to the Fourier components with respect to 
the time, we can write Eq. (2.15) in the form 

{-i",(HL.)+iqV !: +1.}t,"=G •• o, (2.16 ) 

where we have introduced the integral operator 

i., .. q=Ii~. an, =[~.k an,s dT .. ~-~~~ on'JdT"~ 
a8. aN 8. a8. 8., aN N. 8. OB. e., 

man, S ] +, ,>1 -0 viKjj-l(q) d-.:., VI; t.,·'. 
""L ~'8 Sp 

(2.17) 

To complete the construction of the Langevin scheme 
it is necessary to determine the correlators < Gp ( r, 
t) Gp (rl' t l » wq of the random forces in the kinetic Eq. 
(2.16). To find the correlator of the random forces in 
the kinetic equation we use Onsager's method. [f] The 
probability for thermodynamic fluctuations is deter­
mined in our case by the change in the free energy of 
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the superconductor and in the electromagnetic field when 
there are fluctuations. The change in the free energy 
when the distribution function fluctuates depends then 
on the fluctuation potentials which, according to (2.9), 
(2.10), and (2.14), are functionals of the fluctuation cor­
rection to the distribution function. The probability for 
fluctuations is thus given by varying the quantityl'] 

{ L1' H' 
15fT={j S dT.t.(n,-v")-~-NQl+8n-TS}, 

s=- S dT.[n.lnn.+(1-n.)ln(1-n.)], 

where S is the entropy of the gas of excitations. 

(2.18) 

Expanding O.rup to and including second order 
terms and using the neutrality condition and the gap 
equation we get 

1 (f.O) , N. aN , 1 aN, p.' H' 
(jfT=--JdT.---+--(M) ---<1> +N.-+-

2 on,/aB. 2N 0.. 2 a.. 2m 8n 

1 S dT. - ) 
=-2' on,/oe. ,,,(1+L.)/.'. (2.19 

Now we can use the automatic sChemel4 ] for finding the 
random forces. 

We introduce the generalized coordinates xp == f~ 
and the generalized forces, 

(2.20) 

corresponding to them. Varying (2.19) and using the 
expressions for Ot., ~, and Ps, we get 

1 (.on,) -I - (2.21) 
x'=-y oe. (1+L.)/.'. 

We write the relation between xp and Xp, i.e., the 
kinetic Eq. (2.16) in the form 2) 

-1",/.""=- ,E(HL.l-'B.(q) (H£.)-' I)n,. 
.. o~ 

( on) -, 
. Ii •• , r (1+L • .)/.,··+(1+L.)-'G.··, 

e., 

B.(q)=iqv~+I .. 
B. 

whence we have, according tolf] 

(2.22) 

- - T [- - on (HL.)-'(HL.,)-'(G.G.,>.,--Z- (HL,)-'B.(q) (HL.)-'-' Ii .. , 
_. n. _ on, 1)8. 

. + (HL .. ) -'B.:(q) (HL.,) -, oe., Ii." ]. (2.23) 

op"'erating 0An the left with the operator 
(1 + Lp ) (1 + LpI) and uSing the fact that 

- an,. - on, 
(HL.,)-o 1i .. ,=(1+L')-1) 6.,. 

B, epi 

(this equation follows directly from the definition (2.17», 
we get 

T I)n, 
(G.G">.'=--2 (/.+1")-0 Ii .. ,. n B. 

(2.24) 

It is necessary to note here the following important 
fact. If the potentials ~, Ps, and Ot. were not self­
conSistent, their fluctuations, and also the fluctuations 
in the distribution function, would be statistically inde­
pendent, and the square of the fluctuations in the distri­
bution function would be given by the usual expression 

I)n, 
(6n,6n.,>=-T-1) Ii,;.,. 

8. 

