
Jahn-Teller effect for T terms 
I. B. Bersuker and V. Z. Polings.,. 

Institute of Chemistry, Moldavian Academy of Sciences 
(Submitted January 14, 1-974) 
Zh. Eksp. Teor. Fiz. 66, 2078-2091 (June 1974) 

The problem of the five-dimensional nuclear adiabatic potential surface shape is solved for a 
polyatomic system with an orbital degenerate electronic T term by taking into account both the 
linear and the main second-order terms of vibronic coupling to all the active (e and t 2) vibrations. 
It is shown that the second-order terms have an appreciable effect on the surface shape obtained 
earlier in the linear approximation. In particular, a new orthorhombic type of absolute minima 
occurs, in which the nuclear motion is localized. In addition, twelvefold extrema occur. Some 
physical effects are considered: 1) tunnel splitting due to transitions between the six equivalent 
orthorhombic minima states, 2) vibronic suppression of electron operator matrix elements, which is 
illustrated in the examples of spin-orbit and Zeeman splittings, and 3) structural phase transitions in 
crystals containing the Jahn-Teller centers under consideration. Approximate expressions are obtained 
for the tunnel splitting, the suppression factors, and the Curie temperatures. It is shown that, 
depending on the crystal parameters, a transition from the orthorhombic phase to a completely 
disordered one proceeds either directly or through an intermediate tetragonal phase. 

1. INTRODUCTION 

The problem of taking into account the electron­
vibrational (vibronic) interactions in polyatomic systems 
with an electron-degenerate (or quasidegenerate) term, 
the manifestations of which are well known in the litera­
ture under the name of the Jahn-Teller effect,l) is most 
complicated in the case of the T term. In this case, in 
contrast with the E term, both the twofold degenerate e­
and the triply degenerate t 2-vibrations are important in 
the effect, as a consequence of which the topological 
complications of the three-sheeted surface of the adia­
batic potential of the nuclear motions (the essential 
anharmonism and the multi-valleyed character) span 
the five-dimensional space of e- and t2-displacements. 
Limiting themselves to consideration of only the linear 
terms of the vibronic interaction, Opik and Pryce [2J 
have shown that this surface has extremal points of 
three types: tetragonal, trigonal and orthorhombic, and 
that, depending on the relation of the constants of 
vibronic coupling and the elastic constants, only tetra­
gonal or trigonal points can be minima, while the inter­
mediate orthorhombic extrema are in all cases saddle 
points. These representations are very important for 
analysis of the observed properties of many polyatomiC 
systems, including impurity centers in crystals, com­
plexes of transition metals, various other molecular 
formations (including biological ones), and also the col­
lective properties of crystals (the cooperative Jahn­
Teller effect, which leads principally to structural phase 
transitions) • 

Meanwhile, it is known from analysis of the simpler 
case of the E term that, with account of the quadratic 
terms of the vibronic coupling, the shape of the adiabatic 
potential surface becomes appreciably more complica­
ted, [3, 4J and in most cases, only such a complicated 
surface can explain the experimental data (see [1, 5J). 
We can therefore assume that account of the quadratic 
terms in the case of the T term will also change the re­
sults of Opik and Pryce Significantly. However, this 
problem has not yet been solved, so far as we know, be­
cause of its complexity (an attempt was made in [6J to 
take into account the quadratic terms of the vibronic 
coupling in the particular case of consideration of tri­
gonal distortions only). 
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In the present communication, we give the results of 
solution of the fundamental problem of the theory of the 
Jahn-Teller effect for a system with an electron-degen­
erate T term-the features and the shape of the adiabatic 
potential surface are determined with account of both the 
linear and the most important quadratic terms of the 
vibronic coupling, equivalent orthorhombic minima of a 
new type are reported, and it is shown that localization 
of the nuclear motion in them leads to a series of new 
effects. 2) The most essential of the latter are consid­
ered: tunnel splitting of the ground state, suppression 
(decrease) of the electronic characteristics of the sys­
tem due to vibronic coupling, and structural phase tran­
sitions in crystals. 

