
Langmuir condensate turbulence spectrum 
F. Kh. Khakimov and V. N. Tsytovich 

Tadzhik State University 
(Submitted JUl).e 12, 1914) 
Zh. Eksp. Teor. Fiz. 68, 95-104 (January 1915) 

We show that the strong Langmuir turbulence produced by a Langmuir condensate leads to a spectrum 
Wk ex 1/ k 2 in agreement with existing results from numerical simulation of strong turbulence. 

1. Weak Langmuir turbulence spectra have been 
studied recently in detail. [1, 2J These spectra are 
formed as a result of a nonlinear spectral transfer to 
the region of small wave numbers k. It has also been 
made clear that as the result of such a transfer oscilla
tions may be stored in the small k region where, as a 
rule, k < k* = Y3kd(me Imi)1/2, where kd = wpe /vTe is 
the inverse of the Debye radius, and me and mi are the 
electron and ion masses. If the level of oscillations in 
that region exceeds a critical value, given by the in
equality 

W/nT> 12k'/kf. (1) 

rn is the total turbulent energy density per unit volume 
and nT the thermal energy density in the plasma) the so
called modulation instability occurs which has been 
studied in [3-5 J . 

A simple analysis shows that it is in practice difficult 
to satisfy the criterion (1) for the modulation instability 
in the region k > k* because the nonlinear scattering by 
ions rapidly smears out the energy over the whole reg
ion up to small k ~ k* so that the modulation instability 
occurs in the region k < k*. If we substitute k = k. into 
(1), we get 

W/nT> WJnT='/,m,/m" (2) 

where W c is the critical value of W. The criterion (2) is 
easily satisfied in many existing experiments. 

When the modulational instability becomes well
developed and reaches the nonlinear stage, the modula
tional oscillations begin to affect the Langmuir oscilla
tions distribution. Such a state is sometimes called the 
state of strong Langmuir turbulence. Two approaches 
have been proposed to describe it. 

On the one hand, Rudakov [6J suggested that the non
linear stage of the modulational instability corresponds 
to the formation of Langmuir "solitons", i.e., Langmuir 
wave packets with an amplitude which has the form of 
solitary pulses. In the framework of this hypothesiS de
veloped strong turbulence is an ensemble of interacting 
"solitons." 

In the other approach, developed by the present au
thors, [7,8J it is proposed to describe the developed 
modulational oscillations statistically. In that case the 
interacting Langmuir oscillations form, when random 
modulational perturbations are present, a Langmuir con
densate which in turn determines the interaction between 
the waves which do not belong to the condensate. Such an 
approach does not enable us to give the detailed actual 
forms of the nonlinear modulational perturbations which 
may be of a different character and, moreover, can in
teract strongly with one another. It is necessary for a 
description of these processes to know the correlation 
functions of the modulational perturbations. From the 
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point of view of applications of most interest is not so 
much the nature of the interaction of the Langmuir os
cillations in the condensate as well the influence of the 
condensate on the interaction between the other Langmuir 
waves. 

Recently particular attention was drawn to these 
problems in connection with one-dimensional numerical 
calculations [9J which showed that under conditions of 
developed Langmuir turbulence the energy flux changes 
its direction and the oscillations are transformed to the 
large wave number (k) region and a spectrum Wk a: k-2 

is established, where W = jWkdk. This result is impor
tant for various mechanisms for heating a plasma by 
particle beams, microwave decay instabilities, and laser 
beams, and other ways since the Langmuir oscillations 
when converted into the large k region are absorbed in 
the Maxwell distribution tail and this leads to the produc
tion of fast particles. One needs to know the actual form 
of the turbulence spectrum for different variants of the 
acceleration and heating of fast particles. Attempts [10, 11J 

have been made to explain the results of the numerical 
calculations in the framework of the" soliton" hypothesis 
of turbulence and the assumption that developed turbu
lence corresponds to an equipartition of energy between 
solitons of different amplitudes. In that case a spectrum 
of the form k -2 was obtained from qualitative considera
tions. The dynamics of the formation of solitons was 
studied numerically in more detail in [12J and a somewhat 
different spectrum was found. It was shown in [8J that 
the presence of a Langmuir condensate changes the 
direction in which energy is transferred in an essential 
manner. 

