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The influence of Coulomb interaction between an electron and a hole on the electric absorption 
coefficient in semiconductors is considered. Asymptotic expressions are obtained for the absorption 
coefficient and are valid far from the exciton maximum as well as in the vicinity of the maximum. 
It is demonstrated that, in a broad region of the photon energy deficit, allowance for the exciton 
effect results in a considerable increase of the absorption coefficient compared to that predicted by 
the Keldysh and Franz calculations. On the other hand, if the photon energy deficit exceeds the 
exciton binding energy by several units, the dependence of the absorption coefficient on the photon 
energy and the homogeneous electric field strength is mainly determined by the rapidly varying 
exponent in the Keldysh-Franz expression. 

1. In the presence of an electric field, a superconduc
tor can absorb light with a quantum energy flw smaller 
than the width E of the forbidden band (the Keldysh
Franz effect). This effect is connected with the tunneling 
of the electrons and holes in the forbidden band. 

Keldysh[1] and Franz[2]obtained for the electroab
sorption coefficient the asymptotic expreSSion 

E {4J'2/t } 
KK. - Eg-nCiJ exp - 3neE(E,-nCiJ)"' , (1) 

which is valid if the argument of the exponential is 
large (the electron and hole must tunnel far in order 
to meet). Here Il is the reduced mass of the electron 
hole and E is the intensity of the applied electric field. 
In the derivation of (1), no account was taken of the 
Coulomb interaction between the electron and the hole 
(the exciton effect). 

The influence of the exciton effect on electroabsorp
tion has been the subject of many studies, in which 
either the problem was unjustifiably simplified, or else 
the problem was solved with a computer and the results 
presented in the form of plots (see the bibliography 
in [3,4]). 

In this paper we consider the influence of the Coulomb 
interaction of an electron and a hole on electroabsorption 
in semiconductors. We obtain asymptotic expressions for 
the electroabsorption coefficient K, which are valid both 
far from the exciton maximum (16) and in the region of 
the maximum (36)'). The main condition for the validity 
of our re.sults is the requirement that the electron and 
hole tunnel far enough towards each other. The quan
titative criteria for this are the inequalities (3) and (4). 

A comparison of the obtained expressions with the 
classical Keldysh-Franz formula shows that the exciton 
effect leads, in a wide range of photon-energy deficit 
values, to a considerable increase of the electroab
sorption coefficient. The exciton peak has a Lorentz 
contour with half-width determined by the probability 
of ionization of the exciton in the presence of the elec
tron field. The position of the peak is determined by 
the shift of the exciton level in the homogeneous elec
tric field (the Stark effect). At a photon-energy deficit 
comparable with the exciton energy, the dependence of 
K on the photon energy differs Significantly from that 
obtained by Keldysh and Franz (this fact was observed 
by Dow and Redfield in their numerical calculations[3]). 
However, if the photon energy deficit exceeds several 
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FIG. I. Potential energy U as a 
function of the position on the z 
axis. 

u 

units of the exciton binding energy, then, even though 
the exciton effect does lead to a considerable increase 
of K in comparison with KKF, the dependence of the 
electroabsorption coefficient on l1w and E is determined 
mainly by the rapidly-varying exponential in the Keldysh
Franz expression (1). With increasing photon-energy 
deficit and with increasing electric-field intensity, the 
correction coefficient that relates K and KF decreases 
slowly and becomes equal to unity (K = KKF) in the 
limit of large values of E g -11w and E. Thus the sugges
tion made by Dow and Redfield, that electroabsorption 
is never described by the Keldysh-Franz formula, turns 
out to be incorrect. 

2. The wave function of an electron-hole pair pro
duced in an external electric field upon absorption of a 
photon of energy -6.w satisfies the Schrodinger equation 

(V"+21r-fz) 'l' (r) =~ 'l' (r), (2) 

in which the length is measured in units of the exciton 
Bohr radius a, 1::. = (Eg --i1w)/R, R is the exciton Ryd
berg number, and f = eEa/R is the electric field in di
mensionless units (the z axis is chosen parallel to the 
homogeneous electric field). According to[S], the ab
sorption coefficient is proportional to 1\{1 (OW. 