2. EXTREMA OF THE ADIABATIC 
POTENTIAL SURFACE 

The Hamiltonian of a polyatomic system that allows 
electron-degenerate T terms in a configuration of maxi­
mum symmetry of the cubic type, with account of the 
quadratic terms of the vibronic coupling, can be written 
in the form 

ft' iJ' 
H=--,-"\1-.-,C.+U(Q), lEr, r=E" T", (1) 

~mL.. aQn 
n 

Here e, E and ~, rl, (; denote the lines of irreducible 
representations of Eg and T2g, respectively, with the 
transformation properties e ~ 2Z2 - x 2 _ y2, 

(2) 

E ~ l3(x2 - y2), ~ ~ yz, 1] ~ xz, {; ~ xy, where x, y, z 
are the Cartesian coordinates. The quantities V r and W 
represent the corresponding reduced matrix elements­
the constants of vibronic binding and Cry the matrices 
of the Clebsch-Gordan coeffiCients, defined in the space 
of functions of the initial electron triplet: 

(
1 0 0) (1/2 0 0) (- v'% 0 0) 

Ca = 0 1 0, C, = 0 1/, 0 , C, = 0 V'% 0 
o 0 1 0 0 -1 0 0 0 (3) 

(
0 0 0) ( 0 0 - 1) 

C<=O 0-1, C.= 000, 
o -1 0 -1 0 0 

( 0 -1 0) 
(;,;=-100 

000 
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Only the most important quadratic terms of the vibronic 
coupling are considered in the Hamiltonian (1)0 These 
are of symmetry Ex T2 and contribute the most funda­
mental changes to the shape of the adiabatic potential 
surface. Terms of the type Ex E and T2 x T2 contribute 
only corrections to the quantitative relations among the 
parameters of the surface and were therefore omitted 
for simplification of calculations and analysis of the re­
sultso The results obtained below apply with equal suc­
cess to both the Tl and the T2 terms, even and odd (in 
the presence of an inversion center). The spin-orbital 
interaction is assumed to be less than the energy of the 
Jahn-Teller stabilization (see below)o 

To find the extremal pOints of the adiabatic potential 
surface, we can use the procedure of Opik and Pryce. [2J 
We denote the column electron function, which is char­
acteristic for the matrix of the potential energy U(Q), by 
la) : 

(4) 

Making use of the fact that the adiabatic potential is de­
termined by the equation 

U(Q) la(Q»=e(Q) la(Q», (5) 

we can find the coordinates of its extremal points from 
the set of five equations: [2J 

<al aU(Q) la)=O, r=E"T", 'fEr. (6) 
aQrT 

Solving Eqs. (5) and (6) simultaneously, with account of 
(2)-(4), we obtain a set of four nonlinear algebraic equa­
tions for the three components of the column la) and the 
value of E at the extremum and five expressions for Q~) 
in terms of ~. Without writing down these equations Y 
(in view of their cumbersome nature), we give the re­
sults of their solution-the extremal points of the adia­
batic potential surface E(Q). 

a) Solutions of the linear approximation always exist, 
independently of the values of the quadratic binding con­
stant W-three equivalent tetragonal extrema at ~ = 1, 
aq = ar = 0, p, q, r = 1, 2, 3 and p f. q, q f. r, p f. r with 
the coordinates of one of them: QeO) = -VE /2KE, Q~O) 

= I3VE/2KE' Qt = Q~O) = Qt = 0 (the remaining coor­
dinates are found from symmetry), and with energy, 
measured from the position of the initial electron triplet, 

E~;) =8 (Q"» =-V,,'I2K., 

and four trigonal points at al = ± a2 = ± a3 = 1/13 with 
coordinates Q(O) = Q(O) = 0 Q(O) = ±Q(O) = ±Q(O) 

(} E'~ 1) !; 
= 2VT/3~ and energy 

E,';) =e(Q"»=-2V.'/3KT • 

(7) 

(8) 

b) The position and depth of the six equivalent orthor­
hombic extrema are strongly influenced by the quadratic 
terms. We introduce the dimensionless constants 

A=WI-yKEKT , B=WV"IK"VT (9) 
(it follows from the stability requirement of the system 
that IAJ < 1). Then we can obtain for the position of one 
of them (at al = a2 = 1/v'2, a3 = 0) 

Q:')=-V~(B-2A')/2KzB(1-A'), Q!') =Q:') =Q;') =0, 

Q.") = VT (2-B)/2KT (1-A') , 

and for their energy 

(10) 

E;~R)= dQ,O')=-VE'(B'+4A'-4A'B)/8KEB'(1-A'). (11) 
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FIG. I. Region of existence of twelve equivalent extrema of the 
first type (shaded region). 

