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A diagram technique is developed for finite· rank operators that commute at various sites of the crystal 
lattice. It is shown that the law of conservation of root vectors, which are a pecUliar type of "latent" 
parameters of the problem, is satisfied at each vertex. Properties of an ideal ferromagnet of the easy plane 
type are studied in the low temperature limit. For frequencies lower than the anisotropy energy there is a 
logarithmic dispersion of the magnetic permeability tensor with components along the spontaneous-moment 
direction perpendicular to the crystal axis. 

1. INTRODUCTION 

We consider the simplest model of a ferromagnet, 
when the anisotropy has a single-ion character, and the 
exchange-interaction anisotropy can be neglected. In 
this case the Hamiltonian is 

. l' 
de= L [2D(n8,)'-H8,]-z.E J(r-r') (8,8,,). (1) 

,,' 
At finite temperatures and at D> 0, ,this system was 
investigated by the self-consistent field method in[l, 21. 

At low temperatures, the spectrum was calculated in 
the spin-wave apprOXimation [3]. Kashchenko-Balakhanov , 
and Kurbatov[4] have determined the fluctuation correc­
tions to the spectrum, but in the limit as T - ° they 
make an exponentially small contribution. Westwanski [5] 

has developed a diagram technique for finding kinematic 
and dynamic corrections to the excitation spectrum and 
found them in second-order perturbation theory. Unfor­
tunately, the sums over the momenta were not calculated, 
so that it is impossible to establish the temperature and 
frequency dependences of the obtained self-energy parts. 

The present paper is devoted to a study of the singu­
larities of the spin-wave spectrum and the magnetic 
permeability in the low-frequency limit. In the case 
S =1 and D > 0, the spectrum has three branches, one 
of which is practically acoustic with a gap proportional 
to /DH. For frequencies of the order of the gap, pro­
duction of a magnon pair is possible. The presence of a 
threshold leads to an anomalous behavior of the mag­
netic permeability in the frequency interval T « w« D, 
if T« 1f5. 

2. DIAGRAM TECHNIQUE 

If we separate the molecular field in the Hamiltonian 
(1), then we obtain at unity spin a system of three non­
equidistant levels. It is shown in[6] that the interaction 
Hamiltonian can be expanded in a basis of eight operators 
of the SU(3) group. We set each off-diagonal operator in 
correspondence with a root vector a. The use of this 
concept turns out to be very convenient, inasmuch as 
the law of conservation of the summary root vector 
will be satisfied in each vertex[7]. 

The single-cell Hamiltonian can always be diagonal­
ized, inasmuch as it can be represented, accurate to a 
constant, in the form of a linear combination of diagonal 
operators h with zero trace: 

(2) 

We assume that the operators h satisfy the orthogon­
ality and normalization conditions 
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(h.) ,;=s,j6,;, .Es,is.'=6;j, Sp(h,h.) =6,.. (3) 
• 

The components of the root vectors are determined by 
the commutation relations (in one and the same cell) 

(4) 

The operator x~q has a single unique matrix element 
at the intersection of the p-th row and q-th column, so 
that 

Direct calculation shows that the commutator of two 
conjugate operators takes the form 

(5) 

A commutator of two non-conjugate operators is written 
in the form 

(6) 

Using the Jacobi identity, we can show [s, 9] that the co­
efficient Na{3 vanishes if a + {3 is not a root vector. In 
all the remaining cases Na {3 = ± 1. For an anticommuta­
tor there is satisfied the an'alogous relation 

(6') 

which can be obtained from the generalized Jacobi iden­
tity 

[h,.{X.X?}] ={x.[h"x~l}-' {Ydh"X.]}. 

We write down the operators of a multicell Hamil­
tonian in the form of a linear combination of diagonal 
operators h and off-diagonal operators in the interac­
tion representation 

The most general form of a two-cell Hamiltonian is the 
follOwing: 

1 ' , 
de,= -'2 .E V.,~(r-r')X •• X".- .E V .. (r-r')~h"X." (7) 

rr·.:t~ rr'~fJ 

The interaction Va b (r - r') will be represented in the 
form of a wavy linJ with the indices ar and br' on the 
ends. If the index corresponds to the root vector a, 
then an outward arrow is placed on the corresponding 
end (see Fig. 1). 
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FIG. I. Different types of interaction: a-VIYj3(r-r'), b-Vka(r-r'), 
c-Vkp(r-r'). 
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FIG. 2. Different types of vertices. 

