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A theory of nonlinear optical effects is developed for the case when the transverse dimension of the 
region occupied by the nonlinear-polarization wave is of the order of the wavelength of the emitted 
wave. There arise in this case specific emission conditions similar to those under which the 
Vavilov-Cerenkov radiation is emitted. This case is of special interest in connection with the problem 
of the generation of far·infrared radiation as a difference frequency. In contrast to other 
nonlinear·optics problems in which the quasioptical approximation is widely used, the solution of the 
indicated problem requires the solution of the complete wave equation. The emission of Cerenkov 
difference·frequency radiation (DFR) by a monochromatic-wave doublet, as well as by an ultrashort 
light pulse, is considered. In the latter case the Cerenkov radiation, which is inevitably generated in 
many media, can be treated as additional nonlinear losses. It is shown that in ordinary anisotropic 
media Cerenkov-radiation emission should be possible for both the forward and backward waves. This 
radiation possesses interesting distinctive features in optically active media, in which four Cerenkov 
angles can exist simultaneously. It is also shown that in DFR generation the Cerenkov condition can, 
besides the usual interference interpretation, also be accounted for on the basis of' the vector 
interaction between the angular components of the beams. The advantage of the Cerenkov DFR 
generation over the synchronous vector interaction of the beams is noted. 

1. INTRODUCTION 

Definite progress has recently been made in the gen­
eration of coherent radiation in the 1O-150-cm- 1 band. 
In a number of investigations significant advances in 
this direction were achieved by mixing specially chosen 
optical doublets (see the proceedings of the confer­
ences [1,2J) and through rectification of picosecond laser 
pulses [3- 5J. The generation of coherent difference­
frequency radiation (DFR) by these methods is, besides 
the interesting applications, of considerable interest 
for nonlinear optics itself. The point is that in the in­
dicated cases the transverse dimensions a of the re­
gion occupied by the nonlinear polarization turn out to 
be of the order of the wavelength A of the generated 
wave (Le., a-A). Owing to this, v= l/A DFR can be 
detected outside the induced-polarization region. On 
the one hand, this renders unsuitable [6-8J the standard 
method of nonlinear optics-the parabolic-equation 
method- and, on the other, it opens up new possibilities 
for the matching of the phase velocities of interacting 
waves. 

Below we shall show that the effective DFR is emit­
ted in many media at an angle eo = cos- 1(k/k) to the di­
rection of propagation of the induced polarization (where 
k and ki are the wave numbers of the natural wave and 
the induced polarization respectively); this phenomenon 
can be interpreted as a Cerenkov emission [9,10J of a 
nonlinear-polarization wave. The Cerenkov DFR emis­
sion occurs under conditions when there is no syn­
chronous collinear interaction between the beams (i.e., 
when k '" ki); up till now, however, DFR generation has 
been investigated [6-8) only under conditions when the 
collinear- synchronism condition, k = ki, is fulfilled. 

The possibility of a Cerenkov emission of electro­
magnetic waves from a nonlinear medium polarization 
propagating with a "superlight" velocity (Vi =O/ki >v 
=olk) has been demonstrated by Askar'yan [l1J. Before 
that [10J, it had been pointed out that any type of wave 
could, in principle, emit Vavilov-Cerenkov radiation. 
Later, the Cerenkov generation of light harmonics in 
optical wave guides [12,13J and crystals [14,15J was studied. 
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This case, however, is of little practical interest, since 
the magnitude of the effect is proportional to the ratio 
A/a, which, for the visible spectral region, is extremely 
small. It is evident that the yield of the Cerenkov DFR 
in the submillimeter wave band can be substantial. 

The object of the present article is to analyze in de­
tail DFR emission by a narrow beam of induced non­
linear medium polarization. We consider the cases of 
DFR excitation by a monochromatic wave doublet and 
by a narrow light pulse. Besides the ordinary aniso­
tropic medium, the phenomenon is analyzed in optically 
active media. It is shown that besides the well-known 
interference interpretation, the Cerenkov radiation in 
this case can be interpreted as a condition for vector 
synchronism for extremely narrow beams. 