A 
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FIG. 2. Region of existence of twelvefold extrema of the second 
type (shaded region). 

c) The "twelve -fold" (in the sense of twelve equiva­
lent) extrema of two types are new, being absent in the 
linear approximation. The first type is obtained at ~ 
f. 0, aq f. 0, ~ f. aq, ar = O. They exist only upon 
satisfaction of the mequalities 

0,;;;;1±A(2-B)IB1'3';;;;A', (12) 

which can be compared with the existence region of the 
twelve fold extrema of the first type on the (A, B) plane3) 
(Figo 1). We get for the components ~ of the wave func­
tions 

1 [ ( 1 2-B )'1']'1' 
a,.,= l'2 1± 1--;;-± ABl'3 (13) 

(the second pair of signs in (13) correspond to the two 
signs in (12)), and we have for the coordinates of one 
extremum and the energy 

Q.'O)=_~2 2A-Bl'3, Q:"= l'3 ~(1-~± 2-!!)'1', 
2 KE AB 2 K" A' ABl'3 

Qt'=Q~o, =0, Qt) = _l_(VT+WQ,"') [1 'F A (2-B) ]'1. (14) 
AKT Bl'3' 

E,'~"=e(Q'O')=_~~+~E (~'F is _1)' 
2 K" 8 KE B A . (15) 

We can easily see from comparison of Eqs. (15) and 
(7) that the inequality EW < E~) holds for any A and 

B, Le., the twelvefold extrema of the first type that have 
been considered cannot be absolute minima. 

The twelve-fold extrema of the second type are ob­
tained at ~ = 3q f. ar , ~ f. 0 (i = 1, 2, 3). In this case, 
at the first extremum (a1 = a2) we have QeO) f. 0, Q(O) = 0, 
and two of the three displaced trigonal coordinateJ are 
equal to one another. The characteristics of these ex­
trema, including the region of their existence (Fig. 2) 
can be found only numerically in the general case, and 
analytically only for certain limiting values of the 
parameters. 

A more complete investigation of the adiabatic poten­
tial surface was carried out on an electronic computer 
according to a specially constructed program incorporat­
ing: 1) finding the component a of the electron wave 
function at the extremum; 2) calculation of the normal 
coordinates Qf?) of the extremum; 3) determination of 
the values of th~ adiabatic potential at the extremum 
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Characteristics of the extremal points (for one of the several equivalent points of each type) at VE = 104 em-II A, VT 
= 0.866 X 104 cm-I/A, W = -0.5 X 104 cm-I/A2, KE = KT = 104 cm- I/A2 

Ty!"'of I 
pomt 

Eigenvectors of the matrix I t (Q(Oh, I Q(O). A 
U (Q(Of 103 cm-1 r'l' 

1 0 0 -2.50 -0.25 1 0 0 0 0 10.0 
0 1 0 5.00 G.43 0 1 0 0 0 10.0 
0 0 1 5.00 0 0 0 1 0 0 10.0 

0 0 0 0 1 0 -6.6t 
0 0 0 0 0 1 -6.61 

0.577 0.577 0.577 -2.50 0 0.823 0.009 0.227 0.236 -0,463 -8.07 
0.816 -0.408 -0.408 5.00 0 -0.010 0.823 -0.404 0.398 0.005 -8.07 
0 -0.707 -0.707 5.00 0.28 0.002 0.567 0.581 -0.58~ 0.003 13.7 

028 0 0 0,577 0.:'77 0:577 10.0 
028 0.5(l7 -0.002 -0.338 -0.334 O.n72 13.7 

0.707 0.707 0 -4.78 0.fi2 0.707 0 0 0 -0.707 5,00 
-0.707 0.707 0 17.4 0 0 1 0 0 0 6,61 

0 0 1 153) 0 0 0 0.707 0.707 0 8.49 
0 0 0 -0.707 0.707 0 10:0 
0.74 0.707 0 0 0 0,707 15.0 

0.3:i8 0.358 0.8Il2 -3.00 0.39 0.779 0 -0.253 -0.253 -0.515 5.50 
0.707 -0707 0 6.08 0 0 0.671 -0.524 -0.524 0 -9.77 
0.610 0.010 -O.50G 8:42 0.33 0 0.742 0.474 -0/,74 0 13.7 

0.33 0.398 0 0.1148 0.r.48 -0.035 7.80 
0.0r. 0.485 0 -0.125 -0.125 0,857 11.1 

I-Tetragonal extrema; 2-trigonal extrema; 3 -orthorhombic extrema; 4-twelvefold extrema of the second type. 