The aim of the present paper is to discover the sta
tionary spectrum of the Langmuir oscillations outside 
the condensate. We shall show here that the spectrum 
Wk a: k- 2 occurs necessarily in the approach which we 
develop. 

We note also that the condition (2) is in fact satisfied 
in most experiments on laser-plasma or beam-plasma 
interactions. However, the formation of the condensate 
does not occur instantaneously but through a quasi
stationary weak Langmuir turbulence which exists for a 
time which varies slightly depending on the mechanisms 
for exciting the turbulence. 

We get an estimate T = 1/y from the non-linear scat
tering by ions, where 

l,,"W p ,(W!nT) (kjk)'. (3) 

The quantity y is rather small when k > k* ~ kd and 
relatively small when k ~ k* and when W InT is rather 
large (for estimates of the effect of uhf oscillations or 
laser radiation on the plasma the parameter W InT can 
be replaced by I Eo12/41TnT where Eo is the amplitude of 
the excited electric field). 
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2. In the present discussion we restrict ourselves to 
one-dimensional Langmuir turbulence corresponding to 
an infinitely strong magnetic field (see[5,7,8]). We in
troduce the correlation function for Langmuir oscilla
tions 

(E ••.•• E ••. •• > hf=l ••.•• 6(k,+k,) 6 (10,+10,). (4) 

where wi is the wave frequency and ki the wave number 
in the preferred direction (along the strong magnetic 
field). We shall denote the correlation function for the 
Langmuir oscillations inside the condensate by Ik( 0) , 

,W 
while Ik W without an upper index will refer to the os-
cillatior{s outside the condensate. We denote the corre
lation function of the low-frequency oscillations by 

<E •..• ·E." .• ''>If=4nw •..•. 6(k'+k")6 (10'+10"). (5) 

The averaging in (4) is over a statistical ensemble of 
high-frequency oscillations and in (5) over a statistical 
ensemble of low-frequency oscillations (hence the in
dices hi and If at the averaging sign). 

We found the spectrum wk', w' of the modulational os
cillations in [7]. The spectrum of the modulational os
cillations inside the condensate turns out to be in prac
tice of little importance as the basic effects are deter
mined by the total magnitude of the energy density of the 
oscillations in the condensate: 

1 S (0) Wo = 4n l •.• dk doo. (6) 

To find the spectrum of the Langmuir oscillations out
side the condensate we can use the equation for the 
correlation function Ik,w: 

(7) 

Here k and ware, respectively, the wave numbers and 
frequencies outside the condensate, 

(8) 

while Ekl is the linear part of the dielectric permittiv-,w ~ 

ity of the plasma, and ~k w k w is the kernel of the 
, , l.' 1 

nonlinear part of the dielectric permittivity which can 
easily be determined from the expression for the non
linear plasma currents (see [lJ). 

The quantity EkR T. describes the effect of the 
,W"K,W 

modulational oscillations of the condensate which is 
linear in 1 (EkR = JGk k' ,wk' ,dk'w') and the -k,w ,W ,w, ,w ,w 
contribution of EkR to (7) is small, as was shown in [8J. 

