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Fluctuations of the diamagnetic moment in dirty layer superconductors with Josephson interaction 
between layers [of the TaS2 (PY)"2 type] are investigated. The fluctuations are of a two-dimensional 
nature, not too close to the vicinity of the transition point. The contribution of thermal fluctuations 
and zero oscillations of Cooper pairs is evaluated. Above To, the contribution of zero oscillations, as 
contrasted to that of thermal fluctuations, decreases with the temperature and field strength, but very 
slowly; it is still appreciable at temperatures T>T, and field strengths H>H ,2(0), 'provided that the 
collision time T is sufficiently small. The fluctuation moment is calculated for a temperature T =0 
and fields H > H ,iO). The moment is determined only by zero oscillations of Cooper pairs. With 
increase of the field to H =H ,2(0) from above, the fluctuation moment grows logarithmically and its 
decrease with increase in the field above H, 2(0) is very slow. Similar results have also been obtained 
for the diamagnetic fluctuations of small supen::onducting particles. 

1. INTRODUCTION 

It follows from the papers of Lee and Payne, [1J 
Kurkijarvi, Ambegaokar and Eilenberger, [2J and Maki [3J 
that the contribution to the diamagnetic moment above 
the superconducting transition point in dirty supercon
ductors is determined not only by thermal fluctuations, 
but also by the zero-point oscillations of Cooper pairs. 
The contribution of the zero-point oscillations falls off 
with increasing magnetic field H and temperature T - Tc 
much more slowly than the contribution of thermal fluc
tuations, since the characteristic parameters of the field 
and energy for the zero-point oscillations are the quan
tities Hs = 'Polz2 and h/r, respectively ('Po = 1Tflc/e is the 
magnetic flux quantum, Z and T are the free-path length 
and time) and not Hc2(0) and Tc' as is the case for 
thermal fluctuations. However, in three-dimensional 
superconductors, this contribution is nonsingular as 
T - Tc (or H - Hc2) and is comparable in absolute 
magnitude with the Landau diamagnetism for conduction 
electrons in the normal state. Therefore, in three
dimensional superconductors, the contribution of the 
zero-point oscillations of the Cooper pairs to the dia
magnetic moment is difficult to distinguish from the 
usual diamagnetism. In this paper, it will be shown that 
the situation is more encouraging in the two-dimensional 
and zero-dimensional cases, since the contribution of 
the zero point oscillations to the diamagnetic moment 
turns out to be large in comparison with the diamagne
tism of the normal electrons, and it increases logarith
mically with approach of the temperature T to Tc or of 
the field H to Hc2' 

It was shown in [4J that layer superconductors with 
Josephson tunneling between the layers behave like two
dimensional systems at temperatures that are not very 
close to Tc (or fields H not too close to Hc2)' According 
to estimates, [4J Josephson tunneling between layers is 
achieved in the intercalated compound of TaS2 with pyri
dine (TaS 2(Pyh/2), and the majority of investigated sam
ples of this compound are dirty superconductors, since 
the free path length Z inside the layer is much less than 
the coherence length ~ 0 = IivF/1Tb.O, (for the samples 
studied by Morris and Coleman, [5J the ratio ~ olz varied 
approximately from 1 to 6). Therefore, TaS2(PY)!I2 is an 
ideal object for investigation of the contribution of the 
zero-point oscillations of Cooper pairs to the diamag-
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netic moment above the superconducting transition point. 
Evidently the most favorable conditions for such a study 
are achieved at low temperatures T « T c and fieldS 
H :;::: Hc2(0), when the fluctuation diamagnetic moment is 
determined only by the zero-point oscillations. 