E}r;J = E (Q(O»); 4) calculation of the curvature of the 

adiabatic potential surface near the extremum Kj-the 
new force constants; 5) determination of new normal 
coordinates at the extremum 

(16) 
r, 

corresponding to these new force constants, 

In different regions of the (A, B) plane, some 260 var­
iants with different combinations of the parameters of 
the problem (YE' KE, VT' KT' W) were computed. The 
results of one of them, with A = -0.5, B = -0.577 are 
given in the Table; the twelvefold extrema of the first 
kind are absent in this case. In none of the variants con­
sidered did the twelvefold extrema of either type become 
the lowest, although for some values of the parameters 
they were converted from saddle points to minima. We 
note the possibility of a situation in which several groups 
of twelvefold extrema of the second type exist simul­
taneously on the adiabatic potential surface; these de­
velop from several different combinations 

A solution is also possible in principle with all differ­
ent, nonvanishing values of ai' leading to 24 equivalent 
extrema, which transform into one another through sym­
metry operations. However, as a calculation on the 
computer showed, the region of existence of these roots 
lies beyond the limits of the region of stability of the 
system. 

3. ORTHORHOMBIC MINIMA 

In contrast to the twelvefold extrema, the orthor­
hombic extrema can be absolute minima which follows 
directly from the example given in the Table-the orthor­
hombic extrema have a positive curvature in all direc­
tions and are the lowest. In view of the fundamental im­
portance of this result (we recall that in the linear ap­
proximation, orthorhombic extrema can only be saddle 
points [2J ), let us analyze its origin and establish t.he 
region of existence of the absolute minima of the orthor­
hombic type. 
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FIG. 3. Region of existence 
of tetragonal, trigonal and 
orthorhombic extrema. The 
depths of the first two types of 
extrema are the same on the 
straight lines A = ±Bvl372. In' 
the crosshatched region, the 
trigonal extrema are deeper 
than the tetragonal ones, and 
in the rest of the region, the 
tetragonal are the deeper. 

-3 

A 

We easily find from the condition E(E) = E(T) that 
JT JT 

equality of the depths of the trigonal and tetragonal ex-
trema is realized on the lines A = ± Bv'3/2. In Fig. 3, the 
region of allowable values of the parameters A and B is 
divided by these lines into two parts, in one of which 
JAJ > BI3/2 and, consequently, the trigonal extrema are 
deeper than the tetragonal ones, while in the other the 
reverse inequality holds and the tetragonal extrema are 
deeper than the trigonal ones. At the intersection of 
the lines, Le., at W = 0 (see (9)), the depths of all three 
types of extrema-trigonal, tetragonal and orthor­
hombic-are identical and a two-dimensional trough of 
minima is realized on the five-dimensional adiabatic 
potential surface. [8, 9J At W ;, 0, the parameters A and 
B are also different from zero and the depth of the 
orthorhombic extrema is not identical to the depth of the 
trigonal and tetragonal ones, as follows from (11), even 
for A = ± Bv'3/2. In other words, with account of the 
quadratic terms of the vibronic coupling, the two­
dimensional trough of minima is "corrugated," and hills 
and depressions appear along the trough (much as in the 
case of the E term[4,5J). Here, depending on the values 
of the parameters, the orthorhombic points can turn out 
to be both higher and lower than the tetragonal (or tri­
gonal) points. 

In the general case, the existence of a region of the 
parameters A and B where the orthorhombic extrema 
become absolute minima is quite evident. In this region, 
the inequalities E(OR) < E(E) and E(OR) < E(T) should 

.IT .IT .IT .IT 
be satisfied, and with their help we find the boundaries 
of the region of interest to us by using the explicit ex-
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A 

-J -z J {I 

FIG. 4. Region of ex­
istence of absolute minima 
of the orthorhombic type 
(shaded region). 

pressions for E¥J, (7), (8) and (11): 

B=[ -2A'±2Al'3(1-A') ]/(3-4A') at B<O or B>1, (17a) 

B=2A'±'/,Al'3(1-A') at (1'3-3)/3<B<1. (17b) 

The region of values of A and B bounded by the curves 
(17a) and (17b), inside which E(OR) < E(E) and E(OR) 
< E(T), is shown in Fig. 4..IT .IT JT 

