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A system of ineracting collectivized (c) and localized (d) electrons in a transition metal is considered. The 
free c electrons form abroad band and the d electrons from atomic-type states that can be described by 
means of Hubbard operators. It is shown that when the chemical potential is exponentially close to the 
difference between the (n+ 1)- and n-electron d terms the system is unstable with respect to mixing of c 
and d terms. Dynamic hybridization effects (in contrast to the usually considered hybridization due to the 
crystal field) are taken into account in a self-consistent manner by introducing the respective anomalous 
averages. The ground state of the system in the paramagnetic phase is found in the logarithmic 
approximation and criteria for the appearance of ferromagnetism are formulated. 

PACS numbers: 71.30.M, 71.50., 75.30.L 

1. INTRODUCTION 

It is customary in the description of the properties of 
transition metals to start with subdivision of the elec­
tronic states into collectivized (former valent sand p 
electrons) and d states. Collectivized or c electrons 
make up a broad conduction band which is approximately 
half-filled, and are described within the framework of 
the band theory. The states of the d electrons in transi­
tion metals, on the other hand, are intermediate between 
purely localized (atomic) and collectivized, so that their 
description entails fundamental difficulties. Although 
there are arguments both in favor of the band descrip­
tion of the d electrons and in favor of the atomic des­
cription, nevertheless the importance of the intraatomic 
correlations requires that preference be given to the 
latter, at least as the zero-order approximation. A 
clear example of this approach is the well-known 
Hubbard model [lJ. If the term of the d(f) ion lies below 
the bottom of the conduction band and the intraatomic 
interactions greatly exceed all others, then it can be as­
sumed that the d(f) electrons form a "rigid" spin. In this 
case the interaction of the conduction electrons with the 
d(f) electrons can be described within the framework of 
the s-d(f) exchange model as an interaction between two 
autonomous subsystems with a conserved number of 
electrons. This situation is realized in many rare-earth 
metals. 

In transition metals of the iron group, however, and 
also in certain lanthanides, a situation is realized in 
which the atomic levels fall in the conduction band and 
are transformed into so-called resonance levels. The 
concept of d resonances is presently universally accep­
ted, and is used to calculate the band structure of d me­
tals with allowance for hybridization of the c and d states 
(for a detailed discussion see [2 ,3J • 

Smith [4J, Maksimov and Kikoin [5J, and Didukh and 
Stasyuk [6J considered the influence of intraatomic d-d 
correlations on the energy spectrum and on the magnetic 
properties of a d metal; it was assumed that the c-d 
hybridization is due to the action of the crystal field, i.e., 
it is a one -particle effect, just as in Anderson's case [17J 

and in the band-structure theories [2J. 

It was shown in [8J that mixing of the c and d states 
can result from their dynamic (Coulomb) interaction. 
Indeed, in this case there are two channels for the scat­
tering of the conduction electrons (e) by the d ion with 
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n localized electrons; 

1) e + d(n) ~ e' + d' (n), 

2) e +d(n) ~d*(n+1) ~e' +d'(n). 

The first channel corresponds to elastic scattering 
and is not accompanied by a change in the number of 
electrons in the c and d SUbsystems. The scattering in 
the second channel (via the compound ion), as shown 
in (BJ, can lead under certain conditions to a phase tran­
sition into the state of supermixing of c and d electrons. 
However, Zaslavskil et al. [BJ considered the simplest 
model of the system of two-level atoms and spinless 
fermions, 

In this paper we consider a more realistic model of 
a d(f) metal which takes into account the spin states of 
the d and c electrons. Inclusion of the spin is fundamen­
tal for two reasons: first, it becomes possible to con­
sider exchange effects and magnetic ordering; second, 
the "atomic" d subsystem becomes a p-Ievel system 
(p 2: 3), which leads to a nonlinear connection between 
the c and d states even within the framework of the 
model Hamiltonian. 