2. INITIAL EQUATIONS AND TWO-DIMENSIONALITY 
OF FLUCTUATIONS IN LAYER SUPERCONDUCTORS 
WITH JOSEPHSON TUNNELING BETWEEN 
THE LAYERS 

The free energy associated with the superconducting 
fluctuations is determined in the presence of a magnetic 
field by the expression [6J 

2 ~ 1 1 
F=-Sp Jdro [-+-,-] Imln!l>(ro,A), (1) 

n 0 2 e "-1 

where (3 = liT and ~ is the propagation function of the 
fluctuation field of the Cooper pairs. It follows from [4 ,6J 
that this function has the following form for a dirty layer 
superconductor with Josephson tunneling, with account 
of the paramagnetic effect: 

[ 1 (1 (5+) 
!l>(ro,A)=,,-' 2'" 2+TnT 

+~'" (~+.!.:..) _ '" (.!..) + ln~] -', 
2 2 4nT 2 T, (2) 

( a 2ie)' 
(5±(ro,A)=i!tl±2iJlH-IiDIl a;;--TcAIl 

--- 1-cos d----A liD J.. [ (a 2ied ) 1 
d' az lie ' , (3) 

where l/! (z) is a digamma function, A the dimensionless 
constant of the electron-phonon interaction, All 
= (Ax, Ay), Az is the vector potential, d the distance 
between layers (12 A in TaS2(Pyhl2), DII and D 1 are the 
mobilities along and perpendicular to the layers, and the 
z axis is directed perpendicular to the layers. If the con
dition hD ~d2 « T - Tc is satisfied for T > Tc, or the 
condition TID /d2Tc « (H - Hc2(O))/Hc2(0) for H > Hc2(O) 
and T = 0, then transitions of electrons between the 
layers can be neglected and the fluctuations of the dia
magnetic moment become two-dimensional. In 
TaS2(Pyhl2, the critical temperature T c A:i 3.5 OK and 
hD ~d2 < 0.017°K according to the estimates of[4J, so 
that the fluctuations lose their two-dimensional charac
ter only in the very immediate vicinity of the transition 
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point. Below we shall consider only the region of two
dimensional fluctuations, and omit the term in (3) that is 
proportional to D l' Then we obtain for the free energy 
density from (1), (2), and (3) 

2H ~ ~ 1 1 
fT= n:fic~L,S dW[T+ e,w-1] Imln2l)(w,n), (4) 

n=-O I) 

B±(w,n)=iw±2i/lH+4eDII HL (n++) / c. (5) 

According to (1), (4), the free energy represents the sum 
of the free energy YT associated with the thermal fluc-
tuations (the terms (e{3w - 1r1 in the square brackets) 
and the energy Yo connected with the zero-point oscilla
tions (the term % in the square brackets). Inasmuch as 
the two depend quite differently on temperature and field, 
we shall consider them separately. 

3. THERMAL FLUCTUATIONS IN A 
TWO-DIMENSIONAL SYSTEM 

From the expression for the free-energy density of 
thermal fluctuations 

- 2eHL ~ ~J d Imln2l)(w,n) 
fTT - n'ficd i~ w e'"-1 (6) 

n=O I) 

it is seen that the basic contribution to the integral over 
w is made by frequencies w ;:; T, and that in the expres
sion for PJ(w, n) we need leave only the term linear in 
W/41TT, using the small numerical parameter 1/21T. In 
the analysis of the thermal fluctuations, we limit our
selves to the case of fields that are perpendicular to the 
layers. Then the paramagnetic effect can be neglected 
in (5). We replace the summation over n in (6) by an 
Euler-Maclaurin expansion and carry out the integration 
over w. We can then represent the part of the free
energy density that depends on the field in the form 

T'{ - d'm 
fTT=- 4n'fiD

li
d 4h'L,Bm(2h),m dh'm g'(h)Y[g(h)] 

m=1) 

S' } l'!oHL cl'!o 
-" xg'(x)Y[g(x)]dx, h , H".L(O) =-2 D ' 

" TH".L(O) e II 

Bm =B'm+,1 (2m+2)! Y(g) =In (gI2n) -n/g-", (gI2n) , (7) 
g(x) =4n [",('I,+xI4n) -",('I,) +In(TIT,) ]I",' (1/,+xI4n), 

where Bn are the Bernoulli numbers and Hc21(0) is the 
upper critical field perpendicular to the layers at T = O. 
For the diamagnetic moment MT' we have from (7) 

eT [ d - . d'm ] 
MT=- 2n'ficd h-"dh.E Bm (2h)'m+2 dh'm g'(h)Y[g(h)]. (8) 

m_O 

At very weak fields h « In(T/T c), it suffices to con
sider in (8) only the first term in the sum over m. We 
then obtain for the temperature dependence of the dia
magnetic susceptibility XT 

'" (n~ In / )]. (9) 

For T - Tc «Tc' we have from (9) 

e"D Il T, 
l..T=- 24lic'd T-T, 

in correspondence with the result of Schmid [7J for a 
tWo-dimensional system. 