JT 

4. TUNNEL SPLITTING OF THE 
ORTHORHOMBIC STATES 

One of the most interesting consequences of the 
Jahn-Teller effect in polyatomic systems with strong 
vibronic coupling is the so-called inversion, or tunnel, 
splitting of the levels, due to tunneling of the system 
through the barriers between equivalent minima of the 
adiabatic potential. [4,5, 10J 

We shall assume that the depth of the orthorhombic 
minima obtained above is sufficiently great and that the 
nuclear motion is localized in a small neighborhood of 
the bottom of the minimum, Then the initial wave func­
tion of the ground state can be written in the "simple" 
adiabatic approximation: [llJ . 

'¥~(r,q(~»=",.(r,Q('» IT flIo(q;('», a=1,2, ... ,6, (18) 
J-I 

where <I>o(q~a)) is the wave function of the ground state 
J 

of the harmonic oscillator 

00,= (k/m)\ 
(19) 

rv 

and 1/J a(r, Q(a)) is the electron wave function at the a-th 
minimum. In particular, for the initial electron term T 1 
(the electron basis Ix), Iy), Iz») we have CP1 
= (Ix) + ly»)/-/2for the minimum point (10), with the 
components of the electron function a1 = a2 = 1//2, a3 = 0, 
The energy of the state (18) is equal to 

• 
(OR) ~ 

Eo=EJT +, £ .. }oo/2. (20) 

It does not depend on the index a of the minimum, and 
consequently the state of the system is sixfold degener­
ate. The six functions (18) form a reducible representa­
tion of the group ~, which splits into the irreducible 
T1 + T2• [12J In order to take the tunneling into account­
it lifts the random degeneracy of the terms T1 and T 2-
we make use of the functions (18) as a basis for diagon­
alization of the complete Hamiltonian (1). Using the . 
symmetry properties of the matrix elements, we obtain 
the secular equation in the form 
Hn-E H I2 -SE 0 H12 -SE H12 -SE Ha-SE 
H12--SE Hn - E Ha - SE 0 - Hwl- SE /f" - SE 

o Ha-SE Hn·-E !flo-SF: -H12+SE-lI12+SE =0, 
H12-SE 0 H12 - SE Hn - E HI. - SE - ff12+ SE 

H12-SE-HI2+SE-H12+SE H 12 -SF: 1I11-E 0 

H I2-SE H12 -SE -H12+SE-HI2+SE 0 H11-E (21) 

1026 SOy. Phys.·JETP, Vol. 39, No.6, December 1974 

where 

H.~=<'l! .IHI 'I' ~>, S=<'l!11 'l! ,). (22) 

Inasmuch as there are no repeating representations in 
the T1 + Ta expansion, the complete diagonalization is 
accomplished by construction of the correct functions 
with the help of projection operators. [13J As a result, 
we get 

'l! T .. ='/2 ('1'1+ '1'.+ 'I' ,+ '1'.), 

'I' T.I=I/'('¥I- 'l!,+ '1',-'1',). 

(23a) 

(23b) 

The energies of the triplets T1 and T2 are determined by 
the expressions 

HII+2H" 
1+2S ' (24a) 

E(T,)= ('¥T.dHI'¥T.I> HII -2H" (24b) 
('¥T'II'¥"I> 1-2S 

and, consequently, the value of the tunnel splitting is 
equal to 

6=E(T )-E(T )=4 HIIS-H" 
, 1 1-4S" (25) 

To estimate this quantity, we calculate Hu , H12 and S, 
neglecting the splitting of the frequencies at the minima 
and limiting ourselves to the case KE = Kr. Then Hu 
= E(OR) + 51J.w;2 and 

JT 
H12= (,/,ftoo-1/,KQiO)' +I/,VEQ.(O) - VTQ,'O) _I/,WQ:O) ai') )S, (26) 

S= + exp [- 4:00 (3Q:O)' +2Q,'O)') ] , (27) 

where the quantities Qf?~ are defined in (10). Then 

6=[K(3QiO)' +2Q,(O)')-3WQ:O) Q;O) ]1~4S' . (28) 

We note that the quantity (3Q~0)2 + 2Q~)2)112, the 

square of which appears in the argument of the exponen­
tial in (27), is none other than the distance between two 
neighboring orthorhombic minima. 