In superconductors, however, 
an, -

(lin,lln.,>=-T ;;-(1 +L.) 6 .. , 
V8, 
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or 

(2.25) 

This is obvious, as the gas of the excitations is situated 
in self-consistent fields and interacts with them. In this 
sense, it is not a perfect gas of excitations. At the same 
time the correlator of the random forces is determined 
solely through the collision operator, as random mo­
tions occur only when we take collisions into account 
and over times of the order of the collision time, while 
the distribution function, and thus also the fluctuation 
potentials, change over times of the order of the time 
between collisions which in our approximation are much 
longer than the collision times. 

3. CORRELATORS OF THE FLUCTUATIONS IN 
THE BASIC PARAMETERS OF A SUPERCONDUCTOR 

The spectral density of the fluctuation correlator is 
~ w 

(!./ • .> •• = S e'·' d,;(fp(,;)/.,(0) >.+ S e-'·'(/.,(,;)f.(O».d,;. (3.1) , , 
From the kinetic Eq. (2.15) we have 

. / •• '= . 1 {G'-'+ioo[.kID.'+VP'.'+~Mo,] an,}. (3.2) 
-,oo+B.(q) e. e. ae. 

Subs tituting (3.2) into (2.10) we find that 

111'.0,=- _1_!!:..!!...S d,;. I'. 1 G •• '. (3.3) 
1 •• aN N. Bp -ioo+Bp(q) 

~ In obtaining (3.3) we used the fact that the operator 
Jp conserves the parity of the function on which it op­
erates, with respect to p and ~p, as can be verified by 
a direct calculation. All integrals containing odd powers 
of p or ~p in the numerator are thus identically equal 
to zero. Here 

a", N S I'. ioo I'. an. 
1 •• =1 +-. -- d,;p. . 

aN N. Bp -ull+Bp(q) Bp ae p 

(3.4) 

USing (3.3), the definition (3.1), and Eq. (2.24) for the 
random force correlator we get 

Close to equilibrium it follows from the time reversal 
symmetry of the laws of mechanics and is verified in 
every actual case. From (3.10) follows the following 
equation for the operator Bp( q): 

an, • an, (3.11) 
Bp., (q)-a = B_p,·-p(q)-a ' 

BpI 8 p 

whence we have for the matrix elements of the inverse 
operator [-iwl + B( q>r 1 (1 is the unit matrix) 

( ~::) -, [-ioo1+8(q) j;;: = ( ::0) -, [-;001+8' (q) j::-;, _po (3.12) 

Applying relation (3.12) to (3.9) we have 

a", S \;. ioo an, 
Wj=- dLp v·-

ON Bp -ioo+Bp(q) 'aE. 

a", S ioo \;. an, -. 
=-- d,;pv- -=-w (-00 q) 

aN '-ioo+Bo'(q) Ep aB. ' ,. (3.13 ) 

Using (2.14), (3.2), and (3.7) we get for p~~ the fol­
lowing equation: 

4ne's ( Wj \;p) l' ,3.14) 
K;j(oo,q)P.;"'=-,- d,;p v,--- _. +B ( ) G.-', c a qliJ ep HI} p q 

whence, using (3.6), we have after simple transforma-
tions . 

(3.15 ) 

( 1) 4nioo 4ne' aN W;Wj 
K;j(oo,q)=q;qj-{);j q' +i;2 +-c-2-O;j(oo,q)-Ta;--;;::-'(3.16) 

S 1 an, 
O,j(oo,q)=-e'd,;.v;_. +B ( ) Vj-a =o,,(oo,-q). 

lCD p q Bp (3.17 ) 

The quantity O"ij(w, q) is the same as the contribution of 
the normal excitations in a superconductor to the high­
frequency conductivity. [5] 

Using (3.7) and (3.14) we find that 

<(Jl2> •• =-~~Im[~(1+ 4;e2 aN W;K,,-,(oo,q)Wj)]. (3.18) 
noo ON a q • c a", a •• 

The electrical field Ei is related to Psi and cI> through 
the equation 

eE;=-ioop,;-iq;(Jl, (3.19) 