The construction of the diagram technique is based 
on the generalized Wick theory, which was established 
for s{:!in operators in the paper of Yaks, Larkin, and 
Pikin[lO]: 

• (8) 

= 1:C.(T-T,)(T(ll,,(T,) ... !!,_, (-r,_,) [X'''a, ]"l1a.+, (T.+,) ... lIap (Tp))>" 

(9) 

Following[lO], we represent the function GO' (T -T/) in 
the form of a solid line with a vector index a, leaving 
T and entering T'. 

It is easily seen that each commutation relation cor­
responds to its own type of vertex. Thus, commutator 
(4) yields a vertex without a change in the root vector 
but with a factor -ak (see Fig. 2a). The presence of 
relations (5) and (6) leads to vertices where the total 
root vector is conserved. The vertex in Fig. 2b has a 
factor NO' {3' Figure 2c shows a vertex corresponding 
to relatiohs (5) and (4). It should be preceded by the 
factor - (a • (j). 

The remaining vertices are analogous to those that 
arise in the spin technique (Figs. 2d, e, f, etc.). The 
circle in which the a-line terminates represents the 
factor 

1: 1: o(lnZ) 
b(a)= (1..(h.>o=T (1.,---, oA. 

, k 

Z=Sp (exp ~ 1: A,h,) . 
(10) 

The blocks enclosed in the oval line are determined by 
the derivative of the zeroth-approximation partition func­
tion (Z) 

(11) 

The operator Xa must be commuted not only with 
the operators of the interaction Hamiltonian. For each 
of the five presented possibilities, there is a situation 
in which the corresponding operator is an end operator, 
i.e., no wavy line reaches it. This circumstance can be 
taken into account by representing the same vertices, 
but with the interaction line crossed out. It is convenient 
to draw instead of a crossed-out interaction line an out­
going solid line but with the opposite root vector (see 
Fig. 3). 
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FIG. 3. Different types of end diagrams. 

A detailed exposition of the generalized diagram tech­
nique can be found in the author's papers [7, 111. 

3. FERROMAGNET OF THE EASY PLANE TYPE 

Assume that the external field is directed along the 
z axis, and the crystal axis coincides with the x axis. 
The Hamiltonian (1) can be rewritten in the form 

;16,= 1: (2D(S:)'-HS,'); 
, 

1 ' 1 ' 
;16,= -2"1: J(r-r')M,'!:J.S,.' -2" 1: l(r-r')S,"'S,.-; (12) 

rr' rr' 

Here H = H + J(O)(Sz) is the molecular field 

For unity spin, it is easy to find the eigenvalues and the 
eigenfunctions of the Single-cell Hamiltonian 

8,. 3=D'f' (D'+ H') "', 8,=-2D, 

1jJ,=(C~~8), 1jJ,=( ~), 1jJ,=(-S~n8); 
sm 8 0 cos 8 

H D cos 28 = (H'+D') '/,' sin 28= - (H'+D') 'I, • 

In the new representation, the single-cell Hamiltonian 
is diagonal. It can be reduced to the form (2) by using two 
diagonal operators 

h,= ~(~ ~ ~) h,= ~(~ -~ ~), 
l' ~ 0 0 -1 1'6 0 0 1 

which satisfy the conditions (3). In this case 

A={[2(H'+D') 1"'. 1''I3D}. 

Using (4), we obtain the well-known root system of 
the SU(3) group-see Fig. 4, with 

a(1.3) = (1'i 0), a (-1.2) = ( ~, -V 3 ) , 
1'2 2 

a(2.3)=(~,_V3), a(p,q)=-a(q,p). 
Y2 2 

The numbers 1, 2, 3 in the arguments label the rows and 
the columns. 

We express the spin operators in terms of the para-

FIG. 4. Root system. a; (J,T) ex. (1 J) 

01.(2/) OI.(2,J} 
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meter e, and then expand them in the operators hk and 
Xa: 

S,+= (S,-)+=1'2{cos 8 (X,"+ X,") +sin 8 (X,"-X,")}, 

S;=12 cos 28h,,-sin 28 (X,"+ X,31). 
(13) 

The interaction Hamiltonian takes the form (7). The 
matrix V(k) -J(k) is the direct product of two matrices: 

{3(1,2) ~(2,1) 13(2,3) 13(3,2) 

0(t,2) ( sin 28 0 '""") , a(2,1) sin 28 cos 28 0 
a(2,3) 0 cos 28 -sin28 1 
a(3,2) cos 28 0 1 -sin 28 

13(1,3) 13(3,1) 
a(1,3) (Sin' 28 sin' 28) 
a(3,1) sin' 28 sin' 28 . 

