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A technique for calculating the elastic scattering cross sections with account taken of a closed channel is 
developed in the two-level approximation of the perturbed-stationary-state method. Scattering cross sections 
for PIL. dIL. and tIL mesic atoms in the lower state of the hyperfine structure are found. Resonance effects 
are observed in the cross sections for the processes d IL + P and P IL + p. 

INTRODUCTION 

Measurements of the weak-interaction constants of 
J.L- mesons with nuclei of hydrogen isotopes calls for a 
preliminary study of such mesic -atom processes as the 
formation of the mesic atoms, the capture of the meson 
by nuclei with heavier isotopes, the elastic scattering 
of mesic atoms, the formation of mesic molecules 
catalysis of nuclear reactions, transitions between' 
levels of the hyperfine structure of mesic atoms 
etc y,2]. In our earlier papers[3] we solved som~ of the 
foregoing problems and developed corresponding solu
tion methods. In this paper we investigate the elastic 
scattering of mesic atoms at collision energies lower 
than the threshold of the inelastic processes, with al
lowance for the nearest closed channel, the influence of 
which on the open channel is in some cases quite ap
preciable. 

With the aid of the method described below, we cal
culated the cross section of the elastic scattering 

dll+P-dll+P, 

and also the scattering cross sections 

PIl+P-PIl+P, 

d~t+d-dll+d, 

tll+t-tll+t 

(1 ) 

(2a) 
(2b) 

(2c) 

in the lowest state of the hyperfine structure at ener
gies not exceeding the energy of the transition to the 
upper state. The experimental[4,5] and theoretical[3,6] 
estimates of these cross sections are quite contradic
tory and in some cases differ by more than one order 
of magnitude (see the table). 

The following calculation results, in which account is 
taken of the presence of a threshold of inelastic proces
ses in the scattering reactions (1) and (2), were ob
tained on the basis of the method of perturbed stationary 
states (PSS) developed in[3] for the case of collision 
energies exceeding the threshold. A comparison is 
made with experiment and with the results of earlier 
calculations. 

FORMULATION OF PROBLEM 

In the two-level approximation of the PSS method, 
the calculation of the cross sections of processes (1) 
and (2) in the diabatic representation[8] reduces to a 
solution of the two-channel scattering problem 

[ d' ,L(L+1) ] _ 
dR' +k. ---R-'- ¢.=V .. ¢.+V"¢,, 

[ d' ,L(L+1) J 
dR,·+k, ---R-'- ¢,=V2I¢,+V"¢,, 
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(3) 

Cross section for the elastic scattering of PIl and dll mesic atoms 
in the lower state of the hyperfine structure 

I 
I Dzhelep,0v 
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Alberigi I Cohen IzelodOViehlMatveen-1 Present 

Process and Ger- ko and Po- work 
0'11, et al. [ I et al (5J et a1. Pi shtein [I] nornarev (e = 0.04 

[> leV) 

PIl+P 110-" em' \ 167±30 
7.6±O.7 8.2 

I 
1.2 

\ 

2.5 

\ 

0.23 

dll+d 10-19 em' {4.1~±O.~9; O.55±O.2r. 3.;; 3.3 1.8 2.1 l.o±O .. J 

where kl and k2 are the momenta in the corresponding 
channels of the reaction, Vij are the effective potentials 
expressed in terms of the symmetrical term Wg( R) and 
the antisymmetrical term Wu( R) of the two-center 
problem, and also in terms of the matrix elements 
Hai3 (R) and ~i3 (R), (a, i3) == (g, u), which take into 
account the influence of the motion of the meson on the 
relative motion of the nuclei[9,lO]. 

In matrix form, the system (3) becomes 

.P¢=V¢, 1jl(0) =0. (4) 

where 
V=D(2MW+H+Q')D-'+P. 