T a", N 1 
(111'.'> •• = ---1m -. 

noo aN N. 1 •• 
(3.5) whence the correlator of the fluctuations in the trans­

verse fields is 
In obtaining (3.5) we used the identity 

S 1 1 
d';pd';p,ApCp, _. +B ( ). +B .( ) (GpGp,> •• 

. uo p q lCO PI q 

T S [1 1] an, =-- d,;p Ap' Cp+C. _ Ap -. 
'2n -ioo+Bp(q) ioo+B,,(q) aep 

(3.6) 

Expression (3.5) is also the required expression for the 
spectrum of the fluctuations in the absolute magnitude 
of the order parameter. We give its analysis below. 

Using (2.9) and (3.2) we find that 

wp·· 1 a • 1 
mo. - • + '" S d ~p G oq .... --- ---- 'tP • P , 

a q • a •• aN e. -,oo+Bp(q) 

where-
a", S 6p ioo 6. an, 

aqm=i--.dTp , 
aN E. -ioo+B.(q) Ep aE. 

W; =!!:.. S d.p 6. ioo V; anD . 
aN E. -ioo+B.(q) aEp 

(3.7) 

(3.8) 

(3.9) 

The vector w which has the dimensions of a velocity is, 
in an isotropic medium, directed along q and vanishes 
as q - O. 

The matrix elements of the linearized collision op­
erator satisfy the equation[3 j 

(3.10) 
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2 T 4noo _, T 
(E" > •• =---,-ImK.L (oo,q)=-ReZ.L(oo,q), 

n c n 
(3.20) 

and the correlator of the fluctuations in the longitudinal 
fields 

T {q' a", 4ne' 
(EII'>o.=--Im --+-2-KII -'(oo,q) 

noo a q • aN c (3.21 ) 

X[1+ ooq,(w,+W.) + qjq;w:w;] }=~ReZII(oo,q), 
aqW a'qW' n 

where Zl(W, q) and ZII(W, q) are the impedances for 
transverse and longitudinal perturbations. 

Equations (3.20) and (3.21) from the fluctuation-dis­
sipation theorem for a superconductor which connects 
the field fluctuations with the impedance Z( w, q). It is 
clear from (3.20) that it has in a superconductor the 
usual form[6], notwithstanding the infinite zero-fre­
quency conductivity which is reflected in the occurrence 
of a term proportional3l to c2/41TiwAL' 

Equations (3.5), (3.15), (3.18), and (3.20) describe the 
spectrum of the fluctuations in a superconductor and 
they have the form of fluctuation-dissipation theorems, 
connecting the correlators of fluctuations with the 
imaginary parts of the corresponding susceptibilities. 
We emphasize here that if the spatial dispersion is 
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taken into account all expressions are obtained under 
the assumption that q « 1::./ vF, the reciprocal coherence 
length. In type-I superconductors terms containing q2 
must thus be dropped, since A L < vF / I::. « q-l. 

4. FLUCTUATION SPECTRA 

As we have already noted above the correlators of 
the ·fluctuations in the parameters of a superconductor 
can be expressed in terms of the imaginary parts of the 
appropriate susceptibilities. We can thus expect that for 
the quantities appearing on the right-hand Sides of Eqs. 
(3.5), (3.15), and (3.18) the Kramers-Kronig relations 
hold. The derivation of the corresponding formulae does 
not differ from the standard one['] if one notes that the 
spectral functions are, according to (3.1), defined as 
retarded functions, and therefore have no poles in the 
upper half-plane. However, as the susceptibilities have 
finite limits as w - 00, we must write the correspond­
ing relations with the necessary subtractions. We find 
for instance, from the Kramers-Kronig relations, that 

(4.1) 

where a-1(0) '" a~",o, a-Ie"') '" a~",ao. 

Using relations such as (4.1) we get for the equal­
time correlators the following expressions: 

At low temperatures 
T' aIL N. 