Tunnel splitting has been Observed directly in experi­
ment, in the form of splitting of the background-free 
line of transition to the degenerate electron term, both 
in the case of the E term (the transitions A - E in Eu2+ 
and Sm2+ and in CaF2 and SrF2[14J) and in the case of the 
T term for the transition 4A2 - ~2 in V2+:MgO,[15J For 
the latter case, complete agreement of experiment with 
the earlier theory of the Jahn-Teller effect with account 
of only the linear terms has not been achieved to date, [lJ 
It can be hoped that the remaining disagreements will be 
removed with account of the results of the present paper, 
which requires additional measurements to confirm the 
orthOrhombicity of the adiabatic-potential minima in this 
specific case. 

5. SUPPRESSION OF THE MATRIX ELEMENTS OF 
THE ELECTRON OPERATORS 

In the calculation given above of the basic vibronic 
levels of a system with orthorhombic minima, the ground 
vibronic state that was obtained was of type T1, i.e., the 
same as the initial electron term. This result confirms 
the general conclusion that, inasmuch as the vibronic 
terms in the Hamiltonian (1) do not change their sym­
metry, then, with account of the vibronic coupling, the 
degeneracy of the ground state is not lifted, but only 
undergoes a transition from electronic to vibronic. 

The coincidence of the symmetry of the ground elec-

I. B. Bersuker and V. Z. Polinger 1026 



tronic and vibronic states materially simplifies calcula­
tion of the matrix elements of the operators of the elec­
tron physical quantities 7y-(r) on functions of the de­
generate term and leads to a qualitatively new effect for 
the observable quantities. It turns out that 

< 'l' r" (r, Q) IFr,(r) 1 'l'r" (r, Q) )=K~ (r) (",r" (r) IFr,(r) 1 ",r" (r), (29) 

where Kr(r) is a number smaller than unity and de~nd­
ent (for a given term r) only on the representation r 
according to which the operator rr y is transformed. In 
other words, the vibronic couplings reduce (suppress) 
the physical observables that are described by electron 
operators. This result was first obtained in calculation 
of the spin -orbital splitting of the T term [4, 16J and was 
then generalized to the case of an arbitrary electron 
operator[17J (a general proof of the suppression theorem 
is given, for example, in [laJ ). 

For the considered case of orthorhombic distortions 
it is easy to obtain expressions for the reduction (sup­
pression) factors K(r), which are the same for the 
electron T1 and T2 terms, by division of the correspond­
ing matrix elements from (29) as calculated on the func­
tions (18) and on the electron functions Ix), Iy) and Iz). 
We have 

K(E) = (H88+6S)1 (4+88) , K(T,) = (38+S) 1 (1 +28), 

K (T,) = (1 +68) 1 (2+48), 

where 8 is given by (26) and 

S='/, exp(-KQtl'lliro). 

(30) 

(31) 

The limiting values of K(f) for strong vibronic binding 
(small 8 and S) are equal to K(E) "" %; K(T1) "" 0; K(T2) 
"" %. 

It is seen from (29) that the matrix elements of the 
operators which are transformed according to T1 are es­
pecially strongly reduced. In particular, the orbital mo­
mentum of the electrons and consequently the spin­
orbital interaction are reduced. For example, the 2T2 
term, with account of vibronic coupling, is split by the 
spin-orbital interaction into the levels r7 and ra with 
energies ~E(r7) = K(T1)A; ~E(ra) = -K(T1)A/2 (A is the 
constant of the spin-orbital interaction). The splitting is 
obtained in qualitatively the same way as for the purely 
electron ~2 term, but is less by a factor of K(T1). 

In the case considered, it is also necessary to take 
into account that in the case K(T 1) A ~ 6 the spin-orbit 
interaction mixes the adjacent 2T1 level-the T1 compon­
ent of the tunnel splitting of the ground state-with the 
fundamental ~2 level. With account of this admixture 
(2T1 is split into r6 + r a), we get 

E=(r;-l)= ~16-[ (HK(T,)t.)'+3K't.'l"'), 
2 

E= (r,(+') = +IH[ (HK(T 1)t.)'+3K't.'l"'), 

E(r,)=Ii-K(T,)t., 

E(r,) =K(T,)t., 

(32a) 

(32b) 

(32c) 

(32d) 

where K = (s - 8)/(1 - 482)1/2 is the "off-diagonal" reduc­
tion factor, which arises in the calculation of the off­
diagonal matrix elements of the operator of the orbital 
angular momentum of the electron on the states of the 
T1 and T2 terms. Thus the reduction effect and tunnel 
splitting significantly change the fine structure of the 
ground multiplet. 