(10) 

For h/21T « 1, we can represent the total sum over 
m in the expression for MT in the form of an integral, 
since in this case g(h) has the simple form 
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8 T 
g(h)=h+-In-. 

n T, 
(11) 

Such an approximation for g(h) is equivalent to expand
ing the digamma function lj; in the expression for PJ in a 
series in l/T and discarding all terms except the linear 
one. MaId and Takayama [6J used this approximation with 
arbitrary h for the three-dimensional case. [6J It is seen 
from (8) that it is valid only for not very strong fields, 
h/27T « 1. It is shown in the Appendix that expression 
(8), with the function g(h) determined in (11), can be 
transformed to 

eT [ ( 8 T ) MT=---- hY h+-In-
24n'ficd 11: T, 

- 11: ddh h j ~ exp [ - x (h+ : In ; )]] (12) 
o 

x( cth 11:X - 11:~ )( cth hx - h~) 
For h/47T »1, we have g(h) ~ 41Thlnh and from (8) 

MT=_~_1_[1+0(_1 .)]. (13) 
24nficd h In h In h 

It is seen from (13) that the diamagnetic moment as
sociated with the thermal fluctuations vanishes when the 
magnetic field H begins to exceed a value of the order of 
Hc21(0). 

4. ZERO POINT OSCILLATIONS OF COOPER PAIRS 
IN A TWO-DIMENSIONAL SYSTEM 

We have for the free-energy density of the zero-point 
oscillations of the Cooper pairs 

fTo= eHL ~ S-dwImf[-iw+2hT(n+~)], 
n'ficd ~ 2 

11=1) I) 

(14) 
f[ -iw+2hT (n+ '/2) ]=In 2l)-l(-W, n). 

For summation of the function f(w, n) over n, we use the 
Euler-Maclaurin formula in the form 

~ !(n)=J~f(X)dX+~f(O)"+iJ~ f(ix)-f(-:-ix) dx. (15) 
.l....J 2 e2 :u:_1 

As above, in the use of the Euler-Maclaurin formula, we 
assume that the actual function f(w, x) and all its deriva
tives tend to zero as x - "" and w - "", so that the first 
integral on the right side of (15) converges. The function 
(2) as used by us is approximate, and these conditions 
are not satisfied for it: f(w, x) does not tend to zero as 
x - "" or w - 00, and the first integral on the right side 
of (15) diverges. This is because the diffusion approxi
mation used to obtain (2) is invalid at high frequencies 
w ;(: fl/T and large momenta (larger n); however, we 
are interested only in that part of the free energy which 
depends on the field. It is determined by the values of 
f(w, x) at finite x. In the region 2hTx ~ fl/T, the function 
(2) correctly reproduces the behavior of the actual func
tion f(w, x) and we can use it for calculation of the dia
magnetic properties. Separating from the first integral 
in (15) that part which depends on the field, and keeping 
it only, we obtain 

hT ~ 1 

fTo=----1m J dw {J dx[f(hTx-iw) - f(hT-iw)] 
4n'hD II d 0 0 

1 ~ d 
- - Jdx[!(2ihTx+hT-iw)- f(-2ihTx+hT-iw) ]_In(1-e-Z.")}, 
~ ~ 

o ~~ 

!(X)=ln{t.[.p(++ 4:T)-",(+)+ln ~,]). 
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Integrating by parts in the integrals over x, we have the 
possibility of carrying out the integration over the fre
quency w. However, it was noted above that the function 
f(w) diverges as w - co if we use expression (2) for Pl. 
As in [3J , we take the quantity 11 / T as the upper limit of 
integration over w, assuming that the actual function 
f(w) falls rapidly to zero at higher frequencies. Then 
(16) transforms to 