(5 ) 
k' 0 k' 0 

P= ( ~ k,,)-B( ~ k,' )B-', 

and the matrices W, H, and Q take the form 

( W. 0 ) 
W= 0 Wu ' 

Q= ( 0 Q.u) 
Q".O 

(5a) 

We have introduced here the notation 

D=BA, M=llt,M,(M.+M,+M,) !M.(M.+M,) " (5b) 

MJ.L is the meson mass, Ml and M2 are the masses of 
the nuclei, with Ml ~ M2 throughout 1). 

The constant matrix A transforms the set of molecu
lar functions xg and Xu of the two-center problem into 
the set of functions X land X2, which go over as R - 00 

into the wave functions of the isolated atoms with nu
clear masses Ml and M2: 

(6) 

The form of the matrix A is determined by the type of the 
solved problem[3]. The energy level scheme of the sys
tem compriSing the mesic atom and the nucleus is 
shown for R - 00 in Fig. 1. 

The system of equations for the functions Xi is 
equivalent to the system (3), but contains terms of the 
type QdX / dR, which is inconvenient in numerical calcu
lations. The matrix B = B( R) effects the transition 
from the adiabatic (Xl and X2) to the adiabatic (lJil and 
lJi2) representation[8], in which there are no gradient 

Copyright © 1975 American Institute of Physics 212 



~
£Z(d+PJl) 

~£ E 
. - ------ E,ldp+p} 

FIG. I. Three-body energy level 
scheme as R ~ 00. The collision ener
gy differs from the lower level of the 
system E 1. 

terms, .and the effective potentials are symmetrical, 
Vij = Vji: 

1)1=B)(, 

( (
COS p sin p ) 

B R}= 
-sinp cosp 

00 

p=J Qg,,(R}dH. 

(7) 

The calculation program at collision energies ex
ceeding the threshold (E > tl.E) was realized earlier[S]_ 
At E < tl.E, the momentum in the closed channel is pure 
imaginary (k2 = iK). In this case the sought solution of 
the system (3) should have the following asymptotic 
form as R _00 (k = k1): 

(8) 

where jL(X) and nL(x) are Riccati-Bessel functions, 
defined by formulas (12). 

According to the phase-function method, we seek the 
general solution of the system (4) in the form[8,12] 

1j;= (us't+vS,}C= (n+vT)C, 

under the condition that the following expression is 
valid for the first derivative with respect to R: 

1j;'= (n'S,+v'S,}c= (n'+v'T}C,. 

(9 ) 

(10) 

Here C( R) is a matrix that determines the normaliza
tion of the wave function, u and v are diagonal 
matrices made up of two linearly independent solutions 
Ui and Vi of the differential equation 

P1j;=O, 

which are chosen such that as R - 00 

u,=k-'I'jdkR)-+k-'hsin (kR-nLl2),' 

v,=-k-'I'ndkR) -+k-'h cos (kR-nLl2) , 

u,= (-i) '+1 (2x) -'''tiL (ixR) -indixR)]- (2x) -'I'e"R, 

v,=;T.+' (2x) -'I'[h (ixR) +inL (ixR) ]- (2x) -'I'e-"". 

The matrices SI and S2 satisfy the equation 

S,"S,' -s/s,' =(S/u+S,'v) V (us.+vS,) 

under the additional conditions (4), lJI(O) = 0, and 

They define the matrix 

T(R}=S,S.-'. 

From (9), (10), (13), and (4) we get for the matrix 
T( R) an equation that is preferable to (13) in some 
cases: 

T' (R)=-[u+T(R)v] V[u+vl'(R)]. 

