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Expressions have been obtained for the frequency dependence of conductivity for one- and 
three-dimensional random systems when the electron Fermi level is close to the true spectrum end 
point. The frequency values for which the investigation is valid are bounded from below. 

The paper derives the frequency dependences of the 
conductivity of one- and three-dimensional random sys
tems for the case when the absorption is determined by 
particles, the energy of which lies near the true spec
trum boundary. For the sake of argument, we have ex
amined a situation when the particles occupy the levels 
near the bottom of the band and the positions of impuri
ties with positive potential energies have a Poisson dis
tribution, In this case the true spectrum boundary is the 
energy E = 0 (the energy is reckoned from the lower 
edge of the band in the absence of impurities). 

Let Vo be the characteristic value of the potential of 
an individual impurity, and let a be the characteristic 
range of the potential, Then the renormalized spectrum 
boundary (see [lJ) is Eo = nvoa in the one-dimensional 
case and Eo = nvoa3 in the three-dimensional case (n is 
the impurity concentration). Hereafter we shall assume 
that the Fermi energy of the particles is EF <.< Eo<> As is 
well known (see, e.g., [lJ), the energy levels for E « Eo 
are determined by fluctuations in the impurity distribu
tion. 

We obtain below the frequency dependence of the con
ductivity due to such fluctuation levels (in Sec. 1 for the 
one-dimensional case and in Sec. 2 for the three-dimen
sional case). 

1. ONE-DIMENSIONAL CASE 

As indicated above, the spectrum near the true boun
dary E = 0 is due to the fluctuations of the impurity 
distribution; in other words, regions appear in which 
the impurity concentration is lower than the average, 
We confine ourselves to a situation similar to the one 
studied by the author and Dykhne [2J, It corresponds to 
a special case of energy-level quantization when it is 
possible to find not only the exponential in the level
density formula but also the pre-exponential factor, We 
now proceed to the description of this case, 

Energy levels with E « Eo appear in those places 
where there is a great distance between the nearest im
purities. It is clear that the wave-function propagation 
range outside this well is 0 ~ (mEor1i2 (fl. = 1) is Planck's 
constanL We impose the auxiliary condition on « 1, 
which means that the energy levels can be obtained by 
quantization in a potential well with infinite walls. This 
condition can also be rewritten in the form n/mvoa « 1. 
It is clear that there are many levels in such a well. For 
the sake of simplicity, however, we assume that the 
absorption is due to a transition between the first two 
levels, 

The general expression for conductivity a(w) is 
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J /(E+oo) -/(E) \"1 
a(w)~-J(e' dE 0' i... 1v"ml'6(En-E)6(Em -E-oo) (1) 

n,1rl 

(f (E) is the particle distribution function and v nm is the 
velocity-operator matrix element). The expression is 
easily estimated apart from a numerical coefficient. 
From the quantization condition it follOWS that the en
ergy levels are En = 1T2n2/2mr2, where r is the distance 
between the nearest impurities. If we limit ourselves to 
absorption as a result of a transition between the first 
two levels, then w is always equal to 3E thanks to the 
o-functions in (1) (therefore it follows that the differ
ence of distribution functions in (1) cannot be replaced 
by a derivative). The condition w = 3E corresponds to a 
transition between the first two levels. Generally speak
ing, during a transition from the first level to the n-th 
level we have w = E(n2 - 1). 

It is evident that vnm ~ wr. The expression (1) should 
be averaged with the multiplier ne- nr that determines 
the probability that the distance between the nearest im
purities is r. It should be noted that the number of such 
pairs are proportional to the concentration of impurities 
n. Taking into account these considerations, it is easily 
found from (1) that 

(2) 

where ro = 1T(3/2w)112 and A is the numerical parameter. 

The condition nro » 1 permits us to confine our
selves to the transition between the first levels. We con
fined ourselves to the case T = O. Consequently, since 
the integration with respect to energy takes place in the 
region E ~ EF - w, a lower bound is imposed on the fre
quency w: 

(3) 

There is no upper bound, since transitions are possible 
not only between the first levels. In the event of a tran
sition between the first and n-th levels we have 

E,,(n'-I) >",> (n'-·1)E"ln'. 

We confine ourselves to a transition between the first 
levels. It should be noted here that the bound (3) is of a 
basic nature, since the splitting of levels due to the 
overlap of the wave functions in different potential wells 
drops considerably faster with a decreasing particle 
concentration p than the distance between the levels in 
an individual potential well. utilizing the results of PJ , 
the condition (3) can be rewritten as follows: 

3n'( n)" w>- In-
S,n p (4) 

We note here that from the author's preceding paper [3J 
it follows that when w = 0 the conductivity is equal to 
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zero, but the dependence on w as w - 0 will, of course, 
differ from formula (2). 

2. THREE-DIMENSIONAL CASE 

Here, too, we assume that the energy levels deter
mining the absorption are due to quantization in potential 
wells with endless walls. However, because the condi
tions differ from the one-dimensional case, we present 
the appropriate limitations on the parameters. The con
dition nll3(mvoa3nrl/2 means that the energy levels 
correspond to a~otential well with endless walls. In 
this case (see [4 ) the first level (for a sphere) is El 
= JT2/2mr2 and the second is E2 = JT2/://2mr2 (0' is deter
mined from the condition x = O'JT, X = tan x). Hence (tak
ing into account the Ii-functions in (1» 

( 0:'-1 ) 'f, 
ro=n -- . 2(0) 

(5) 

Condition (3) goes over into 

(0» (o:'-1)E,/a:'. (6) 

The probability that there are no impurities in the 
volume V is obviously ne- nV• Obviously, the volume V 
should be minimal at the specified energy value. This is 
apparently achieved for a sphere. Similarly, as in the 
paper by Zittarz and Langer [5] , the conductivity will be 
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proportional to the number of points where a minimum 
volume is achieved, as determined by the derivative 
aV/aE. However, since the investigated quantization 
method does not depend on the impurity density, the 
number of such cavities per unit of volume is ~V-l. 

Taking these considerations into account, we obtain 
from (1) (B is a numerical parameter) 

(7) 

where ro is given by formula (5). We again assume that 
nrg » 1, i.e., only the transition between the first levels 
is essential. 
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