(<D').~~ aN N' 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where Nn '" N - Ns is the density of the normal com­
ponent which at 17w temperatures is equal to Nn/N 
'" (21fI::./T)1/2 e -1::. T. At high temperatures, I::. «T, 

(<D'> ~~~ 
• nA aN' 

, aIL N 
(M >q~T--. 

aN N. 
(4.6) 

Equations (4.6) are the same as the corresponding ex­
pressions obtained from the Ginzburg- Landau equation. 
At low temperatures the intensity of the fluctuations is 
proportional to the density of the normal component. 

We turn now to a study of the frequency-dependence 
of the fluctuations. We start with the fluctuations in the 
absolute magnitude of the order parameter. When q '" 0 

(6A'>.-Im 1.-', 

aIL N S 1'1 i(J) 1'1 an. 1.;"'1+-- (h.------. 
. aN N. e. -iw+J. e. ae. 

(4.7) 

The linearized collision operator· occurring in Eq. (4.7) 
acts on a function depending only on the energy Ep (even 
function of ~p). Thismeans that the whole of the fre­
quency dispersion of the correlator < 0 I::. 2) W is con­
nected with the inelastic scattering by phonons as the 
operator of elastic collisions only reduces any function 
depending on the energy to zero. 

To find the frequency dependence of the fluctuation 
spectrum < 0 I::. 2)W it is necessary to solve the equation 

If ifJp'" cp(+)(Ep)anO/aE:p we get, uSing (2.3).and lineariz­
ing with respect to ifJp' after simple, but tedIOus trans­
formations the following expression for the photon op­
erator Jph{CP(+)( Ep)}, acting on an even function of 
t .[71 
'>p' 

1+) an, ~ '+' __ n,(e) {s' 8' de' (_~) 
J.", (e.) a J.h {", (8p)}- 4 ' IT' ( " 1'1')," 1 , 

8p ms PF a 6. e - ee 

X(e-e')' r 1+exp (- ;') ] -, [ exp (e';£ ) -1] -, [",'+'(e')-",'+'(e) I 

Here la is the mean free path of the conduction elec­
trons in a normal conductor when SPF « T, s is the 
sound velocity, 

I c.1 '=;nw.I2Tm'I •. 

As in[71, we easily find a solution of Eq. (4.8) with the 
operator (4.9) for I::. « T in the energy range E: ~ 1::.. 
We note that just that range is important for us for the 
study of the fluctuation spectrum as the integral occur­
ring in Yw converges at energies E ~ A when I::. « T. 
For the solution we use a method similar to one used 
earlier .[8] 

In the energy range € « T the first of the integrals 
in (4.9) is small compared to the other two and we drop 
it. In the other two integrals we neglect € and I::. as 
compared to E:' ~ T. With the same accuracy we re­
place the lower limits by zero. Altogether the terms 
taken into account cancel one another and we get the 
following expression: 

(4.10) 

where 7i/ '" 7 1;(3)T2/4ms2PFla, I;(X) is the Riemann 
zeta function. 

The solution of Eq. (4.8) with the operator (4.10) is 
trivial in the region € « T. Using the solution of (4.8) 
and performing the integration in (4.7) we find from 
(3.5) that . 

, _ T aIL N 1:. nl'1 N 
(M >.---; aN N.1+w'1:." 1:·=1:'4TN.· (4.11) 

Thus, when we approach the transition point the width of 
the fluctuation spectrum decreases proportional to 
(Tc - T )1/2; 71::. is the relaxation time of the absolute 
magnitude of the order parameter close to the transi­
tion point, found by Schmid.[9] 

We now turn to a study of the frequency dependence 
of the fluctuation spectrum ( ~2) w: 

(4.12) 

(4.13) 

First of all we draw attention to the fact that the colli­
Sion operator occurring in the expression for < ~2)W 
acts upon an odd function of ~p. This means that out of 
the frequency spectrum < ~2) w, again responsible for 
the relaxation by phonons, we take that part which is 
odd in ~p. 