At low temperatures in the "spin wave" approxima­
tion, and also in the self-consistent-field approximation 
(for long-l"ange potentials), we obtain as the zero-order 
approximation the following system of equations for 
Green's function 

[D", (k, (i),) ]_''''' [D"(.:l«(i)n) ]-1-V _". (k). (14) 

Here D:;,~(Wn) = l5(a-{3)Ga (wn )b(a), wn = 2rnT f 0, 
!IT 

D.,,(k, (i)n) = L f exp(i(i)n't-ikr) (T(X .. (.)X_,o(O» >0 d •. 
, , 

The functions Ga(wn) and b(a) are defined in (8) and 
(10). The longitudinal correlation function 
(T(~Z(x)~Z(O) has poles under the condition 
det[D& (3(k, iWn _w+ili)] = 0, a,fJ = ±a(l, 3). With the 
aid of t14) we obtain 

(i)II'=(Aa(1, 3) )'-2b(1, 3) sin' 28/(") (Aa(1, 3». 

At T = 0, b(1,3) = 1 and Xa(1,3) = 2(H2 -+ D2)1/2 we have 

so that 

H 
co~ 28 = -:-=~:=--;;­

(ll'+D') 'I, 
H-H 
J(O) , 

(15) 

The transverse correlation function has two pairs of 
symmetrically disposed poles. At T = 0, when b(l, 3) 
= b(l, 2) = 1 and b(2, 3) = 0, we have 

(i).L'=[ (H'+D'),4D-I (k) ]'-(J (k)D)'/ (ll'+D'), 
(i)=±(-D+(ll'+D')"'). 

We note that at H = 0 we have 

(i).L'=[J(O)-J(k)] (1+ J~O) )[ J(O)-J(k)+D( 1+ ~~~~ )], 
so that as k -0 we have'wI ~ ck, where 

c'=-2J' (O)D[ HD/ J (0) ], 

On the other hand, if k = 0 and H « D, then 

_ 'I, J(O)+D) 'I, 
"'.L-(2DH) (J(O)-D . 

The longitudinal branch is optical. As H - 0 and 
k --0 we have 

(i)!I'=4(J' (0) -D'), 

so that the system becomes unstable at anomalously 
large anisotropy (D> J(O)). 

(16) 

(17) 

(18) 

Let us consider a real situation when D « J(O). It is 
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FIG. 5. Simplest self-energy parts. 
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FIG. 6. Singular end diagrams. 

easily seen that in the limit of the lowest temperature 
T « D, the expansion of the exact Green's function is in 
powers of [D/J(OW/\ but in the limit of small frequen­
cies and momenta the smallness of the "interaction 
constant" [D/J(OW /2 may be offset by the large value of 
the logarithm 

L=ln(D'/A), A=max{(i)', 2DH, (ck)'}. (19) 

To separate the logarithmic diagrams, we consider the 
simplest corrections to the Green's function, which are 
shown in Figs. 5 and 6. 

The thick lines represent the G functions in the zeroth 
approximation (wn f 0) 

[G.,(k, (i)n) ]-1= [G:,,«(i)n) ]-I-b(a) V_.,(k). (20) 

The thick wavy lines represent the effective inter­
actio~ line r a,J3(k, wn ), calculated with the aid of the 
equatlOns 

r.,,(k, (i)n) = v.,(") + Lv.,., (k)G., «(i)n) b(a')r _ •. ,(k, (i)n). (21) .' 
From a comparison of (20) and (14) it follows that in the 
zeroth approximation the G function differs from the D 
function by the factor 

D., ,=b(13)G. ,. 

Figure 5 shows the usual self-energy parts, whereas 
Fig. 6 shows the simplest end diagrams. 

If the temperature equals zero, and the level with 
number 1 is the lowest (D < J(O)), then the Green's func­
tion for the transitions 1 ;::!: 2 is conveniently written in 
terms of Pauli matrices (see Eq. (20)): 

G-'=-i(i),,+ra(k), 
(22) 

a,=O, a,=-isin28J(k), a,=D-J(k) + (H'+D') 'I,. 