Another example. The quadruplet ra obtained above, 
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which arises on spin-orbital splitting of the ~2 term, 
belongs in the absence of the Jahn-Teller effect to the 
class of so-called nonmagnetic quadruplets, i.e., it is 
not split by the magnetic field in the linear approxima­
tion in the field, because of the mutual cancellation of 
the orbital and spin contributions to the Zeeman energy. 
The suppression of the orbital momentum by the factor 
K(T1), which is connected with the vibronic coupling, 
leads to the appearance of a linear Zeeman effect on the 
quadruplet r a, and the splitting is isotropic and equally 
spaced, with the g factor 

g=2[ 1-K(T,) ]/3. (33) 

It is seen from (33) that the linear Zeeman effect on the 
term ra disappears in the absence of the reduction 
effect, i.e., for K(T 1) = 1. 

6. STRUCTURAL PHASE TRANSITIONS 

The phonon interaction of electron-degenerate centers 
of a crystal leads to structural phase transitions due to 
the so-called cooperative Jahn-Teller effect [1 ,20, 21J (for 
pseudodegenerate centers, and also for systems without 
a center of inversion, dipole ferroelectric and anti­
ferroelectric ordering is possible [1, 22J). We consider 
here new types of structural phase transitions that may 
result from interaction of the o rtho rhombic ally distorted 
centers with electron-degenerate T terms that were dis­
cussed above. 

We shall assume that the orthorhombic minima of the 
adiabatic potential are so deep that tunneling between 
them can be neglected in the study of phase transitions, 
and we shall choose as a basis for second quantization 
the vibronic functions of the ground state (18) of the 
Jahn-Teller centers. [23J Then the Hamiltonian of the 
crystal can be written 

Here m numbers the Jahn-Teller centers and K the 
vibrational modes of the crystal, and V(Km) are the con-

ry 
stants of vibronic binding of the electrons with symme­
trized (relative to the mth center) r combinations of 
normal vibrations. Inasmuch as <a~~aO!m) = 1l00m s 1, 
the operators a~m and aO!m possess Fermi commutation 

relations; the numbers s (O!) are determined from the 
equations ry 

(35) 

The last two terms of the Hamiltonian (34) correspond 
to the elastic deformation energy and its interaction with 
the Jahn-Teller centers, respectively, [21J while cr are 
the elastic constants, referred to a unit volume n of the 
crystal; gr are the corresponding constants of vibronic 
deformation interaction. If we carry out the unitary 
transformation of the displacement 8 in the Hamiltonian 
(34) [21, 24J, where [24J 

8=exp {E E [~rgml(liro,)_l(b,+_b,) 
m r.,. K 

gr a] ~ (a) + + --=.-- .l....J Sr" ao:m aa,m, 
'IQNcr au., a 

we can then easily obtain 

H=8H8+= (eo+E;~nl +dE",) E aam +aam + E nUl, (b,+b,+ ~ ) 
am , 
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1 \"l 2 \"l \"l \"l [ (Xm) (xn) + 2 Q .4..J CrUr, - .4..J .4..J.4..J rrv rr'" 
ry r" r'i" m,n 

(m .. n) 

1 2 ] ~ (a) (fi) + + 

to the low-symmetry orthorhombic phase can be accom­
panied by the appearance of spontaneous polarization of 

(37) the crystal. 
+ 2N gr 6rr ,6y,' ~ Sr" Sr'y'aam aamah all n , 

a, 
where 

!:!E.,,=- (ge'+g,.') IN. 