h'T' 
!T. =----;;;r;-Re {fXdx1f(hTx-ili'c')-/(x) I 

4n I£ulld • 

1 ~ 
+ - f dx In (l-e-")[fUhTx+hT-iliT-') +f(-ihTx+hT-iliT-') (17) 

rt ~ 

- f(ihTx+hT)- f(-ihTx+hT) I}. 
It is seen from (17) that in the case of fields that are 
perpendicular to the layers, the contribution of the zero
point oscillations to the diamagnetic moment vanishes 
only when hT »1117, i.e., when the field H exceeds the 
value Hs = iio/l 2• 

For perpendicular fields H « Hs' we get a very slow 
decrease in the diamagnetic moment with increasing H 
from (17): 

M.=-~[Reln Z(T) 
6n'licd In(T/T,)+nhl8 

( 8 T)-'] l+-ln-
nh T, 

(18) 

for h /27T « 1 and 

M ehT [R I Z(T) .=- 6n'hcd e n In(hT/tl.) (19) 

for h /27T » 1. Here 

Z(T)=1jJ(~+ is.tl, )-1jJ(~)+In~. 
2 41T 2 T, 

It follows from (18) that in fields for which 7Th 
« 8ln (T/Tc)' the diamagnetic susceptibility XO is de
termined by the expression 

e'D Il Z(T) 
x.=- 3n'lic'd ReIn In(T/T,) . (20) 

For temperatures close to T c' the contribution of the 
thermal fluctuations (9) to the total fluctuation diamag
netic susceptibility X far exceeds the contribution of the 
zero-point oscillations (20). However, far from the 
critical temperature, the situation changes and at 
T = 10 Tc for ~o/l = 11.4 we have X = XT + XO 
= -0.554 e2DII/37T2nc 2d and X 0 = 5.6XT' and for ~ oil = 5.7 
we get X = -0.314 e 2DI/37T2hc 2d and X 0 = + 2.7 XT' 

We now compare the contribution of the zero-point 
oscillations of the Cooper pairs to the diamagnetic sus
ceptibility with the Landau diamagnetism of normal 
electrons. For fields with wH = eH 1 fmc »D 1 /d2 this 
condition is satisfied in TaS2(Pyh/2 at least for 
H » 1 kOe, the motion of the normal electrons in a 
magnetic field can be assumed to be two-dimensional, 
and we obtain for the Landau diamagnetic susceptibilityl) 

XL =-e'/ 12nmc'd. (21) 

It is seen from comparison of X 0 with X L that for tem
peratures T - Tc ~ Tc the contribution of the zero
point oscillations differs from the contribution of the 
normal electrons by a factor (kFl) »1. In the three
dimensional case, according to the estimate of Maki, [3J 

the contribution of the zero-point oscillations is the 
same in order of magnitude as the diamagnetism of the 
normal electrons. 

We now consider the fluctuations of the diamagnetic 
moment at the temperature T = 0 in fields H <: Hc2(0). 
In this case, the fluctuation diamagnetic moment is de-
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termined only by the zero-point oscillations, since the 
contribution of the thermal fluctuations at T = 0 falls off 
in proportion to (T/Tc)2. 

For perpendicular fields H « Hs' the function fIx) 
= In [A In (x/~o)], and we get from (17) 

e'DIiH [ [In (lih:tl,) ]". 
M.(H)=--- In----

n'hcd T) 

2 ~d ( ) T)+'/,ln(1+x') ] -- xln 1-e-" 
n f [T)+'/,ln(1+x')]'+arctg'x • 

(22) 

where 1] = In [H/Hc21(0)] • Upon approach of H to Hc21(0) 
in the region of two-dimensional fluctuations, the mo
ment Mo increases logarithmically: 

(H . __ e'DIiH [In (hlTtl.) l"'H:"C<Ol 
M, l- n'lic'd In n[H-H".L(Ol]' 

In the region of three-dimensional fluctuations 

(23) 

(1'/ «hD 1 /d2T c), the logarithmic increase ceases and 
the diamagnetic moment tends to a finite value as 
H - Hc21(0). For Hc21(0) «H «Hs' we get from (29): 

M,(H)=- e'DIiH [In [In(lilTtl,)l''' +_1_]. (24) 
n'hc'd T) 3T) 

Thus, the moment Mo falls very slowly with increasing 
and disappears in fields exceeding Hs' The strong de
pendence of the fluctuation moment Mo on H near Hc21 (0) 
allows us to separate it from all the remaining contri
butions to the magnetic moment (the contribution of the 
normal electrons is proportional to H and the contribu
tion of paramagnetic impurities does not depend on H 
for /-LH »T). 