(11) 

(12) 

(13 ) 

(14) 

(15) 

(16) 

The matrix element t II of the reaction matrix T = T( ao) 
determines the partial elastic-scattering cross sec
tion2': 

L 411: tu2 

(lit =-, (2L+1)-+ " 
k 1 tli 

(17) 

Among the different parametrizations of the matrix 
T( R), it is particularly convenient to use one in which 
the matrices SI and S2 are chosen in the following 
manner: 
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(
COS 11. cos 1\ -sin 11. sin 1\ ) 

St= I • I , 2- 1, exp 11, Sille 2- 1• exp 11, cos e 

( sin 11. cos 1\ cos 6. sin 1\ ) 
S, = 2-'1, exp (-Il,) sin 1\ -2-'I'exp(-Il,)COSE 

(18) 

The system of equations for the parameters 0" O2, and 
E is of the form 

tit' = - 2 [VII(FII'cos'I\+F"'Sin'I\}+~ Y,,(F2I',+F,,'}sin'21\ 
l+cos' 21\ 4. 

+ Y,,(F ItF21 cos' e+F12F" sin' e}sin2e ]. 

11;=- 2 r V,,(F"'cos'I\-F2I'sin'e}+~ V,,(F,,'-F,,'}sin'2s 
Hcos' 2e 4 (19) 

,+ V12 (F"F" cos' e-F"F21 sin' e}sin 2e ] , 

1\'=- ( ~ (V"F"F12+V"F"F,,) sin 2e+V12 (FII F" cos' 1I,+F12F2I sin' e} ]. 

11. (0) =6,(0) =e (O) =0. 

Here 
FII=u. cos 6,+v. sin 6., F12=-u. sin6.+v. cos 6 .. 

F21 =2-',,[u, exp 6,+v, exp (-6,) ], 

F,,=2-'."[u, exp 6,-v, exp (-62)]. 

(20) 

All the quantities in this system of equations are real. 
The particular convenience of the system lies in the 
fact that it does not contain Singularities in the entire 
integration interval. 

Using the definitions (15) and (18), we can obtain ex
plicit expressions for the matrix elements tij in terms 
of the parameters 0" O2, and € and calculate the cross 
section (17): 

tgo, - tg' e 
t 11~" 1 +1((' e tg 6, ' 

i-lg' II tg O. 
t,,=-exp(-2Il,} 1+1 ' Ii' g II tg , 

1'2 exp(-62}tg e 
t" = t, 1 = --:::--c:7-:'---;;'--.:'--;:-:

. . cos 6, (1 +tg' e tg Il.) 

(21) 

From (19) we can find the asymptotic form of the 
parameters at R» Ro. In the case L = 0 we have 

6, (R) -+-xR+21n xR, clg 1\ (R) -+ctg e (R,) e-"". 

In the case L '" 0 we obtain 
S, (R) -+--xR+ln xR, tg e (R) -+~g e (R,) e-"R. 

From this we see directly that in the solution (19), 
which is parametrized in the form 

= (FucOSS F12Sin8)C 
1jJ F"sins F"cose ' 

(22a) 

(22b) 

(23) 

the required boundary conditions (8) are satisfied by the 
second column of the solutions at L = 0 and by the first 
at L'" O. 

In some cases it is convenient to eliminate the cen
trifugal term from the operator !t and to include it in 
the effective potentials Vy,IS] In this case we have 

( k-'I, cos kR 0 ) 
v = 0 (2x) -'I'e-". . 

_ = ( k-'I'sinkR 0 ) 
u 0 (2x) -'I'e". ' 

(24) 

This choice of the basis functions correspond to the 
reaction matrix T, which is obtained from (16) and (19) 
by making the substitutions[lS) 

V(R}-+-V(R}+L(L+1}/R', u-+u, v-+-V. 

The phySical reaction matrix differs from the condition 
for matching the logarithmic derivatives of the solutions 
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~ = (USI + VS2)C and I/! = (uSl + US2)C at the point Ro 
» 1, where the potential V( R) can be neglected in com
parison with the centrifugal term. 

The sought condition takes the form 

T=(Gif-if') -'(fl'-Gfl), 

G=1ji'1ji-'=1/l'lP-'. 