It is then seen that as a result of the transformation 
that has been carried out, the phonon and deformation 
degrees of freedom have been separated, while pair in­
teraction has appeared in the vibronic subsystem, lead­
ing to a phase transition, [25] If, as usual, we introduce 
the equal-time Green's functions G~~(t, t') 

= «aO'm (t)IO'~ n(t')), write the equations of motion for 
them [26] and carry out the uncoupling 

(38) 

corresponding to the molecular-field approximation, we 
immediately obtain a set of transcendental equations for 
the occupation numbers flam' For simplicity, we shall 
consider ordering of a "ferromagnetic" type with local­
ization of the nuclear motion of each of the centers at 
the minimum 0' = 1 with coordinates (10). Then nO'm = nO' 
and with account of distortions at the minimum 
113 = 114 = 115 = 116' Introducing the order parameters 

(39) 

we obtain BE = B ~ = BTJ = 0, and for Be and B{; (corre­
sponding to two independent distortion directions)-the 
set of two equations 

h (hst ) = 1-28, ex (3/.s.) 
c kT 1 +s. P 2kT ' 

_ (3/.S.) _ (leSt) (leSt) 2s.exp -- +Stch -- -sh -- =0, 
• 2kT kT kT 

(40) 

where 

(41) 

It is not difficult to obtain the result from (40) that, de­
pending on the relation between the parameters Je and 
J 1;' two types of phase transitions are possible in the 
crystal. At 2J I; > 3Je , there i.s on~y one phase-tr~si.­
tion point kTe = kTI; = J /3 wIth sImultaneous vamshlllg 
of both order parameters, se = S I; = O. At 2JI; < 3Je, an 
increase in the temperature leads, at kT I; = J 1;/3 to van­
ishing of 81; and then at kTe = J e/2 to vanishing of Be 
also. In other words, the transition from the low-sym­
metry orthorhombic phase to a completely disordered 
phase can take place either directly (at 2J I; > 3Je) or 
via an intermediate tetragonal phase (at 2JI; < 3Je ). 

Such nonequivalence of the tetragonal and trigonal dis­
tortions of the crystal is connected with the impossibility 
of fitting the orthorhombic ally distorted Jahn-Teller 
centers into a trigonally distorted crystal, while tetra­
gonal stacking is possible. 

From (34) we can find the equilibrium deformation of 
the crystal: Ut),. = Br ,.(N/Cr Q)Ii2 which, in the low-

symmetry phase, is different from zero. At B I; ~ 0, the 
crystal is distorted along [110] and at Be ~ 0, along the 
[001] axis. The corresponding elastic moduli vanish at 
the phase transition points. [21,24] 

In systems without an inversion center, the transition 

1028 SOy. Phys.-JETP, Vol. 39, No.6, December 1974 

7. CONCLUSION 

The above analysis has shown that in the Jahn-Teller 
effect for the T term the quadratic terms of the vibronic 
coupling are highly important and lead under certain 
conditions to the formation of six equivalent orthorhom­
bic minima on the five-dimensional adiabatic potential 
hypersurface, as well as twelve each of two new types of 
equivalent saddle points. The regions of existence of 
these extrema are determined by two dimensionless 
combinations of the five parameters of the problem. 

Special interest attaches to the possibility of local­
ization of the nuclear motion at the new orthorhombic 
minima, which leads to a series of physical effects even 
in the ground state of the system. Thus, tunnel splitting, 
along with the already noted splitting of the background­
free lines, leads to resonance electromagnetic absorp­
tion in the microwave region, [27] to ultrasonic absorp­
tion, [28J and to a characteristic EPR spectrum, [19] 

which in the limiting case of deep minima should corre­
spond to an orthorhombically distorted system. We note 
that such spectra, which indicate orthorhombic distor­
tion, have actually been observed in a number of systems 

. .- Ge Pd- S· pt- S· [29] WIth a T term: NI:, : 1, : 1. 

As has been noted, the effect of suppression by 
vibronic coupling concerns all physical quantities des­
cribed by incompletely symmetric electron operators. 
Along with the election orbital momentum, which we 
have discussed, the interaction of the electron shell with 
the nucleus (dipole-dipole, quadrupole etc., which mater­
ially affect the EPR, nuclear quadrupole resonance and 
nuclear resonance) is reduced, as is the Coulomb ex­
change interaction[30] and so on. 

The above general consideration of structural phase 
transitions due to the interaction of orthorhombic ally 
distorted centers in crystals also opens up new possi­
bilities. 

We add that the expressions for the observables, ob­
tained above as functions of Qt~, do not depend on the 

approximation in which these Qt~ were obtained. 

')In a "Historical Note" prefacing the book ['] , E. Teller pointed out 
that the effect was predicted by 1. D. Landau and should by right 
bear his name. 

2)Some results were published earlier for a particular case [7]. 
3)Actually, there are two regions, corresponding to the two signs in (12), 

but, inasmuch as they do not intersect, we can consider them as a 
single doubly-connected region. 
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