1'1 an, 
{-iw+J.h,=--·-· 

£, ae. 
(4.8) To find the fluctuation spectrum we must solve the 

equation 
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(4.14) 

If Xp = sign EpCP<-)(lOp)ano/alOp, we get, using (2.3), the 
following expression for the linearized collision opera­
tor: 

-l sign;.n,(e){S' e'de' ,,[ (e')]~' Jp,.(cp' (e.))= , (e-e)' 1+exp -- . 
4ms'p,I,T' , (e"-L'l.') '" T 

[ ( e'-e) ]~'[( L'l.') (e' L'l.')'I' (e" L'l.')'" 
)( exp -T- -1 1--;;;- cp'~l(E)- - ee' - c:pH(e'} ] 

f~ E'de' [ (e')]~'[ (8'-£) ]~' 
-. (e"-L'l.')'" (e~-e')' 1+exp -T" exp -T- -1 " 

x[( 1_~)c:p(~l(e)- (e'-L'l.') 'I. (e"-L'l.') '" c:p(~)(e')]- S~ e'de' 
ee' ee' " (e"-L'l.')'I' 

x(e+e')' [1-exp ( - e;e' ) r [ exp ( ~) +1 r (4.15) 

x[ (1+ ~',) ~(-l (e) _ (e'-L'l.') ':~~"_L'l.')'/' c:p(~l (e') ]} 

We consider first of all the high-temperature case 
when A « T. To do this we use the following method. 
We assume that the characteristic width of the fluctua­
tion spectrum T;t is much larger than the characteris­
tic scale length of the collision operator TSI which ap­
pears when it operates on the function (Ep/lOp)ano/alOp. 
We can then expand (4.13) in terms of the small 
parameter l/wTs and write (4.12) in the form 

«Jl').=~~ 4T_'t_~_, (4.16) 
n aN nL'l. 1+ro''t~' 

't~-I=- 4T ~ S d't • .k/.~ an.. (4.17) 
nL'l. aN e. e.ae. 

It is clear from (4.17) that, indeed, T;t ~ (T/Ahg1 

»T61 • We now evaluate T4!. Substituting cP<-) = ~p/Ep 
into (4.15) we see immediately that, as in (4.17) the 
region lO ~ T » A is the important one, in the main 
terms in (4.15) the values lO' ~ A « lO are the important 
ones, so that we can expand in terms of the small 
parameter A/T « 1. There remain then in (4.15) only 
the first and the last integrals in which the upper limits 
of integration can be replaced by +"". As a result we 
get 

Substituting (4.18) into (4.17) and integrating we find that 

1 7~(3)t' (4.19) 
4ms'PF I. 

Thus, in contrast to the fluctuation spectrum 
( 1\A 2) W the width of the fluctuation spectrum ( ~ 2) W 

close to the transition point is independent of the dis­
tance to the transition point. We emphasize once again 
that our consideration becomes inapplicable in the im­
mediate vicinity of the transition point, when A - O. 

At low temperatures we can find the asymptotic be­
havior'of the spectral function for WT» 1. The calcula­
tions lead to the following result:4J 

«Jl2) = ~ Nn !J!:..._1_ 
• nL'l. N aN ro''t~' ' 

1 T' T 'I, 

~=C~ ms'PFI. (2nL'l.) , 

r(5) f~ dz 
C"=-2-, z'''(z-1) 'I, ~(5,z). 

(4.20 ) 

(4.21) 

The correlator of the random external current can be 
found by substituting into the second term in (2.12) the 
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correction to the distribution function proportional to 
Gj)'q, from (3.2). When q = 0 

(4.22) 

We emphasize once again that due to the Meissner ef­
fect there are no fluctuations in the total current at 
q = 0 in the volume of the superconductor. 