,w 
We shall therefore drop the term E~ in (7) in what fol-
lows. Finally, EkRNIk describes th~ effects of the ,w ,w 
modulational oscillations which are nonlinear in Ik W' 

and inside the condensate ' 

eRN _ 10 • .' S 2; l.~~~.dk, dw,w.· .• ·dk· doo·'iJ.~~~. 
'.m - 4nno'T.' •.•.• ,., Je(k,-k', oo,-w') J'k"(w,-w')' (9) 

The expression for E~ which was actually found 
in [8J refers to the case ~~ere Ik w corresponds to 

1, 1 

waves inside or close to the condensate so that in Eq. 
(9) the index (0) occurs, while in (9) 

(0) 0+\;0)'-1 , w.·.·· = (1+~0+\;;)' "" 2sowhen So, So <1, (10) 

where 
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S (k) = 10 • .' S I~,~~,dk, doo, __ 
o 4nno(T.+T,) oo,'(oo,-w)'~(k,-k. oo,-w) , 

so'(k)=~S l.i:~dk,doo, (11) 
4nnoT. w, (oo,-00)3~(k,-k, w,-oo) . 

This result makes the factor obtained in [8] exact 
(in [8J there occurs a factor 2 ~ 0 instead the correct 
2 ~ 0 + ~ ~ in the numerator of Eq. (10); however, the 
main contribution to the integral comes from ~ 0« 1 so 
that this correction is a small one). 

In the case when k and w correspond to the region 
outside the condensate it is necessary to re-evaluate 
E~, recognizing that the sum of the renormalized dia
gr~s occurring in [5J is carried out only for waves for 
which the frequency difference satisfies the inequality 

10-10,< /k±kd v". (12) 

This calculation differs from the one performed in [5,7, 8J 
only in that it is necessary to clearly separate waves 
referring to different regions for which (12) is satis
fied, While (12) is violated if the values of wand k with
out index correspond to the wave we are studying and w 1 
and k1 to the condensate. 

Bearing this in mind we find E~~ for a wave outside 
the condensate in the form ' 

where 

(14) 

(15) 

The last two formulae have been written down in the 
approximation L ~ 0, ~ ~« L It is clear that when ~ 0 

= L ~ ~ = e the result changes to the earlier known re
sult (10)0 The quantities ~, ~' determine the intensity of 
the oscillations outside the condensate: 

'" rope" S llu,1Jl2dk~ dWz 
6 = 4nno(T.+T,) A OO,'(OO,-w')'e(k,-k', W,-OO') 

, (i)P.' S l lu, lJl,dk2 dW2 

S = 4nnoT, OO,(OO,-oo')'i'(k,-k',w,-w')' 

(16) 

(17) 
, 

The integration over k2, W2 is here performed over the 
regions ~ for ~ and ~' and ~1 for ~ 1 which are deter
mined by the inequalities 

w,-w< I k,±k I eTi for /\, 
w,-w,< I k,±k, I VT' for /\,. 

The first term in the braces in (13) describes the 
interaction of a wave outside the condensate (Ik w) with a 
wave of the condensate (Ik(O) ) and the second term the 

1,W1 

interaction of a wave outside the condensate with another 
wave also outside the condensate. The same interaction 
of waves outside the condensate is described by the sec
ond term in (8), but the signs of these interactions are 
each other's opposites, which shows up in that the inter
action described by (13) corresponds to a spectral trans
fer in the opposite direction, namely, from small wave 
numbers k to large ones. While the first term in (13) 
describes the transformation of energy straight from the 
condensate to the region of large k-values, the second 
term describes the effect of the condensate on the proc
ess of the transformation to large k-values from the 
region outside the condensate. 

We write Eq. (14) in the form 
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(18) 

where 

An analysis which we shall expound elsewhere has 
shown that 1/1 1 need be taken into account only when the 
energy in the condensate is appreciably larger than the 
threshold value W c -this is connected with the different 
signs of the two terms in I/! l' 

However, the outflow of energy from the condensate 
due to the change in the direction of the transfer dim in -
ishes the energy of the oscillations in the condensate so 
that we may think that the case when the energy of the 
condensate does not exceed the threshold value apprec
iably is of most interesL We restrict ourselves here to 
that case and assume that 

(19) 

i.e., the case when 1/11 « 1/12. 