We consider below the susceptibility of a system with 
respect to a mixing c-d perturbation and find the condi­
tions for the onset of instability with allowance for not 
only Coulomb but also (in addition to [S]) exchange inter­
action. Further, within the framework of the model 
Hamiltonian we determine in self-consistent fashion the 
effective parameter of the mixing interaction in the 
paramagnetic state and formulate criteria for the onset 
of ferromagnetism in the supermixing phase at T = 0, 

2. THE HAMILTONIAN 

We consider the model of a crystal with contact inter­
action between the c and d electrons, We assume for 
Simplicity that the latter behave like s electrons, as in 
the Hubbard model [lJ, so that there are four states at 
the site: 10)-a hole, i.e., a state without a d electron, 
la)-a one-electron state with S = 1/2 and spin projection 
a, and a two-electron state 12) with S = O. We represent 
the Hamiltonian of the model in the form 

(1) 

.0 '0 
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In the Hamiltonian Ho, which describes the noninteracting 
c and d electrons, we have introduced the following nota­
tion: cka and cka are the Fermi creation and annihilation 
operators for conduction electrons with quasimomentum 
k, spin projection a, and dispersion law Ek; dia and dfa 
are the Fermi creation and annihilation operators of 
d electrons in the crystal-lattice site Rt == f with spin 
projection a; El is the energy of the one-electron state 
la); U is the energy of the Coulomb repulsion in the 
two-electron state; /l is the chemical potential, and Ne 
is the operator of the total number of electrons (the c 
and d operators anticommute): 

;V.~ ~ c,,+c,,+ ~ d'o+d". (2) 
kcr fa 

In the Hamiltonian Hb which describes the interaction 
between the d and c electrons, N is the number of atoms 
in the crystal, V and J are respectively the Coulomb and 
exchange integrals, and Q is the integral of the dynamic 
"mixing" interaction: 

Q~ S drdr' W,'(r)<D,'(r')v(r,r')<D,(r')<D,(rl, 

where Wf is the Wannier function of the c electron, <l>f 
is the atomic function of the d electron, and v is the 
screened Coulomb interaction. 

Since the intraatomic electron-electron interaction U 
is comparable in order of magnitude with the Fermi en­
ergy (or with the width of the band) of the conduction 
electrons, it is taken into accounf already in the zero­
order approximation. The Hamiltonian Ho assumes a 
simple form in the representation of the Hubbard opera­
tors, the properties of which are described in a number 
of papers[l,5J • For the considered states Ip) = 10), ja) 
and 12) the relation between the operators dfa and the 
Hubbard operators xf, which transform the ion from 
the state jq) into the state jp), takes the form 

f](0)= {+1, 0= t (+) . 
-1, 0=+(-) (3) 

We shall henceforth consider only cases in which the 
d electrons are either in one-electron or two-electron 
states. This allows us to neglect transitions to the state 
jO), so that the normalization condition for the X opera­
tors takes the form 

(4) 

When these circumstances are taken into account we 
have, apart from an inessential constant, the Hamiltonian 
of the system in the X representation: 

H~H"+H .. 

H, = ~ 6.Ck,+C,.+ ~ [(e,-I1) ~ X,··+ (e,-211)Xr"], 
itO' f cr 

H --~ ~ ;r,-p)f[VX·· + + (V-J) v-a.-, +. +JX -.'. + 1 
1- AT"i..,Je f Cka Cpu .. '1.1 ('ka (po ... r Cko Cp,u 

fkp(T 

+~ ~ [Qf](o)e'klc •• +X,-"'+Q·f](o)e-ik'X,·'-·c,,], (5) 
'IN £.oJ 

kI. 

where ~k = Ek - /l and E2 = 2El + U is the energy of the 
two-electron state. The initial energy spectrum of the 
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FIG. I. The initial energy spectrum 
(ek=O = Eo is the "bottom" of the c band, 
and the energy is reckoned from the 
"hole" state 10». 
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considered model is shown schematically in Fig. 1: the 
difference between the two-electron and one-electron 
terms E2 - El "intersects" a conduction band of width W. 
It is assumed that the chemical potential is /l ~ w 
== E2 - El, but nevertheless V, J« /l. 

In addition, owing to the oscillatory character of the 
atomic d functions, we have Q:::; V, J. We note that 
formally the Q interaction in the Hamiltonian (5) has the 
same structure as the hybridized Anderson interaction [7J 

considered in the aforementioned papers [4-6J. 

3. POSSIBLE INSTABILITY OF THE SYSTEM WITH 
RESPECT TO MIXING 

In systems with localized levels "imbedded" in con­
duction bands, the degeneracy gives rise to competition 
in the filling of the electronic states. Thus, if the one­
electron states El in Fig. 1 are completely filled and the 
band begins to be filled, then at Ek ~ w the electrons 
either remain in the band or fill the two-electron local­
ized levels l ) E2. We shall show that this degeneracy is 
lifted and a new hybridized ground state is produced if a 
dynamic interaction exists between the d and c electrons. 