(25) 

(26) 

As R - 00, the condition (25) can be written in explicit 
form: 

, (- nL . nL)/(_ nL 1IL) tu= tIlCOS-+SIU- tusin--cos_ 
\ 2 2 2 2' 

(27) 

In the limit as k - 0, the cross section au = 41Tafl 
is determined by the scattering length au, which is ob
tained from the system of equations 

a,,'= v" (R-a,d '+ V"a,,' exp (-2k,R) -2V"a,,(R-a,,) exp (-koR), 

'- {v ( ) exp(-koR) 
a" -- l1a" R-a l1 +V"a" 2k" [expk,R+t"exp(-koR)] 

-V,,( a,,'exp(-koR)+ R;:o" [expkoR+f"exp(-koRll)}. (28) 

t,,'=- {2V"k"a,,'+ (V22/2ko) [exp koR+t" exp (-koR) l' 
-2V"a"Jexp koR+t22 exp(-koR) D. 

This system is obtained from (16) by taking the limit 
as k - 0, with allowance for the relations 

t"=-ka,,, (,,=-(2kko) 'a", ko=(2Mfl.E)'/'. (29) 

It is seen directly from Eq. (28) for au that at large 
ko we can neglect the influence of the closed channel on 
the open one. 

THE ELASTIC SCATTERING dJ.1 + P -+ dJ.1 + P 

The isotopic difference t.E between the mesic atoms 
dJ1. and pJ1. in the two-level approximation of the PSS 
method, in the units of the problem, is equal to t.E 
= -a/2M, where[Sl a = (M2 - M1)/(M2 + M1). The 
matrix A, which realizes the transition (6) from the 
molecular functions to the atomic functions, takes in 
this case the form 

i (1-1) A =-=~ . 
1'2 1 1 I 

(30) 

and as R - 00 the function Xl represents the system 
dJ1. + P with energy El (see Fig. 1), while the function 
X2 represents the system d + pJ.L with energy E2. The 
momenta in the reaction channels are given by the 
formulas 

k.'=2!Ve=k" ko'=2Mj,E=-·a., k2'=k,'-ko'=-x" (31) 

where € is the collision energy (see Fig. 1). 

The effective potentials Vij = Vij(R) - Vij(oo) are 
expressed by means of formulas (5) in terms of Wg(R), 
Wu(R), and the matrix elements Hgg(R), Huu(R), 
Hgu( R) = Hug( R), Qgu( R) = -Qug( R) of the two-center 
problem in the following manner (we leave out in the 
right-hand side the dependence on the argument R): 

V .. =2M[W,cos' (p-n/4)+W. sin' (p-,,/4) ]-H,. cos 2p+ko' sin' p-Q,u', 

V,,=2M[W,sill' (p-n/4)+W. cos' (p-n/4) ]+Hg• cos 2p-ko' sin' p-Q",', 

(32) 

1 • 
W"., (R) = W". (R) + 2M Heg •• (R). p = J Q,. (R) dR. 

The results of the numerical calculations at different 
collision energies are shown in Figs. 2 and 3. At the 
collision energy € "" 0.6 eV the elastic scattering cross 
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E,eV 

FIG. 2 FIG. 3 

FIG. 2. Elastic scattering cross section dlL + p at low collision ener
giese. It is anomalously small at € ~ 0.6 eV. 

FIG. 3. Dependence of the partial cross sections and the total (all) 
cross section of the elastic scattering dlL + p on the collision energy at 
€ < t.E (to the left of the dash-dot line) and at € > t.E (to the right). 
The scattering in the state with L = 2 has a resonant character. 

section of the reaction dJ.L + p has a deep minimum 
which is the consequence of the Ramsauer-Townsend 
effect in the s state. This result was obtained earlier 
by Cohen et alPl, where the minimum occurred at 
€ "" 0.2 eV. The existence of this minimum is quite im
portant for the interpretation of the results of experi
ments on the catalysis of nuclear fusion reactions in a 
hydrogen and deuterium mixture[14l. At collision ener
gies € > 10 eV, the energy dependence of the partial 
cross section C1101( €) coincides with that calculated in[7l. 
It has turned out, however, that in addition to the s 
phase, an appreciable contribution to the total cross 
sections is made by the d phase, inasmuch as in the 
state with L = 2 the scattering has a resonant charac
ter. The total cross section exceeds by almost one 
order of magnitude the cross section of the scattering 
in the s state. 