2. THE CERENKOV EMISSION OF A NONLINEAR­
POLARIZATION WAVE EXCITED BY A MONOCHRO­
MATIC-WAVE DOUBLET 

We shall consider the DFR-generation problem in the 
approximation that the exciting radiation fields E2(r, t) 
and E 1(r, t) are given. The system of Maxwell equations 
reduces in this case to the following equation for the 
excited field E(r, t): 

where A is the Laplacian and X is the nonlinear­
susceptibility tensor of the medium. Let the exciting 
monochromatic laser beams propagate' along the z 
axis. Then 

Ej(r, t)=c,A,(r)exp{i(,u,t-kjz)} 

(Wj is the frequency), and we obtain for the complex 
DFR amplitude the equation 

(1 ) 

(2) 

( 3) 

where X = eX e2el is the nonlinear-coupling constant, ej 
is the unit polarization vector, k =Onlc, and 0 = W2-Wl 

is the generated frequency. 
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Let us first assume that the induced polarization 
propagates along the positive direction of the z axis 
(k:!-kl=kpO). Let us write the solution to Eq. (3) for 
the angular DFR spectrum in the form: 

1 +~ 

A (a,~, z)=--SSA(x, y,z)ei(axH') dxdy. (4) 
(2n)' _~ 

its variation in the case of forward-wave generation is 
described by the expression 

11 {( k.+g )} k.-g A(a,~,z=l)=-i--F(a,~)exp -i _1_ I sine-I-I. 
kj+g ? 2 

In deriving (5), we took into account the emission con­
dition and the condition at the entrance to the crystal: 

( 5) 

A( a, (3, z = 0) = O. In (5) we have introduced the notations 

1=4nxQ'/c', kj=k,-k" g=(k'-a'-~')''' sinex=sinxlx. (6) 

the function F( a, (3) is determined by the convolution of 
the angular spectra of the exciting beams: 

+-
F(a,~)= HA20(X,)Ato(x,)6(x+x,-x,)dx,dx" (7) 

where dKj = dajdJ3j and 

Ajo(x) =Aj(a,~, z=O) =Aj(a,~, z). ( 8) 

On account of the relation (8), we assume that the 
parameters of the laser beams in the nonlinear crystal 
remain constant. 

The angular DFR components for which 

(9) 

grow in proportion to the length 1 on the nonlinear 
crystal; here 80 is the angle between the vector k and 
the direction of the z axis. The condition (9) is the 
condition for the Cerenkov emission of a forward wave 
with a difference frequency n. In the case of low­
frequency (n «W2, WI) generation by waves of the same 
polarization, this condition can be reduced to the 
standard forml) 

cos 8o=v/u" ( 10) 

where v is the phase and UI the group velocities at the 
frequencies n and WI respectively; k2 -kl =n/UI' 

In anisotropic nonlinear media, the condition (9) also 
remains valid when the angle 8 varies in the interval 
1T/2::S 8::s 1T. It then corresponds to the Cerenkov emis­
sion of a backward wave, since in this case the direc­
tion of propagation of the DFR is opPOSite to that of the 
exciting waves. Thus, for 

ik,-k,i<k ( 11) 

the condition (9) is always fulfilled either for the forward 
or for the backward wave with the difference frequency. 

In the case of the backward-wave generation, the 
boundary conditions are prescribed for z = 1 and, fur­
thermore, the angular DFR spectrum for an arbitrary 
distance z in the nonlinear crystal is determined by 
the expression 

A(a,~,z) (12) 

= -il ~;g F(a, ~)exp{ i(g-kj)+ -i(g+kj)z }sine [ k~-g (I-z) ] . 

The exit of the crystal now corresponds to z = O. If the 
difference-frequency wave is a normally polarized wave, 
then the radiation has the form of a circular cone; for 
the extraordinary wave this cone is deformed, since the 
wave number k depends on the azimuthal angle rp be­
tween the directions of k and the z axis. 
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If the condition (11) is fulfilled, then there obtains 
a vector synchronism between the interacting wave 
components. Indeed, the expression (9), multiplied by 
the Planck constant fi, implies the conservation of the 
longitudinal components of the momenta; the condition 
for the conservation of the transverse components fol­
lows from (7): 

( 13) 

The latter condition constitutes together with (9) pre­
cisely the vector-interaction condition for the corre­
sponding wave components in the paraxial approxima­
tion for the exciting beams. Thus, the conditions (9) 
and (10) under which the Vavilov-Cerenkov radiation is 
emitted can be interpreted as the result of the syn­
chronous interaction between the waves, or as the usual 
result of the interference of the difference-frequency 
waves. 