We introduce the retarded commutator Green's func­
tion [9J 

«X,',-· co.Cr) lco\·X,~", (0») ~ G,'::'·' (6) 

(the time T pertains to the entire operator x:,-a cqa ), 
which is proportional to the susceptibility of the system 
relative to the mixing Q interaction in the Hamiltonian 
Hl. The equation of motion for the Fourier transform 
of (6) is 

f'q'a' _ _ i_ f'q'o'_ 1 ~ I(k_p)f ,.2 -J ,+ 
[E- (GO'-Ll) lG,o' (E) - 2n K,oo ----y- £.oJ e « VX, (k,-aCp-aCoa 

'p 

+ (V -J)X,"-' c,,+cp,cqo +JX:'· Ck, +Cp,-oco,IA '», 
1 ~ "O-P)J«VX"-' X.. +(V-J)Y"-· X.-··-' , -NL...Je f lepa -I J (pfl 

pJ 

where 
A' == c:(J.X;.a' ': ~ = w-~, 

Recognizing that VI/l, JI/l « 1, we can confine our­
selves to the simplest splittings. In terms containing 
summation over the sites, we separate the term with 

(7) 

f = J and use the rule for the multiplication of Hubbard 
operators, while the correlation between the different 
sites f f. J will be taken into account in the self-consis­
tent-field approximation 

«Xr-·X,"·c .. I» ..... N.«X/'-·cp.I», Na~ <X,">, 

«X:·-· x,-··' cp,_.1 » ..... 0. 

We confine ourselves to searches for solutions that are 
homogeneous over the crystal, so that (x(t> is assumed 
to be independent of the number of the site. The Green's 
functions that contain three c operators in the left-hand 
bracket will be replaced by functions corresponding to 
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the random -phase approximation, for example 

«xt'-· c •• +cp.c •• 1 »-+litpGji~:"'(E) nk-6 •• G~~:'·' (E) n.', 

nk';;;;:;;: <c",+ct..). 

f' ' , 
The function Gfq~ 0 is now connected with itself and with 

f' , , 
the function Gf q 0 • Thus, we have the system of equa-
tions q,-o 

G""a'(E)=_i K",'·' __ l_ 
'q., 2n IqO" E_Bqo 

1(1-n.') e"'G" .. 'a'(E) (8) 
Ii-B,· " ' , 

where, in the assumed approximation, 

Kf'~:'O'= 6qq ,boo ,l)It' [N 2 t t _nq(J) -l1qlTlvT_J] -6ff'6_I1,a'(C;',_ocqaX;'-o >, 
B.a=sq-~-V(1-N,) - Vn,+IN_a, 

n, = N-' En.", N, = <Xl'). 
'a 

It follows from the system (8) that the poles of the sus­
ceptibility of interest to us (with the exception of the 
trivial case E '" Bq) are determined by the poles of the 
function 

G""a'(E) _ 1 '\1 -"'G""a'(E) 
fo -}i.i...J e 'qo • 

• 
Neglecting the t,r~~verse spin correlations in the ex­
pression for Kf q 0 (they are vanishingly small in the 

fqo 
ground state at T '" 0), we obtain from the system (8) 

G,!'·a (E) ='/,in-'6",e-"'[N,(t·-n.a) -n.aN_ o ] [1 + (V -J)L_,-JN,B-a] 

x{(E-B:) [[ 1+ (V-J)L"-~JN_aBa] [1 + (V-J)La-lNaB-a]-J'LaLa ] 1-'. 
(9) 

Here 

1 E 1 Ba(E)=- --
N k "_B.a' 

In the paramagnetic state, the occupation numbers 
and the coefficients BO etc. do not depend on the spin. 
Putting No '" N1 /2 and Bq '" B , we obtain from (9) an 
equation for determination of ~he poles of interest to us: 

[1+(V-l)L(E) -'/,IN,B(E) l'-J'£' (E) =0. (10) 

It follows from (10) that in order for the system to be­
come unstable with respect to the mixing interaction it 
is necessary in the static case (E '" 0) to satisfy at least 
one of the conditions: 
L, (0)=-(V-21)-'[ 1-'/,lN,B(O)] or L,(O) =-v-It 1-1/,1N,B(O)]. 