ELASTIC SCATTERING IN THE LOWER STATE OF 
THE HYPERFINE STRUCTURE OF MESIC ATOMS 

In the description of the scattering in the symmetri
cal case (Ml = M2) with the mesic atoms having a col
lision energy close to thermal (€ "" 0.04 eV), it is 
necessary to take into account the presence of hyper
fine splitting t.E of the energy levels of the mesic atoms 
of hydrogen. At collision energies € < t.E, the main 
contribution to the scattering cross section is made by 
the s wave. If we neglect the spin interaction of the 
nuclei, then in addition to the total angular momentum 
of the system J = 11 + 12 + S, the levels of the sys-
tem of two nuclei with spins 11 = 12 and a meson with 
spin S = 7'2 at R - 00 admit of classification in accord
ance with the value of the total angular momentum 
F = 11 + S of the isolated mesic atoms PJ.L, dJ1., and tiJ.. 
As applied to the processes (2), the level E1 in Fig. 1 
corresponds to the lower state of the hyperfine struc
ture with total angular momentum F 1 = 11 - 7'2, while 
the level E2 corresponds to the upper state with angular 
momentum F2 = 11 + 7'2. At € < t.E, only the elastic 
scattering processes F 1 - Flare possible, and the 
excitation process F 1 - F 2 is energywise impossible. 
However, the small value of the splitting t.E causes 
the closed channel E2 to exert a great influence in 
resonance situations on the elastic-scattering cross 
section in the lower state of the hyperfine structure of 
the mesic atoms. 

The system of equations for the description of the 
processes (2) was obtained by Gershtein[8l and coin-
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cides with the system (3). The explicit form of the 
matrices A and of the potentials Vij for different 
cases are given in our earlier paper [31; the matrix B 
is equal to unity, since Qgu := 0 at Ml = M2 • The re
sults of the calculations of the reaction dll + dare 
shown in Figs. 4 and 5. Comparison with the earlier 
data (see the table) shows that the cross sections calcu
lated by us for the process dll + d agree well with ex
periment[41 and with the earlier theoretical calcula
tions[S I. The scattering lengths all vary monotonically 
in the subthreshold regions (Fig. 5). 

To the contrary, the results of the calculations of 
the cross section of the reaction Pll + P (Fig. 6) dis
agree strongly with the experimental data[4,51 and with 
the earlier calculations[S,61, which YJere performed in 
the scattering-length approximation. The reason for 
these discrepancies becomes clear from Fig. 7, which 
shows the quantity au( €) = -tll/k, which coincides 
when k - 0 with the scattering lengths all for the 
process (2a). It is easily seen that in this case the con
cept of the scattering length is useless to a consider
able degree, since the condition all "" const is satisfied 
only in a narrow region € «~E. For this reason, all 
the estimates of the earlier papers [3,61, in which the 
concept of the scattering length is used, must be re
garded as unsatisfactory. 

The resonant character of the Pll + p scattering is 

6, (0- 19 cm l 

3 au 
5 

15 (J=JjzJ J=1z J 
5 

I z 
J= flZ 6" 

" 
15 (J='IZ) 

3 
C Z J " IJ[ z " 4£ 5 

E, fU-2 eV 
E, fU-2 eV 

FIG. 4 FIG. 5 

FIG. 4. Dependence of the cross section of the elastic scattering 
dJt + d on the collision energy: aU = %) and a(J = 1/2) are the cross 
sections in states with total angular momentum J = 3/2 and J = 1/2, 
a 11 is the total cross section with allowance for the statistical weights 
of the state F I = 1/2 in the statistical mixture of states J = % and 
J = 1/2 : all = Iha(J = 1/2 ) + 2/3a(J = %). 