The potential energy of the relative motion of the 
electron and of the hole as a function of the position on 
the z axis is shown schematically in Fig. 1. It is seen 
that the exciton effect leads to a lowering of the poten
tial barrier under which the electron and hole must 
tunnel. In a wide range of values of 1::., this factor plays 
the principal role in the increase of the electroabsorp
tion coefficient in comparison with the results of 
Keldysh and Franz. The presence of quasibound states 
in the Coulomb well leads to an additional increase of 
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the absorption coefficient when the photon-energy def
icit is of the order of the exciton binding energy . 

We first solve the problem under the assumption that 
the energy ~ is not too close to the exciton level. Then, 
at small distances from the center of the exciton, we 
neglect in (2) the homogeneous electric field and use 
the exact solution of the Coulomb problem. At large dis
tances from the exciton center, we seek the wave function 
in the quasiclassical approximation. These two solutions 
must be matched in some region between the points 2 
and 3 (Fig. 1) where, on the one hand, the quasiclassical 
approximation is valid and the asymptotic value of the 
Coulomb wave function has already been reached 
(r» l/lli), and on the other hand it is still possible 
to neglect the homogeneous electric field (r« I/ff). 
Such a region exists if 

(3) 

In addition, as seen from Fig. 1, it becomes necessary 
for the electron and hole to tunnel towards each other if 

'I8f<d. (4) 

The inequalities (3) and (4) are the fundamental condi
tions for the validity of all our results. 

Out of all the solutions of (2), we are interested only 
in solutions that do not vanish identically on the z axis. 
Therefore, taking the cylindrical symmetry of the prob
lem into account, we seek solutions that do not depend 
on the azimuthal angle (m = 0). 

When constructing the quasiclassical wave function, 
it is necessary to solve the problem of particle motion 
in a force field in the form F = f + 2r/r3. A decisive. 
Simplification is obtained because the only region that 
plays an important role in the determination of the ab
sorption coefficient is a small region in the vicinity of 
the z axis. 

As will be shown below, it suffices to find the solu
tion only in a vicinity of the z axis in which 

FJ. = __ 2p __ « 1 
Fu jr'+2Izl ' 

where p is a component of the radius vector r and is 
perpendicular to the field direction. 

In the region where r2» I/f, which includes the 
turning point 1, the condition (5) is satisfied at all p • 

(5) 

In the matching region, where 1/~ « r 2« I/f, the 
important role is played, as will be shown below, by the 
vicinity of the point z where p .::; r1/2/~1/4 and the con
dition (5) is also satisfied. Thus, when solving the quasi
classical problem it can be assumed that the summary 
field is directed along the z axis, and consequently the 
motion is in a one-dimensional potential of the form 

U=jz+2/z. 
(6) 

To the left of the turning point 1 there are two types 
of quasiclassical solutions: 

(7) 

(8) 

where' 
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is the quasiclassical momentum component parallel to 
the field f, P 1 is the quasimomentum component perpen
dicular to the z axis, 

z'{PJ.) =[ -(d+pJ.') -'I (d+PJ.')'+8fl/2f 

is the quasiclassical turning point, J o is a Bessel func
tion, and A(Pl) and B(Pl) are normalization constants. 
The functions CP2 under the barrier correspond to expo
nentially increaSing solutions, while the functions CPl 
correspond to exponentially decreasing solutions. If the 
photon-energy deficit ~ is not too close to the exciton
level energy, then it can be assumed that the wave 
function has no components that increase exponentially 
under the barrier. Then in the z-axis vicinity defined 
by the condition (5) the quasiclassical solution under 
the barrier takes the form 

where 
Ipl = (d+jz+2!z+pJ.') ·"=p'+PL'/2p., 

p.={d+fz+2Iz) ''', 

(9) 

and the constant A(Pl) is determined from the corres
ponding normalization of the wave function. 

We assume z = -r[l - (7T _8)2/2], P = r(7T -8) near the 
z axis. Then in the matching region, where 
l/r& « r « 1 Iff , we have 

A (pJ.) . { -So 
If,-(,:'"pJ.,r) ""--,,-, exp - p,dz 

2l\ ,,(6) 

(10) 
rY~ 2 2 -r dZ} ---en-e) -pJ. \ - J,(pJ.r(n-t)). 