The quantity ~ = ~ 'Te /(T e + Ti) can be found in the 
form of the following approximate expression: 

1,= i I •• dro. 
(0):>0 

(20) 

We have written this approximate expression for ~ I for 
the case when the inequalities 

are satisfied. 

l' k •. ,I>k' dOl., . I, < " ~ 
dk, 

(21) 

. The quantity E~ can be expressed in terms of the 
mtegral ' 

J(k) = r w.· .• · dk' dro' •. 
oJ k'Z "'.Ii. ,(I), 

(22) 

which for the given case when we use the spectrum of 
the modulational oscillations wk/,w' found in (7J is equal 
to 

4nn,T'VT" A ( W,) -'1, I.k. 
l(k)"" - --, 

13 rope' nT 4nn,T, 
(23) 

where A is a numerical factor which depends weakly on 
the spectrum of the modulational oscillations 
(A ::::< In(k~ax/k~in) »1). 

3. We consider first of all the problem of the non
linear wave dispersion. To fix the ideas one can some
times assume that the spectrum formed by the conden
sate decreases as a power of k from the condensate in 
the direction of large k, namely 

(24) 

However, the further results are independent of this 
assumption. In that case we get, neglecting the second 
term in Eq. (13), 

RN (i)p,,'- S - I,,~~~, dk, dW, 
EA,. = --;----;:--T ' ~.,.;."., 1_ I' I (k) . 

1J:l'tno e fllt,WI 
(25) 

If we assume that Re E. = -Re EkRN(O) 
I / K,w ,w 

::::< _Al/2(Wo/nT)1 2, we find 

f OJ.,' -et: "" -=-=:;-:-:,.- T ~.,.;o., 1 (k) . (3n') 'I'A'I, n, • ... (26) 

Using the relation 
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(27) 

we get for the real part of this expression for ~w = w 
-W1::::< W - wpe 

R BN 4 "'A'I' (nT) 'J. (m.) '/' I,Id k'v,," (28) 
e E.,. ""- n W, ;;;; 4nn,T, (~ro)2 . 

Substituting the value (24) of the turbulence' spectrum 
and using Re Ekl ::::< 2~ w/w ,we get the following value ,w pe 
for the nonlinear change in the frequency: 

(29) 

where 
( W ) -'J. (m ) '/,( I ) 'I, , J.I=(21t'I'),,'w.,A'f, ~ -' --'- k;" 

nT m, 4nnT 
(30) 

or 
It-'j, A'f, ( W,) -'f, (m,) 'I, 

t}= 16 k'I'n'I'T'I, -;;r ;;. 
d 0 (' \ 

(31) 

where 
, (W,) -'f. (m.) 'I, (W(k) ) 'I. 

",,,,,A/·ro •• -T - --T- • 
n mj n (32) 

while W(k) = Ikk/47T. 

Comparing ~wr with the magnitude of the frequency 
shift for linear dispersion, ~wk = %(k/kd)2wpe' we find 
the value of k for which the nonlinear dispersion will 
dominate over the linear one, namely, for k < kc where 

( nT) 'f .. (m.) 'f .. (W(kc)) ',. 
kc=kd - - --. 

W, m, nT 
(33) 

4. We consider now the effect of the condensate on 
the spectral transfer processes for waves outside the 
condensate which will be determined by 1m E~. As 

RN ~ ,w 
1m Ek is determined by the quantity 1m ~k 'k 

,W ,w, 1,W1 

which contains a factor 0 (w - W1 - (k - k1)v) we can at 
once conclude that effects determined by ions are ex
ponentially small (when there are no accelerated ions) 
for the interaction of waves in the condensate with the 
waves considered since we have assumed that W - W1 

» Jk - k1JvTi' To find the nonlinear transformation 
through the electrons from the condensate into the given 
value of (k, w) we can use the expression for 1m EkRN 

~ ,w 
which we get from (25) by susbsituting 1m ~k w;k w 

row , l' 1 
for Re ~k w'k w: 

, , l' 1 

This expression has the opposite sign determining the 
transfer from the small k-value to the large k-value 
region. 