We study Eq. (4.22) for the case when the scattering 
by impurities is the deciding factor. In that case the 
collision operator has the relaxation time form 

1 Is.1 
1.1jl.=---1jJ., 

Tn Bp 

where Tn is the electron relaxation time in a normal 
conductor. USing (3.17) we easily obtain an expression 
for the correlators of the external currents in different 
limiting cases. At low temperatures 

ex! ext L'l. [L'l. L'l. (I, I· -) =-6 J-0 (ro)exp --+ 
1 " 'n n T 2T 

E. [ L'l. (ro'tn) , ] X,I -
2T 1+ (ro't.) , ' (4.23) 

where O'n( w) = 0'0 (1 + W2T~ r1 is the high-frequency 
conductivity of a normal metal and 0'0 the static con­
ductivity of a normal metal. 

It follows from (4.23) that when A (WTn)2/T « I, i.e., 
at low frequencies, the correlator of the external cur­
rents has a logarithmic singularity 

(4.24) 

When WTn ~ 1 
2T 1 (loxt/ext) =6 -0 e-"/T __ 

, J • 'J n • (roT.)' . (4.25) 

At high temperatures A « T the correlator of the ex­
ternal currents also has a logarithmic singularity at low 
frequencies: 

(l .. xtlrt).=6w.!....on(ro) {1+ L'l.T [ 1 'I In 1+(ro'T.'+1)'I, 1]}, 
n 2 (1+ro''t.') , roTn 

(4.26) 

However, as A - 0 the logarithmic term vanishes and 
(4.26) changes to the usual expression for a normal 
metal. 

In concluding this section we discuss the problem of 
the spatial correlation of the fluctuations. Of most in­
terest, in our opinion, is the spatial correlation of the 
absolute magnitude of the order parameter. We empha­
size that in our approximation q « A/VF the equal­
time correlator is proportional to 1\ (r 1 - r2). To study 
the spatial dispersion it is necessary to solve the equa­
tion 

(4.27) 

We restrict ourselves to the high-temperature case, 
when A « T, and we shall assume that the relaxation 
time due to impurities is much shorter than the relaxa­
tion time due to phonons. We restrict ourselves to the 
case WTn« 1 and qln « 1, where In is the mean free 
path for scattering by impurities. 

We average Eq. (4.27) over a surface of constant en­
ergy lO for a given sign of ~. We shall indicate such an 
average by a bar over the quantity. We get 

(4.28) _ s - L'l. an. 
-iro1jlp+iqv-1jJp+Jph1jJp= --. 

e e oe 

Subtracting (4.28) from (4.27) and inverting the operator 
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for impurity scattering we get a formal solution of Eq. 
(4.27): 

",.=;P.+ioo/'m -, (",,-;p.) 

-iJ.m-' (qv.!!..",,-qV~"") -I.m-' (/p.Ij),-I •• ",,). (4.29) 
e, 8, 

The inverse operator Jitn in (4.29) is determined 
uniq.uely by the condition Jfm = O. 

We can iterate in Eq. (4.29) in terms of the parame­
ters WTn « 1 and qln « 1: 

(4.30) 

Substituting (4.30) into (4.28) we get 

('-iOO+~Dq2+I'h)iji,_~ an" (4.31) 
8, . ep aep 

where D = vFTn/3 is the diffusion coefficient in a nor­
mal metal. 

When t./T « 1 we showed above that the phonon op­
erator reduces to the relaxation time and we get for 
</Jp the following expression: 

'Ii 1 I~ I 1 -, 
iji,----(-ioo+Dq'-'-+-) . 