2 z~O) 2po 

Owing to the presence in (10) of a rapidly decreaSing 
exponential, it can be assumed that p 1 S flf2 I ~ 1/4 in the 
argument of the bessel function, and therefore 
Plr(7T -8):S e/2/~3/4« 1. We can therefore replace 
J o by unity. 

We now proceed to determine the solution of the 
region r« II-If, where the external electric field 
can be neglected. In this region we expand the solution 
in spherical harmonics. It is seen from (10) that the 
expansion includes all the terms with m = 0, but we 
are interested in only one of them, the spherically 
symmetrical one (1 = 0), inasmuch as all the others 
vanish at the center of the exciton. The sought S-function, 
which is reg~lar at the origin, takes the form (see[7)) 

If 2 (r) = If (0) e-":iF (i-ttl' K, 2, 2r/1'~), (11) 

where F is a confluent hypergometric function. 

At r» I/fli., using the asymptotic form of the 
function F, we obtain 

'¥ ,+ (r) = If CO) e"'/r(1-1/1'~) (2rl'ii) .+./1., (12) 

In this expression we have neglected the damped part 
of the wave function, a neglect justified if flw is not too 
close to the exciton peak. The appropriate criteria will 
be derived below (see (20) and (21)). 

ExpreSSion (12) must be matched to the spherically 
symmetrical part of (10). Averaging 'Its over the angles, 
we obtain 

(13) 
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We note that the essential region in the integration of 
of the angles is (rr -8):5: 1/rl/2 .I~Y\ and consequently 
p :5: r1l2/6. 1/4 • This justifies the use of a one-dimensional 
potential in the matching region 

Comparing now (13) with (12), we obtain the connec
tion between A(Pl) and the value of the wave function at 
the center of the exciton: 

A(p.L)r(1-lIY~) {m(A f) a(~,f) '} 
'¥(~,P.L'O)= 2~/' exp -w '-', ----2-P.L (14) 

where 
h 2 1/2 1 - 1 

«D(~,f)= f (~+-+Iz) dz+-=lnY~+-=-, 
z Y~ g ., 

tt dz 

a(~,f)= f (~+lz+2/z)"" 
" 

We call attention to the fact that the principal term in 
the expression for 4> is the tunnel integral taken on a 
trajectory that coincides with the z axis (Fig. 1) and is 
evaluated between the turning points 1 and 2. Using the 
fact that 6.» f, we obtain 

2~¥' 1 ( 8~'" ) 
«D(~,f)""---In --, a(~. 1)""2~"'/f. 

31 y~ 1 
(15) 

The first term in the expression for cJ> corresponds to 
the result of the Keldysh-Franz theory, while the sec
ond is a correction due to the lowering of the potential 
barrier as a result of the Coulomb interaction of the 
electron and hole. The correction term in (15) is much 
smaller in magnitude than the principal term. However, 
being in the argument of the exponential, it can greatly 
increase the value of >11(6., Pi, 0) (by several orders of 
magnitude). The corrections to the value of a turn out 
to be inSignificant, inasmuch as the quantity a goes 
over from the argument of the exponential to the pre
exponential factor after summing over all the values 
of the perpendicular momentum. 

The value of the constant A(Pl) in (14) can be deter
mined from the renormalization of the wave function. 
Since the exciton effect has in this case a small in
fluence on the form of the wave function to the left of 
the turning point 1, it is obvious that the corrections to 
A(Pl) resulting from the Coulomb interaction are small 
and have practically no influence on the answer. Then, 
integrating 1>11(6., Pi, 0)1 over the values of the perpen
dicular momentum, we obtain a final expression for the 
electroabsorption coefficient 

- 1 8~'1. , 
K=KKF [r(1-ill'Ajexp ( Y~ In-I-)] , (16) 

where K is the electroabsorption coefficient with allow
ance for the electron-hole interaction, and KKF is the 
usual Keldysh-Franz absorption coefficient. 

C f 4~'" ] 
KKF = 32n' -;;: exp [-7 . 

C is a proportionality constant relating the square of 
the modulus of the wave function at the center of the 
exciton with the transition probability. We recall that 
6. is the photon-energy deficit measured in units of 
the Bohr energy of the exciton, and f is the electric 
field in units of the Bohr energy, divided by the Bohr 
radius. 