It is also of interest to consider the fluctuations of 
the diamagnetic moment at T = 0 in fields directed 
nearly parallel to the layers, when Hl «Hc21(0). The 
superconducting state is destroyed in this case by the 
paramagnetic effect, and a transition of the first kind 
to the normal state takes place in a field Hp = ~0//-Lf2. 
The fluctuations of the diamagnetic moment above the 
field Ho = H/12 (in the range from Ho to Hp the normal 
state is metastable) are determined by the expression 

e'DIIHl. In (hlTtl.) 
M,=- ---In --:--'-:-:;-;-;-;-:-

3n'lic'd In (H/H.l 

for fields H « 7T~ rJIo/l, and the diamagnetic moment 
vanishes only in fields exceeding Hp~ o/l. 

(25) 

5. DISCUSSION OF THE EXPERIMENTAL DATA FOR 
FLUCTUATIONS IN TaS2 (Py)% 

According to the results obtained above, the total 
fluctuation diamagnetic susceptibility of dirty layer 
superconductors with Josephson tunneling between the 
layers above Tc is inversely proportional to T - Tc at 
hD 1/d2 «T - Tc «Tc' and it then falls off slowly with 
increase in the temperature. The diamagnetic fluctua
tion moment is strongly dependent on the value of the 
field for T - T c ;:; T c since the thermal fluctuations 
make the chief contribution in this range of tempera
tures. At higher temperatures, the diamagnetic moment 
falls off much more slowly with increasing field, since 
in this region the contribution of the zero-point oscilla
tions of the Cooper pairs is predominant and that de
pends weakly on the value of the field H at H «Hs' Just 
such a qualitative picture of the diamagnetic fluctuations 
above Tc has been observed experimentally in TaS2(Pyhl2 
according to the communication of DiSalvo, Geballe, 
Menth and Gamble. [8,9J Near Tc, Prober, Beasley and 
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Schwall [10J obtained the dependence X ~ l/(T - Tc) ex
perimentally; however, the coefficient of proportionality 
turned out to be less than that predicted theoretically by 
a factor of about 6-10. We note that the structural tran
sition at 80 o K, which is accompanied by a peak in the 
magnetic susceptibility, precludes quantitative estima
tion of the contribution of the diamagnetic fluctuations 
above T c in the intercalated compounds of TaS2. [8J This 
difficulty is removed in measurements of diamagnetic 
fluctuations in fields H ~ Hc21 (0) and at temperatures 
T «Tc' As has already been noted above, such meas
urements would have given direct information on the 
zero-point oscillations of the Cooper pairs in the normal 
state of the superconductor. 

Evidently the zero-point oscillations also give an im
portant contribution to the fluctuation conductivity above 
the transition point. The very slow growth in resistance 
of TaS2(Pyh/2 upon an increase in the magnetic field 
above Hc2 for field directions that are close to paral
lel can be connected with this effect. [5J 

6. DIAMAGNETIC FLUCTUATIONS IN 
SMALL PARTICLES 

The diamagnetic fluctuations in small superconducting 
particles with radii R small in comparison with the 
correlation length have been calculated with the help of 
the generalized static approximation of Ginzburg
Landau. [11,12J However, the static approximation be
comes inadequate far from Tc' Account of the dynamics 
of the fluctuations far from T c leads tOl'apid decay of 
the thermal fluctuations with increasing (T - Tc)' This 
decay, however, is compensated by the contribution of 
the zero-point oscillations, thanks to which the dia
magnetic fluctuations in the small particles fall off as 
slowly as in quasi two-dimensional systems. 