Using the expression for 1m ~k w'k w for the case 
. , , l' 1 

of induced scattering by electrons when the nonlinear 
scattering dominates over the Compton scattering we 
can find that 

BN. It-'f, " ( W,) -" ( m. \ '/, I. k. f k'VT.' (0) 

1. "" 5.6 ro.,A";;:r -;;; 4nno'T.' (~w) , I",., dk, dw" 
(35) 

and we find, substituting for ~wr from (29), that 

(36) 

In the region where the Compton scattering dominates 
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m (W) -'I, ( W(k) ) '1, k 'I. "(.1IN''''A'''Wp._' _' __ (_) _k('-'a)I'. 
m, nT nT kd (37) 

In the region k > kc where the dispersion is the usual 
(linear) one we have the following expression for the 
nonlinear scattering growth rate: 

"(:H. "'~Wp.A'" (m.)' ( W') -'I. (~)' W(k) . 
46.7 m, nT k nT 

(38) 

We must note that this quantity although not strongly, all 
the same is appreciably (by a factor Al/3) larger than the 
quantity y~e for the case of the normal nonlinear scat
tering which determines the transfer in the direction of 
smallk. 

5, We now turn to a consideration of the interaction of 
two waves outside the condensate. Such an interaction is 
for the case Te »Ti described by y~i and yf:Ni, i.e., 

it is due to an interaction process with ions which re
quires the inequality W - Wl « Ik ± kllvTi' We d~scuss 
first of all how the normal scattering by ions y~l is 
changed with the change in the character of the -Qisper
sion of the Langmuir waves. In the case studied 

~ N'= n 
" 2 

(39) 

where 

~"" 9nA-'I. m, (1+ T.) -'( W')'" ( __ 1_, _) -'I'k:". 
(2-ex)'n,m,w •• m, T, nT 4nn,T. 

Estimating expression (39) we have 

Hi _ m, ( W, ) 'I. ( I, ) 'h (k ) ('-a)/' 
"'(It -ffiJ,e- - -- -

m. nT 4nn,T kd' 
(40) 

One can easily see from Eq. (39) which we have just 
obtained that the wave interaction vanishes when 

(41) 

while, on the other hand, Ik a: 1/kQl, whence 4 + QI = 3Q1 
or QI = 2. 

In actual fact the value QI = 2 is not exactly a solution, 
since the growth rate becomes undetermined for that 
value. However, if the value of QI is not exactly equal to 
two, but approaches that value, the interaction of the 
waves increases very strongly. A more exact analysis 
shows that the turbulent spectrum has the form 

1.=C/k'+/jJ., 

but the correction oIk « C/k2, where C is a constant 
quantity. 

We tur.n to Eq. (13) for the determination of the growth 
rate y~l of the nonlinear scattering by ions when the 
effect of the high-frequency and modulational oscillations 
is taken into account. We have for the general form for 
the case of the interaction of two waves outside the con
densate 

",",,' _ 1" ( tv, ) -" ( m, ) '" wp,'vT,'k. Ii" f., (I. +1.,) dk d 1m CI-, J -- "-=- A - - lll"'k,w;kIoWI 1 0)1. 

~;) nl' m, 4nn,'1',' I" (k" WI) I' 
(42) 

As Ek W = -EkRN we get, using Eq. (28) for Re €RkN 
, ,W ,W 

I r.N' _ n'" \'" ( tv,) 'j, (m,) 'I, w •• ' 
ill BIU:l ,...., 4.i. --;;T' me kdVTe 2 . 

f (""W.,)' - , ( f.) . --, -1m l: •.• ;.,., 1+- dk, dw,. 
• Ie,' f., (43) 
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Substituting here the expression for 1m 2':ki . k and ,W, 1,Wl 

Eq. (29) for t.Wk we get the following expression for the 
growth rate of the nonlinear scattering by ions deter
mined by the transformation of energy to the region of 
large k-values: 

liN' n"·w., A'" (W,/nTl'/ (mim.) "'J.!' 
"(. '" 4n,m. - (1 +T./T,)'kdvTO' . 