We see that there are two factors that increase the 
absorption. One is the r function describing the varia
tion of >11 near the Coulomb center, and the other is the 
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FIG. 2. The ratio K/KF as a 
function of the quantum energy 
deficit 6: I-f= 0.1; 2-f= 0.4; 
3-f = 1.0; 4-f = 10. The points 
show the results of the calcula
tions by Dow and Redfield [3]. 

M~~---~I~D------Lm2' 
4 

exponential factor due to the lowering of the potential 
barrier as a result of the Coulomb interaction. The 
r function makes an appreciable contribution to the 
increase of the absorption coefficient if the photon en
ergy deficit is comparable in magnitude with the exci
ton energy. Abrupt changes of the r function in this 
region cause the dependence of K on 6. to differ strongly 
from the results of Keldysh and Franz. On the other 
hand, if the photon energy l1w is far enough from the 
exciton peak in absorption (6. amounts to several units), 
then the principal role in the increase of the absorp
tion coefficient is played by the lowering of the poten
tial barrier. The correction coefficient in (16) then 
changes much more slowly than KKF, and the depen
dence of K on the photonenergy and on the electric 
field intensity is determined mainly by the exponential 
in the Keldysh-Franz expreSSion. 

The values of the ratio K/KKF calculated with the aid 
of (16) are shown in Fig. 2. We see that the correction 
coefficient reaches several orders of magnitude in a 
wide range of values of the photon-energy deficit. At 
the same time, with increasing value of a, the ratio 
K /KKF decreases slowly and in the limit of large 6. 

we have K = KKF. 

The numerical calculations of Dow and Redfield[3J, 
which were made in a narrow range of photon energy 
deficits (1 :5: 6. :5: 3), are in good agreement with our 
results. However, the hypothesis advanced in [3J that 
the electroabsorption coefficient is never described by 
the Keldysh-Franz formula is incorrect. 

3. As 6. approaches the bound-exciton energy, the 
value of K calculated from formula (6) increases 
without limit. As already noted, this is due to the fact 
that our assumptions are not valid near the exciton 
level. 

At this point we consider the electroabsorption in the 
case when 

111-11«1. (17) 

The condition (3) then leads to f« 1. 

To solve the problem in this case it is necessary to 
take into account two factors. First, when (17) is satis
fied the r function in the denominator of the exponen
tially-increasing asymptotic form of the S wave in (12) 
causes the latter to decrease strongly (at 6. = 1 there 
is no exponentially growing part in the asymptotic form 
at all). Thus, in the region where the solutions are 
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matched, the decreasing part of the asymptotic Coulomb 
wave function may turn out to be comparable with or 
even larger than the increasing part. We, on the other 
hand, did not take into account the decreasing asymp
totic form in the derivation of (16), and this has led to 
a divergence in the expression for the electroabsorp
tion coefficient. 

Second, owing to the smallness of the coefficient of 
the increasing asymptotic expression for the Coulomb 
wave function, even small corrections to the wave 
function, due to the electric field, can significantly 
alter its form. In particular, a change takes place in 
the value of ~ at which the increasing asymptotic 
expreSSion vanishes (the Stark effect). 

Thus, in the analysis of electroabsorption near the 
exciton peak we must take additional account of the 
resonant scattering and of the influence of the homo
geneous field on the form of the wave function in the 
vicinity of the Coulomb center. The corrections that 
must be introduced in the Coulomb wave functions to 
account for the homogeneous field can be determined 
by successive approximations. However, the correc
tions of interest to us can be obtained also in a Simpler 
manner. Assuming that in the region r« 1/ if , 
r « 1/1 ~ -11 the wave function depends analytically 
on ~ and f, we can write for the spherically-symmet
rical part of the solution 

0'1', aqr, 1 iI''I', , ) 
'I',(t., I, P.L, r) ""'1',(1,0, p.L,r) + M(t.-1)+ay-I+Tar l , (18 

where the partial derivatives are taken at ~ = 1 and 
f = O. 