We shall take the dynamical corrections to the dia
magnetic fluctuations into account only in the region in 
which these corrections are large, Le" outside the criti
cal region (for temperatures T - Tc »(Tc/N(0)n)1/2, 
where N(O) is the denSity of the electron states and n the 
volume of the particle), Outside the critical region, the 
fluctuations are small, and in the calculation of the free 
energy we can limit ourselves to terms of lowest order 
only in the amplitude of the fluctuating field. Just this 
approximation was used above in the present paper. For 
the propagation function of the fluctuating field !P in Eq. 
(1), we have, in the case of small particles, 

q)(w,A)=A-'{1jJ[~+ iffi-ftD(V-2ieAlftc) , ] _.p(~) +In.!..}-' 
2 4nT 2 T, 

(26) 

and in the calculation of the free energy we can neglect 
the space derivatives in Eq. (26). Then the calculation of 
the trace in (1) reduces to an averaging of the quantity 
In !P (w, A) over the spatial coordinates. In calculating 
the contribution of the thermal fluctuations, it suffices 
to take into account only the linear term in the expansion 
of the digamma function in (26) in the series in liT. 
Then the susceptibilities XT and X 0 have the same tem
perature dependences as in layer superconductors (see 
(9) and (20»: 

;(,=_ 8De'R' [In(~ln2.) 
5nftc'Q n' T, 

n' ( 4 T )] 
8In(TIT,) -1jJ -;;lnr:- . 

8De'R' 1jl('/,+ift/4nT't)-Ijl('/,)+ln(TIT,) , (27) 
;(0=---- Re In -'--:.......:.---:-~~".....::.:-~-..:::.... 

5nftc'Q In(TIT,) 

X-Xr+X" 
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At T = 0, due to the zero-point oscillations, the diamag
netic moment is different from zero for fields that are 
greater than the critical field H~2(0) "" <po;Rv'H 0' At 
H ;G H~2(0), the moment amounts to about De2R2H/fic2n 
and vanishes only when the value of the field begins to 
exceed <Po/LR, 

In conclusion, the author expresses his gratitude to 
V, L. Ginzburg'and participants in his seminar for a 
useful discussion of the work, 

APPENDIX 

We can transform the sum over m in the right side of 
(8) with g = h + ~ in the following fashion: 

4h' ~ 11 (2h)'m~[ln h+; __ n __ 1jl ( h+; )] 
,t..;. m dh'm 2n h+; 2n 
m_' 

~ d'm ~ ydy 
=8h' E11m(2h),m dh'm J (eLl) [y'+(h+~)'l 

m_O 0 

~ d~ ~ d -
=8h' ~ Bm(2h),m--S--y-Sdxe-%(h+l'sinxy 

,t..;. dh'm e'-l 
m_O 0 0 

- d 1 1 
=nh J 7 e_%(hH' (cthnx --;;) (cthhx-Tx)' . 

Note added in proof (April 22, 1973): In a recent paper, R. A. Klemm, 
M. R. Beasley, and A. Luther, Phys. Rev. 8B, 5072 (1973) also calculated 
the fluctuations of the diamagnetic moment in dirty layer superconduc
ters above the temperature T co and the results of the calculations for the 
purely two-dimensional case agree with those obtained in the present 
work. However, Klemm, Beasley and Luther assume that the contribu
tion of the zero-point oscillations to the diamagnetic susceptibility (20) 
is practically independent of the temperature and therefore cannot be 
observed experimentally. Actually, because of the zero-point oscillations, 
X changes upon an increase in the temperature from 2T c to lOT c by an 
amount"'" e2 DII/311'2Ji.c2 d, which is noticeable at the accuracy of measure
ment achieved in [9.10). For TaS2(Py)Y, at 2Tc to 20Tc• ~o/l = 5.7, and 
vF = 1.1 cm/sec (4) , we obtain, with account of the zero-point oscilla
tions, a slow decrease of X with increase in the temperature: Xg "" 0.7 
X I 0-6/(T - Tc)' This dependence is close to that which was experi
mentally in [9). 
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