4T e, e,"t, 
(4.32) 

Substituting (4.32) into Eq. (3.4) for rqw' we get 

'y..=1-ioo"t,./ (1-ioo'to). (4.33) 

We used here the notation 

-r'IIl=-i---:--'t'o 1- --.-'-
N Ii [ (Dq'"t) , ] -'I, 
N. 2T ,1-/oo"t, 

xln --'-+i 1- --'- . { Dq''t [ (Dq'"t)' ] "'} 
1-ioo't, i-ioo"t" 

(4.34) 

Then, from (3.5), 

(4.35) • ,> T OJ.' N Re 't,.-oo't, 1m 'to. 
(va •• = 2. 2 

11 aN N. 1+00 l'to+"t,.1 

We find Twq for different limiting cases. We con­
sider the frequency range WTo« 1. Then Lm Tqw 
~ WT 0 and Tqw is in this approximation a purely real 
quantity, independent of w. If Dq2To < 1, we have 

1 11 [1-(Dq''to)']'/ 
"t,. = ~ 2 arccos Dq''to ' 

(4.36) 

where 1/Tt. = Ns4T/ToN1Tt. is the reciprocal of the time 
of the uniform relaxation of the absolute magnitude of 
the order parameter, (4.11), when t. « T. 

If Dq2To « 1, we have 
1 1 8T N. 1 

-=-+Dq'--",,-+DAql. 
't'h '(6 1t2~ N To. 

(4.37) 

11 1 
(4.38) 

'to. 2'"t" 

If Dq')-o> 1, we have 
....!.:... =..!.- 11 «Dq'"t,) '-1) '. 
"t.. "tA 2 , In[Dq'"t.+«Dq·"t,) '-1) '1,] 

(4.39) 

Thus, in the whole range considered for changes in 
the wavevectors T qw » To and <Ot. 2) wq has thus finally 
the form 

(4.40) 

From the expressions given here for Tqw it is clear 
that spatially non-uniform relaxation has a diffusion 
character only when Dq2To« 1 with a diffusion coef­
ficient which vanishes as T - T c: Dt. cc (Tc - T )1/2. 
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5. MAGNETIC FLUX FLUCTUATIONS IN A 
SUPERCONDUCTING RING. LINE WIDTH OF THE 
JOSEPHSON EFFECT 

We consider it superconducting cylinder of radius Ro, 
height d, and thickness a, in which an integral number 
of flux quanta are included. We evaluate the integral of 
Psi over a closed contour through the thickness of the 
ring: 

~P. dl=- </>-¢ 1I1i=- (jrp 1I1i, 
</>0 </>0 

(5.1) 

where ¢I is the complete magnetic flux, including its 
fluctuations and '7jj is the average flux, equal to n¢lo 
(¢lo = 1Tfic/ e). 

We evaluate the correlator of the magnetic flux 
fluctuations through the given contour: 

, rp, ' 
(6</>(r.l)6</>(r.l)>.=( ~) 211 Ro(p. (r.l) p. (r.l».QIl_O, (5.2) 

where qli is the component of the wavevector along the 
direction of the tangent to the contour, and r.L a vector 
at right angles to the contour. We determine first the 
integral intensity of the magnetic flux fluctuations. If 
all dimensions of the cylinder are much larger than the 
penetration depth of the magnetic field, we get, using 
(4.4) and integrating over the two-dimensional ~, 

({j¢'>=2nR,Tln (NIN.). (5.3) 

For a thin-walled cylinder with dimensions a < ;\L 

l.L (' (N.)"') (1l</>'>=(2n)'RoT-; 1- N (5.4) 

and, finally, for a thin ring with a height small com­
pared with A L 

({j¢'>=811'TRo1.L'N.ladN. (5.5) 

Burgess[10j has earlier obtained Eq. (5.5) for a thin 
ring. It follows from (5.2) that in a thin ring the fre­
quency spectrum of the magnetic flux fluctuations is 
determined by different-time correlators of the super­
conducting momentum at q = 0, Le., by Eq. (3.15). 