(11) 

To explain the physical meaning of these conditions, we 
obtain B(O) and L1 ,2(0) in the rectangular-band model for 
collectivized electrons. In this case their density for one 
spin direction is given in the form 

(E)={ go, EE[Eo, Eo+W] 
g 0, outside of this interval, (12) 

Integrating the conditions (11) at T '" 0 and omitting the 
insignificant addition JB « 1, we obtain 

~<"'Wex]l[--j], 1=W-fl. v=v, V-2J. (13) 
vgo 

The conditions (13) denote that for stability with respect 
to mixing to set in it is necessary that the chemical 
potential be exponentially close to the transition energy. 

4. MODEL HAMILTONIAN AND EQUATIONS FOR 
THE GREEN'S FUNCTIONS 

The effects of interest to us, those of dynamic mixing 
of c and d states, can be obtained from a certain model 
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Hamiltonian. It follows from the preceding section that 
in the description of systems in which the condition (13) 
is satisfied, it is necessary to take into account the 
resonant scattering of the conduction electrons by a 
localized level or, in other words, to take into account 
the second channel of scattering via the stage of the 
composite atom. To this end, we introduce the anomalous 
mean values (c+ Xf- 02). We make the following change po 
of operators in the Hamiltonian (5): 

(14) 

where we have used the rule for multiplying the X opera­
tors: xao' '" xoq~o'. After making the substitution 

f f f 
(14), we obtain in place of the Hamiltonian (5) the model 
Hamiltonian 

(15) 

where 

(16) 

and where we have left out for simplicity the renormal­
izations of ~k and w, which are connected with the 
normal mean values of No and uk. The model Hamilton­
ian (15) now contains the thermodynamic mean values 
Yo' which should be obtained in a self-consistent manner. 

To find the mean values of ~, No, and yo' we set up 
a system of equations for Fourier transforms of the 
anticommutator Green's functions: 

ipf 

(Ii-sp) «c"IX,~,-a»E= '\1 ~-=A,«X;" Ix:;-a »E. (17) 
L..m , 

We note that, owing to the properties of the Hubbard 
operators, the model Hamiltonian (15) does not lead to a 
closed system of equations for the introduced Green's 
functions. Therefore the function «(Xf-o, -0 + xf2)CpO I» 
that arises in the equations is replaced by (1 - NO) «cpa I) , 
and the function «XiOOcp,_ol» is discarded (allowance 
for the latter leads to an exaggeration of the accuracy 
assumed in (12». 

The solution of the system (17) takes the form 
i E-~ 

«c"I<:",'»E = ~6kk'6,"' D."(E) , 

i n e"(I-I') (1-N) (E-" ) «X-a"IX :,-a» = _ } __ a ,,' 
, , , 3rr.:...d N D.a(E) 

k 
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where 

Dka(E)~(E-~k) (E-II.)-1.1cl'(I-.Yc). 

The poles of the Green's functions yield the spectrum of 
the system with mixing of states 

".a~1'(e.-",)2+4IAaI2(1-Na). (18) 

Using the solution of the system (18) and the spectral 
theorem [9J , we obtain a system of equations for the de­
termination of the mean values of Ya' Na , N2, and na: 

N2. 1 ~ (+) (+) (_) (_) 

l-Na ~N....,V.a-'[(Eko -B.)f(E.a -Il)-(Eta -Bk)/(E.a -11)]' 

k (19) 

1 ~ I (+) (+) (-) -) 

na~Nl....JV'a- [(E., -w)/(E.a -Il)-(Eta -fiJ-)!(Eta -11»)' 

k ~~ 

.V,+N.~1. .Y,~.'L+.V, 

:Y,+2N .+n .. ~p. 

(21) 

(22) 
(23) 

Here (22) is the averaged normalization condition (4), 
while (23) gives the relation between the electron density 
P = (Ne)/N and the chemical potential; f(x) =' [ef3x + 1rl. 

5. SUPERMIXING STATE AND FERROMAGNETISM 
CRITERIA 

The most interesting situation from the point of view 
of magnetism and mixing arises at /l ~ W, for in this 
case a contribution to the magnetic moment of the crys­
tal can come not only from the conduction electrons but 
also from ions that are in a one-electron state. Figure 
2 shows schematically the spectrum (18) and the position 
of the chemical potential. It is obvious that at T = OaK a 
contribution to (19)-(23) is made only by the lower band 
Ek~' An investigation of the system of equations 

(19)-(23) will be carried out in the model of the rec­
tangular band (12). 