Using the known expression for the level shift in a 
homogeneous electric field, we find that at ~ = 1 + 9f2/2 
the increasing asymptotic of the function >Tf2 should 
vanish. Consequently, 8iV2/llf should not have a growing 
asymptotic form, and the growing parts in the asymptotic 
forms -9a.vda~ and l)'w2//'If2 should be identical. Substi
tuting in (18) the explicit forms of >Tf2 and a>Tfda~, and 
retaining only the most significant terms in the asymp
totic form of the obtained expression, we find that the 
spherically symmetrical part of the Coulomb solution 
takes in the matching region the form 

'I' ,(t., I, P.L, r) "" [e-'" + e'1f,. ( t.-1-~)] 'l" (t., I, P.L, 0). 
2(2rl't.)' 2 (19) 

If 
1t.-11~9/,!" (20) 

then expression (19) coincides, under the condition (17), 
with the previously used asymptotic form of the S wave 
(12). Thus, the condition (20) is a criterion for the 
validity of (16) and supplements (3) and (4). 

If the inequality (20) is not satisfied, but 

I t.-1-9/,1'1 ~te-'/{f, (21) 

then the decreasing part of the asymptotic form of (19) 
can still be neglected, but the correction quadratic in f 
will now play an essential role. Allowance for this cor
rection leads in fact to the corresponding Stark shift 
of the level and to a change of the argument of the func
tion in (16). 

Finally, if condition (21) is also not satisfied, then it 
is necessary to take into account both the increasing and 
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the decreasing parts in (19). Naturally, the quasiclas
sical wave function now contains not only the functions 
<P1 [Eq. (7)], which are joined to the growing asymptotic 
form of the Coulomb S wave, but also the functions <p, 
[Eq. (8)], which are joined to the exponentially decreaSing 
part of expression (20). Owing to the strong scattering, 
the perpendicular momentum is generally speaking not 
conserved. 

To the left of the turning point 1, we seek a solution in 
the form 

S {A (p.l)6(P.L-q) [S' It] 'l",(t.,p.L,r)= l' cos pdz--

P '''P.L' 4 

+ B(p.L,q) . [S' It]} --y=-Slll. pdz--;; Jo(qp)dq. 
P z,(q) 

(22) 

The first term in this expression corresponds to the 
usual nonresonant process, while the second is due to 
resonant scattering. USing the results (18) obtained 
above, we find directly 

( 91' ) [ a. (t., f) J A (P.L)='I' (t.,P.L,O) t.-1-"2 exp <D(t.,f)+--2-P.L' . (23) 

We now determine the expression for B(Pi' q). The 
part of the quasiclassical solution that increases under 
the barrier takes in the vicinity of the z axis the form 

S B(p.L,q) {s· S· dZ} 'I',+(t.,P.L.r)= --_-exp Podz+q' - Jo (qp) dq. 
Ypo %,(q) z,(q) 2po 

(24) 

At the same time, the exponentially decreaSing part of 
the asymptotic form of the S wave (19) is represented 
in the vicinity of tt.e z axis (z < 0) in the form 

'I',-(t., P.L, r)""'I' (t., P.L, 0)exp{zl';i+p'~/2z}. (25) 

Expanding >Tf; in Bessel functions and comparing the 
obtained expression with (24), we find 

B(p.L, q)=l/,exp[-<D(t., I)-a.(~, f)q'/2]q'l'(t., P.L, 0). (26) 

We note than the function >It; decreases rapidly with 
increasing distance from the z axis. Thus, an impor
tant role in the matching is played by the region 
p :s 2r1/' / ~ 1/\ in which the complicated potential can 
be approximately replaced by a one-dimensional one. 

Using (22), (23), and (26), we obtain the explicit form 
of the wave function to the left of the point 1: 

'I'1(t.,p.L,r)='l",(t.,P.L,O) S {(~-1- 9{) exp[Ill(t., !) +a;(t., f)P.L'/2] 

8 (P.L-q) [S' It]+ exp[-<D(t., f)-a.(t., f)q'/2] x--_-cos pdz--
l'p "".L' 4 2l'p 

(27) 

xqsin[ Spdz- :]}lo(qp)dq. 
%,(q) 

It is seen from this expression that Pi is no longer a 
"good" quantum number here, since the wave functions 
with different values of Pi are not orthogonal: 

S 'I' (t." P" r) '¥ (t." P" r)d'r=[~(pl)6 (PI-P,) +1]8 (t.,-t.,) , 
(28) 

where 

() 21t' exp [2<D (t., f) +a. (t., f) p,'] [ 9/' ] 
~PI= t.-1--, 

P, 2 
It' exp[ -2<D (t., f) ] (29) 

1= 
4a.(t.,f) 
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Here and below we assume for simplicity that 
v(~, Pl, 0) = 1. 