The magnetic flux fluctuations in a cylinder thus have 
a classical nature and quantum limitations, imposed on 
the phase of the wavefunction in the ring, do not affect 
their dynamics, as they are connected with random 
processes in the normal component of the superconduc­
tor. 5) 

The fluctuations in the potential <I> can determine the 
line width of the Josephson radiation. Kulik[llj was the 
first to discuss the effect of the fluctuations 'in the 
phase of the order parameter on the radiation line width; 
he considered the problem of the radiation line width 
near the transition point in superconductors with para­
magnetic impurities USing the non-stationary Ginzburg­
Landau equation. Knowing the fluctuation spectrum 
( <1>2> w we can express the line shape of the radiation 
from a point contact in terms of the spectral parame­
ters. We shall assume that the potentials <I> in the two 
superconductors which form a weak link fluctuate inde­
pendently. This is justified as we take the whole of the 
weak link into account using perturbation theory. The 
Josephson current is thus 

1 (t) =1, sin cp (t), (5.6) 

Where J c is the critical current, and the phase differ­
ence at the transition has the form 
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, 
<p(t)= f dt'[2eVo+2eV(t')+2I1>,(t')-211>,(t')], (5.7) 
, '. 

where V 0 is the potential difference applied to the 
transition, and V(t) the fluctuation potential difference 
connected with the finite resistance of the tunnel connect: 
< V2( t) W = TRT / IT. When writing down Eq. (5.7) we used 
the gauge with rp = 0 inside the superconductors. This 
is the only gauge for which the fluctuations in the phase 
difference (i.e., the fluctuations in the difference in the 
chemical potentials) and the fluctuations in the differ­
ence of the scalar potentials V (t) are statistically in­
dependent. lll] 

We follow Kulik and Yanson[12] and introduce the 
spectral function 

2 +- .. 
1(00)=-;-S e'·'<sin<p(t)sin<p(t+t»d'C.. (5.8) 

After that the calculation is completely equivalent to the 
one given in(12]. We note merely that as the'line width 
is much less than l/Tph, which is the quantity which 
determines the dispersion of the fluctuation spectrum 
< <I1f>w, the linewidth is determined by (<I1i>w=O' 

Simple calculations show that in that case 

/(00)- 1 r 
- it (OO-OOo)'+r' ' 

r=4e'RT TlIi2+4n[ <I1>,'>,+<I1>,'>,l. 

If the superconductors are the same, we get, using 
(4.16) near the transition point for a point contact 

(5.9) 

(5.10) 

r=~{e'RT+~~~'C"} (5.11) 
Ii' Vo nd aN 

(vo is the volume of the superconductor). Estimates 
show that r may be of the order of 103 to 104 Hz. 

Taking the phase fluctuations into account leads to 
the fact that in the expression describing the current­
voltage characteristics (see, e.g., [12]) there occurs not 
the temperature, but T*, an effective noise temperature 
for the contact: 

T"=Ii'r/4e'R T • (5.12) 
We note finally that we can also measure the spectral 

function of the fluctuations in the complex order parame­
ter directly, by measuring the excess currents in a 
Josephson transition.l 13] 

In conclusion the authors express their gratitude to 
V. L. Gurevich, A. I. Larkin, I. O. Kulik, and G. M. 
Eliashberg for useful discussions. G. M. Eliashberg 
drew our attention to the problem of the magnetic flux 
fluctuations in a ring. 

')In a state far from equilibrium the criterion may be more rigid: w ~ e, 
where € is a characteristic scale for changes in the distribution func-
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tion of the excitations. Everywhere in the paper k = h = I, and the 
volume is also taken to be unity. 

2)We note that the eigenvalues of the operator Lp ~re not equal to -I , 
and theref<,,>re the solution of the equation (I + Lp)l/Ip= 'l'p in the form 
l/Ip = (I + Lpf'.,op exists and is unambiguous. 

3)Below we discuss the expression for the correia tors of external random 
currents in a superconductor. 

4) At low temperatures the fluctuations in the quantities .6. and <I> in the 
frequency range of interest remain classical (<I> is the Debye tempera­
ture): 

S)We emphasize that the fluctuations considered are nothing but the 
quasi-static magnetic field fluctuations. 
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