(in the limit as H - 0 we have az -D + J(O) -J(k)). The 
first row (column) corresponds to the root vector a(l, 2), 
and the second row (column) corresponds to the opposite 
vector. With the aid of (10) we can find the remaining 
Green's functions, but their explicit form will not be 
needed. The point is that the logarithmic integrals 
appear only in the case when the diagram contains not 
less than two Green's functions (22). The remaining 
functions do not contain singularities in the limit of 
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FIG. 7. Spin-wave scattering. 

small k and therefore do not give rise to logarithmic 
integrals. 

Using the conservation law, we can establish that in 
the lowest approximation a logarithmic behavior is ex­
hibited by diagrams having on the ends the root vectors 
±a(l, 3). Each of these self-energy diagrams (see Fig. 
5a, b, and e) yields a correction of order [j(0)D]1/2L to 
the 1 ~3 transition frequency. However, the main con­
tribution of all these diagrams is cancelled, so that as 
a result we have a relative correction of order [D/J(O)rL. 

The end diagrams shown in Fig. 6 do not cancel out. 
As seen from (13), the largest contribution to the longi­
tudinal correlation function (T( ~~(t)~~/(t'») is made 
by the end diagram coming from the two operators hl 
(Fig. 6a). The singular diagrams shown in Figs. 6b, d, 
c enter respectively with a factor sin 28 and sin228, and 
are not taken into account below. 

The scattering of acoustic excitations by one another 
is determined by three types of vertices which are irre­
ducible with respect to the transitions 1 ;:!: 2 (see Fig. 7). 
The vectors a, {J, y and p are acoustic, i.e., they cor­
respond to 1 -2 transitions, whereas the vector a is 
optical (otherwise the third diagram would have to be 
attributed to the second). Each of the vertices of order 
J(O), but at k = w = 0 and D = 8 = 0 there is complete 
cancellation. For this reason, the logarithmic correc­
tions due to the vertices contain an extra factor D/J 
and can become Significant under the condition (D/J)3/2L 
~1. On the other hand, if the logarithm is not too large 
(D/J)3/2L« (D/J)l/2L ~ 1, then it suffices to take into 
account the simplest contribution of the diagram shown 
in Fig. 6a. 

In the limit T « max(lwl, ';DH, ck) we have 

D' D' 
K,o(w,k)=-ln[- ]. (23) 

o 4,,;'c' lllllX[O)2,DH, (ck)'] 

CONCLUSION 

Thus, the magnetic permeability has an anomalous 
dispersion in the frequency interval ,fDH < w < D, where 
it increases logarithmically with decreasing frequency. 
In the presence of a field in the region of the lowest 
frequencies T« w « /illf, the permeability is constant 
but is larger by a factor m7Jln(D,!H) than its value at 
w ,..., D. If H = 0, then for sufficiently low frequencies 
w < Dexp(-';J!D) formula (23) may turn out to be in-
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accurate, whereas at w < Dexp[_JjD)3/2] it is certainly 
incorrect. It can be assumed that it is precisely in this 
region that the growth of the susceptibility should cease. 

For frequencies w> v'BDH, the longitudinal permea­
bility acquires an imaginary part which is connected 
with the possibility of production of two magnons. The 
imaginary part, calculated in second-order'perturbation 
theory (see Figs. 5 and 6) does not contain a large log­
arithm. For this reason, it is impossible to trace the 
frequency dependence of the surface impedance for 
w ""',;m)H. It can only be stated that there is no absorp­
tion at w « JDIf. In the frequency region D > w » mIf, 
the imaginary part can be easily calculated by pertur­
bation theory. The final result is simple: it is necessary 
to add to L the quantity iw8 (w 2 -8DH). Thus, at H = 0 the 
dispersion near the threshold takes the form In(D2/W2) 
+ iw, and has nothing in common with the usual disper­
sion curve (of the Debye or of the Lorentz type). It can 
be shown that in a real situation this dependence van­
ishes when the frequency becomes smaller than the 
reciprocal spin-relaxation time or lower than the tem­
perature. For this reason, one can attempt to observe 
the logarithmic anomaly at sufficiently low temperatures 
in anisotropic ferrodielectrics that are close to ideal. 

The author is sincerely grateful to Prof.!. E. Dzyalo­
shinskir for useful remarks and for interest in the work. 
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