FIG. 5. Plot of the function all(e) = -tll/k for the reaction dJt + d. 
The condition all "" const is satisfied in the entire region 0 < e < .!lE. 

6,m-lZ,cm 1 

1/ a" 
. I {/ o.z 
j 

6 
0.1 

0 

" 0.05 10,t! ($n E, eV 
-0.1 

2 

-0.2 

E, eV -0.3 

FIG. 6 FIG. 7 

FIG. 6. Cross section of elastic PJt + p scattering in the lower state 
of the hyperfine structure. The minimum at e "" 0.16 eV corresponds 
to the Ramsauer-Townsend effect. The contribution of the p wave 
turned out to be appreciable. 

FIG. 7. Plot of the function a l1(e) = -tl1/k. The condition al 
"" const is not fulfilled. 
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.su. fO-ZD em" 

2 

0.05 0.10 0.15 0.20 liE 0.t5 
~, eV 

FIG. 8. Dependence of the cross section of the reaction tJt + t on the 
collision energy. A threshold singularity is observed at e = .!lE. 

manifest, in particular, in the fact that even small cor
rections to the effective potentials influence the cross 
sections strongly. For example, allowance for the 
asymptotic form of the matrix elements Hai3 (R) in 
Eqs. (19) at R> 20 (in the earlier calculations these 
corrections were neglected) changes the scattering 
cross section by a factor 1.5-2. It appears that it is 
precisely this critical dependence of the cross sections 
on the form of the potential which is the main cause of 
the discrepancy between the experimental and calculated 
cross sections of the process Pll + p, since it is known 
that in the PSS method the effective potentials Vij are 
determined only with accuracy ~l/M inclusive. Thus, 
a comparison of the calculations and the experimental 
data (between which there are also serious discrepan
cies, see the table) must be deferred until all the adia
batic corrections ~1/M2 inclusive are taken into ac-
co unt in the effective potentials. 

Another source of discrepancies between the calcu
lated and measured values of the cross sections may be 
the spin-spin interaction of the meson and of the nuclei 
at finite values of R, which is not taken into account in 
the potentials Vij (R) (they include only the contact 
term which is Significant at R = 0 and determines the 
magnitude of the hyperfine splitting of the levels t.E). 

Figure 8 shows the results of the calculations of the 
reaction til + t. Attention is called to the threshold 
Singularity in the cross section 0"11 at the colliSion en
ergy € = t.E. 

CONCLUSIONS 

The calculation method proposed in this paper is 
quite general and is applicable to a number of problems 
in which it is necessary to take into account the influ
ence of the close channel on the elastic-scattering 
processes. This allowance is particularly important in 
resonance situations, as is well illustrated with the 
processes Pll + p and dll + P as examples. 

The authors take pleasure in thanking S. S. Gershteln, 
V. P. Dzhelepov, Ya. A. Smorodinskii, and V. V. 
Fil'chenkov for constant interest in the work. 

!JIn the comparison of the formulas of the present paper with the analo
gous formulas of [3], it must be borne in mind that in the latter the 
inverse condition, MI .;;;; M2, was assumed. In all the calculations we 
used the following mass values [II] (in units of the electron mass): 
MJt = 206.769, Mp = 1836.109, Md = 3670.398, Mt = 5496.753. 

2)We use in this paper a system of units e = h = m = I, with m = MJt 
(M I + M2)/(MJt + MI + M2). To find the cross sections in cm2, the 
value of (17) must be multiplied by afu = (MJtlm)2 X 6.55 X 10-22 
cm2 . 
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