(k'+k ') k ,,-,a)/' I . I 'k,: (1+ I:}S' (J.![k(2-a)/'-k, (.-a)I' ])dk, (44) 

_ 9n'I'A'I, ( W,) 'I, (m, ) 'I. ( I, ) "'k'" k('-2a)/' ( + k ()[') 
-CJ)pe-- - - -- d ex --- . 

(2-ex) , nT. m. 4nnT 21. ok I 

The interaction between two waves vanishes when 

(45) 

However, as we are looking for the turbulence spectrum 
in the form Ik a: k-Ql, we get, equating the indexes 
2Q1 = QI, or QI = 0, i.e., Ik = const .• On the. other hand, 
comparing the expressions y~l and rfl we can find the 
following relation: 

RN'_ Ni ,,(WO)-"'(m')'I'(W(k»)"'(,kd)'''. "(. -"(. A,' - - -- - , 
nT m, nT k 

(46) 

if we put the value of k equal to kc' we have 

(47) 

Hence we can note that the quantity yf:Ni which deter
mines the transfer il). the direction of large k is apprec
iably larger than y~l. In the linear dispersion case 

comparison of yf:Ni and y~i gives 

R," '''A'' ( W, ) 'I. (m, ) 'I, (Wn(Tk») -, (kkd ) , 
y, ""1' . nT m, (48) 

or for k-values equal to kc 

(49) 

We note.that also in this case the quantity y~i is larger 
than {I. 

6, We determine now the total spectrum of the turbu
lent pulsations taking not only yf:Ni, but also y~i and 
y~e for the two regions k < kc and k > kc into account. 

To prove the general character of the spectrum 
IJ<;: a: k -2 as a solution of nonlinear equations in the linear 
dispersion region k > kc we can write down the follow
ing balance equation: 

(U. ~ 
ex--+-=o. 

Dk k' 
(50) 

This equation has a solution in the form 

I.""const/k', const=~/2a, (51) 

where 

~""6lp'A'j, (m,) 2 (W' )-'1'( W(k) )ki. 
m, nl' nT 

In the region k < kc the balance equation takes the fol
lowing form: 

ex,k('-·)/3+~lk=O, (52) 
where 

_ m, ( W, ) 'I, ( I, ) 'I, k (a-')/' 

at""" W pe n~e -;;T" qJlnT d , 
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Since the indexes in Eq. (52) must be equal, we find that 
O! = 2, 

We thus get also in that case the spectrum 

7. The present considerations show that a spectrum 
of the form k-2, obtained as the result of numerical cal
culations, indeed follows from the statistical theory of 
the Langmuir condensate, proposed earlier by the pres
ent authors [7, 8J while this form of the spectrum is ob
tained from the balance of completely different nonlinear 
interactions and it can therefore be considered to be 
quite universal. 

In contrast to other approaches to this problem the 
present analysis indicates the actual conditions under 
which such a spectrum can in reality occur when other 
kinds of interactions, absorption, and also a buildup of 
oscillations are taken into account. We must also em
phasize that the answer is obtained in a general form 
without additional assumptions about the structure of 
strong turbulence, For practical applications one must 
bear in mind the limitations imposed upon the strong 
turbulence spectrum by the assumed condition <Pl < <P2 
which may be violated when the energy level of the con
densate is large, and also the limitations connected with 
the absorption of the oscillations by fast particles which 
are accelerated by the Langmuir oscillations. Both these 
problems need an additional analysis. 
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