Using the relation dEk~/dEk = %[1 - (Ek - w)/vkal 

and carrying out the integration in (19)-(21) with allow­
ance for (12), we obtain 

N, .., [1 1 ] 
~~2g,.IA"I-\I-}Va) -.-,,-,---+- , 
, "" E" (E,,)-w :'> 

(24) 

(25) 

Using the definition (16) of Aa , we obtain Ya' Then 

A"~ll(a)Q-(f,,-J,,)A,,-J_,,La=:<D(Na, N_ a; A", A-a), (26) 

where Va and Ja are the renormalized dimensionless 
interaction constants: 

_ .1 
va==Vgo(1-N,,)ln-----. 

w-E'a-'(Eo) 

Equations (24) and (25) contain IAal, so that the phase 

[ 

FIG. 2. Quasiparticle spectrum (18). 
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can be obtained only from (26). We consider the solution 
(26) in the paramagnetic state of the metal. We seek Au 
in the form 

A ~A, A_~Aei •. (27) 

For the nonmagnetic solution, Na = N_a = Nl/2 and the 
renormalized interaction constants are also independent 
of the spin, since the logarithm depends only on IAaI. 
Adding Eqs. (26), we obtain 

(26a) 

Equation (26a) has solutions either at cp = 11 or at 1 + V 
= 0 (there is no solution A = 0 at Q f. 0). 

We consider first the case cp = 11. Then (26) leads to 
the following equation for A: 

(28) 

which has two solutions, Al and A2. The solution Al ~ Q 
lies in the region V ~ 2J. The last equation can be satis­
fied either at V ~ 2J or at large tl. We note that at 
V, J - 0 there remains in (26) only the "direct" mixing 
Q, which can exist off resonance. It is precisely this 
nonresonant mixing which was investigated in (4-6J. How­
ever, Eq. (28) also has another solution, A2 »Q. It is 
obtained from (24)-(26) and from the equation 1 + V - 2J 
f::e O. We shall find this solution in the case when the 
crystal has two electrons per atom. At T = OaK and 
without the c-d interaction, we have in this case n~ = 1, 
Ng = 0, Nf = 1 (the band is half-filled; all the one-elec­
tron levels are occupied). When the interaction is turned 
on, onc electrons are "pumped over" to the two-electron 
level 

(jN2~N2-N2°"'2gowz, 

~9) 

In this case 

z~expl- (V-2J):'(1+N 2) ], W_~w-Eo. (30) 

We now consider the solution A3, which corresponds 
to the case 1 + V = O. From (26) we obtain an equation 
for the phase shift 

ei'~l+Q!A,J(A,), J<O, 

which has a solution cp f::e 0 at Q/A3 « 1. In this case the 
values of /l, ON2, onc ' and A3 can be obtained by replacing 
V - 2J in (29) and (30) by V. Thus, under certain condi­
tions there exists, in addition to the usual mixing ~Q, 
also a much stronger mixing A2 and A3 »Q (called 
supermixing in [BJ); it does not vanish as Q - O. 

Figure 3 shows the regions of existence of the solu­
tion A2 (cp = 11) in region II, the solution A3 (cp f::e 0) in 
region III, and the solutions A2 and A3 simultaneously in 
region I. Vcr stands for the minimum value of the inter-

FIG. 3 
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action at which the nontrivial solution appears for the 
first time for the mixing constant: 

(31) 

It is seen from the first equation of (30) that the chem­
ical potential depends on the value of A. In region I, both 
processes are resonant, the liquid becomes two-compon­
ent, and on the average Pl electrons per atom are scat­
tered "with a phase shift <p '" rr," while P2 electrons are 
scattered with <p '" 0, with P1 + P2 '" p. 

Thus, moving along any line in the (V, J) plane through 
the regions O-II-I-III, we obtain a cascade of "phase 
transitions" in the interaction constants: on going from 
region 0 to II we get supermixing, from II to I a jump­
wise change takes place in the derivative of A along the 
line of motion, a second jump occurs from I to III, and 
finally from III to 0 the supermixing vanishes. Usually 
V > IJI, which also limits the regions where the solu­
tions exist. 

We now ascertain the conditions for the onset of 
ferromagnetic order near the obtained paramagnetic 
solutions. In the assumed approximation, no does not 
enter in expressions (24) and (26) and depends on No and 
Ao. We shall therefore obtain the ferromagnetism 
criterion from expressions (24) and (26). Using the 
normalization relation for the occupation numbers per 
site, we rewrite (24) in the form 

1 2 
S_o=I-No-2goIAol'(I-Nol' [~- " , . ]==\V (N"Ao). 