To find the absorption coefficient, it would be neces
sary to construct out of the functions +" (~, PI, r) an 
orthonormalized set of functions X(~, v, r) where v is 
a certain new quantum number that labels the corres
ponding degenerate states. However, the answer can be 
obtained also without resorting to orthonormalization 
in explicit form. Assume that we have found an ortho
normal set X(a, v, r). We then have for the absorption 
coefficient 

K(!:J.)=C J1x(!:J.,v,O)I'dv, 

where C is the proportionality coefficient which was 
already used by us in (16). 

Let us consider the more general expression 

G(!:J., r, r')= J x(!:J., v, r)x(!:J., v, r')dv. (30) 

The function G is in fact independent of the concrete 
choice of the orthornomal set X. A direct consequence 
of the completeness of the set X in the class of the 
solutions of the wave equation (2), which are of inter
est to us, is the relation 

f G (!:J., r, r') '¥ (!:J." PI, r') d'r' = '¥ (!:J." PI, r) 6 (!:J.-!:J.,). 
(31) 

The validity of this relation can be easily verified by 
expanding v(a, Pl, r) in terms of X(a, v, r). From (31) 
and (28) it follows that 

J J G (!:J., r, r') '¥ (!:J." p" r) '¥ 0." p" r') d'r d'r' 

= [~(p,) 6 (p,-p,) +1]6 (!:J.,-!:J.,) 6 (!:J.-!:J.,). 
(32) 

Another expression for the left-hand side of (32) can be 
obtained by using the fact that the system of functions 
v, while not orthonormalized, is complete, i.e., each 
function X can be expanded in terms of the functions 
iV. Then 

G(!:J., r, r') = J J F (D, p" p,) '1' (!:J., PI, r) '1' (!:J., P2, r')dp, dp2, (33) 

where F(a, Pl, P2) is a certain function that does not 
depend on the choice of the orthonormal set X. Since 
K ~ G(a, 0, 0) and +"(~, Pl, 0) = 1, the absorption co
efficient can be easily expressed in terms of F: 

K(!1) =C HF(!:J., PI, p,)dp, dp,. 

On the other hand, if we express G in terms of the 
integral of +" [Eq. (33)] and use (28), then 

J J G (!:J., r, r') '¥ (!:J." p" r) '¥ (!:J." Pl, r')d'r d'r' 

+~(p,) f F(!:J.,p" q)dq) + l' H F(!:J., q" q,)dq, dq,}6(!:J.-!:J.,)6(!:J.,-!:J.,). 

Equating the right-hand sides of (32) and (34), we obtain 
an integral equation for F(a, Pl, P2). Dividing the right
and left-hand parts of this equation by J3(Pl)J3(P2) and 
integrating with respect to Pl and P2, we get 

~ dq ~ dq -, 

K(!:J.)=C HF(!:J.,I'"p')dP,dP'=C! ~(q) (1+1 ~ ~(q»)' (35) 

Substituting expression (29) for J3(q) in (35) and eval
uating the integrals, we obtain ultimately 

K(!:J.)- Cx 
- n'(6'x'+1) ' 

where 

9f 8 {4 !:J.'I, 2 (8!:J.'1')} 
6=.'>-1- 2 , x=jexp 3-/--)'1" In -,- , 

(36) 

We see that the exciton peak in electroabsorption 
has a simple Lorentz shape. The line half-width, as 
expected, is determined by the ionization probability 
of the quasibound state. We note that if the inequalities 
(17) and (20) are simultaneously satisfied then expres
sions (36) and (16) coincide. 

Summarizing, we can state that the expressions 
obtained by us describe electroabsorption both in the 
case of energy deficits close to the exciton-level energy 
[Eq. (36)], and far from the level [Eq. (16)]. There 
exists a region, defined by inequalities (17) and (20), in 
which both expressions are valid simultaneously, i.e., 
the regions of applicability of formulas (16) and (36) 
overlap. The only condition for our results to be valid 
is the deep-tunneling requirement (3) and (4). 

The author is grateful to V. I. Perel', under whose 
direction this work was performed. 
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