.\ W_+I W_ +4IA,1 (1-/\,) 
(32) 

From (32) and (26) we obtain the condition for the onset 
of spontaneous' magnetization: 

[1+( :;JJ[( :.~Jo-(adA~Jo-l] 
= (:.: ) 0 [ ( (:,~ ) 0 - ( ~:J J . (33) 

All the derivatives are calculated here at the point of 
one of the paramagnetic solutions. In the calculation of 
the criteria we neglect throughout the derivatives 
A(aln .. ./aA)o and (aln .. ./aNo)o in comparison with unity. 
Near A2 , the condition (33) is not satisfied. Near A1 ~ Q 
we obtain 

(~ V-2J)go(l- ~ N,)ln: >1. (34) 

Finally, near A3 »Q we have 
61 (A,) +QIA,=-I. (35) 

Let us briefly discuss the obtained criteria. Equation 
(34) contains the constant for the Coulomb interaction of 
an electron with a c electron. At first glance this may 
seem unusual, since the initial Hamiltonian contains one 
and the same constant V both at the term d+,d,cjc I' and 
d+, d, c +, C ,. In addition, as see n from (34), it is easier to 
satisfy the criterion at J < 0, although usually the ferro­
magnetic state sets in only at J > O. The reason is that 
in the chosen model the resonant interaction of the con­
duction electron with the d electron via the stage of the 
compound ion occurs only when their spins are anti­
parallel. For conduction electrons with spin 0 scattered 
by an ion with spin 0, there is no second scattering 
channel. The criterion (35) is easier to understand in the 
limit as Q - 0 (this limit can be considered, since the 
solution A3 does not vanish as Q - 0). In this case we 
have 

Igo[ 3 (1+N,)ln : ]==Ig=t. (36) 

We see that the criterion (36) differs from the usual 
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Stoner criterion in the presence of a factor in the square 
brackets. The presence of the quasilevel E2 and the 
proximity of the chemical potential to the transition 
energy w '" E2 - El leads to a logarithmic growth of the 
density of states of the electron system at this place, 
and this indeed explains the possibility of satisfying the 
ferromagnetism criterion. 

Thus, in addition to mixing (hybridization) of the c 
and d electronic states due to the action of the crystal 
field, an additional mixing occurs if the chemical poten­
tial is exponentially close to the energy of the transition 
between (n + l)-electron and n-electron terms; this 
additional mixing is due to the dynamic interaction of the 
electrons. The resultant supermixing state is character­
ized primarily by the fact that the c -d interaction 
proceeds via a compound-ion stage, and can be described 
in terms of anomalous mean values of the type (c~ Xr). 
The final delocalization of the d states and the growth of 
the density of states near the transition energies facili­
tate the satisfaction of the ferromagnetic criterion of 
the Stoner type and increase the role of the d states in 
the formation of the interatomic-cohesion forces. In 
addition, the supermixing state, as follows from our pre­
ceding paper [8J , is characterized by a unique super­
structure of the type of the "reduced" metal of 
Abrikosov [10J . . 

Attention should be paid to the fact that the proposed 
model is a development of the ideas of Goodenough and 
Wollan [llJ concerning the simultaneous existence, in 3d 
metals, of localized (eg) and collectivized (t2g) d elec-

trons. It is therefore assumed that the states of the 
collectivized part of the d electrons are included in the 
c-electron band (these arguments were already used 
in [12J ), while only the fraction e of the total number of 
the d electrons is in the supermBcing state. We note that 
in x-ray absorption spectra the states of the electrons 
that are in the supermixing phase should become mani­
fest in the form of sharp peaks of width ~ A 2/1J. in the 
vicinity of the Fermi energy against a background of 
much broader (~2-5 eV) bands of the collectivized part 
of the d electrons. 

The results of the present analysis are also valid in 
those cases when the eg electrons form bands of width 
We < ~; on the other hand, when the inverse inequality 
is satisfied, only a fraction of these electrons is in the 
super mixing phase, but this question calls for a special 
investigation. 

We note also that inclusion of the magnetic field h 
leads to a replacement of ~ under the logarithm side by 
~o '" ~ + (1/2)IJ.Bh1](0), and that the value of ~o decreases 
for electrons with spin I. Therefore in those systems 
in which the resonance condition (13) is not satisfied we 
can attempt to "make them resonant" by turning on a 
magnetic field and thereby produce a super mixing state 
for electrons with one of the spin projections. 

In conclusion, the authors are grateful to G. M. 
Zaslavskil for useful discussions. 

l)In this case the one-electron levels become free by virtue of the nor' 
malization conditions (4). 
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