The possibility of Cerenkov emission in an optically 
nonlinear medium is determined by the dispersion prop­
erties of the medium. The emitted DFR power at the 
Cerenkov angle depends on the angular distribution of 
the intensity of the laser beams. From this point of 
view, the optimum conditions for the excitation of DFR 
are those conditions under which the convolution (7) 
of F( a, (3) differs from zero only for given angular 
components a and 13. In the ideal case, this requires 
plane exciting waves propagating at the indicated 
angles. Under real conditions, we can use for this pur­
pose the beams of a laser operating in the higher 
transverse mode regime. 

Let us now proceed to calculate the DFR power for 
certain types of laser beams, considering, for definite­
ness, the generation of the forward wave (5); the angu­
lar distribution of the DFR intensity is given here by 
the expression 

s(a,~,l)=(_ll_)' IF(a,~)I'sine' [.!....(k j - g)]. (14) 
kj+g 2 

2.1. Gaussian Laser Beams 

In the case under consideration the complex ampli­
tudes of the laser beams have the form 

Ajo(r) =Ajo exp {- (aJ-'+ih j) (x'+y')}, ( 15) 

where aj is the beam radius and the parameter hj 
= kjo/2Rj characterizes the divergence of the beam (kjo 
is the wave number in the linear medium and Rj is the 
equivalent focal length of the lens). For the function 
F( a, (3), (7), we obtain 

a' { a'(a'+~')} 
F(a,~)= 4n(1+iha') A,(O)A,(O)exp -4(1+iha') ,; 

( 16) 

It follows from (16) that the divergence of the exciting 
beams has no effect on the generation process when 
h=O. 

For the angular distribution of the DFR in spherical 
coordinates we have (when hI = h2 ) the expression 

1 [ 1 ']' k'sinZ8 
S(8,<p,z)=2" g;lA ,(O)A,(O)a I (kj+keos8)' 

( 17) 
{ (akSin8)'} [ I ] xexp - 2 sine' T(kj-keos8) . 

The dependence of the function (17) on the angle 8 is 
shown in Fig. 1. The angular width A80 of the Cerenkov 
radiation (for 80 "" 0) is primarily determined by the last 
term in (17): 
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2n 
Ll8 0 "" - ctg 80 • (18) 

kil 

The expression (18) is valid for a crystal length 1 
greater than the diffraction length Ld = ka2/2 for the 
frequency n (l >Ld). 

The power of the Cerenkov DFR is equal to 

P -2" n ( a,a, )' x'P,P,Q' l { (ak sin 80)' } 
0- n -- --,-, --,--- exp - , 

n,n, a, +a, c ki 2 
(19) 

where Pj is the exciting power (Pj = cnjajAj(0)/16). The 
plot of Po, (19), as a function of n is shown in Fig. 2. 
The DFR power P' in the case of a one-dimensional 
synchronous interaction (k = k2 - k1) is determined in, 
for example, [a]. For crystal lengths 1 > Ld the ratio of 
the powers of the Cerenkov and synchronous DFR is 
equal (for 80 ,,; 0) to 

(20) 

The formula (20) clearly shows how the parameters of 
the interacting beams affect the power ratio in the case 
under consideration. 

2.2. Multimode Laser Beams 

Let us consider the case of DFR generation when 
one laser beam is the lower transverse mode defined 
by (15), while the other beam, although its transverse 
intensity distribution is Gaussian, contains a large 
number of transverse modes. The spatial statistics of 
the second beam is, as has been shown in [17] , similar 
to the statistics of thermal radiation. Taking the fore­
going into account, we obtain for the angular distribution 
of the DFR intensity in the same approximation in 
which the expression (5) was obtained the expression 
(14), where I F(a, (3)1 2 should, however, be replaced by 

FIG. 1. The indicatrix of DFR for a nonsyn­
chronous collinear interaction between the bounded 
beams. For Q > Ld the peak of the radiation corre­
sponds to a Cerenkov angle of8~= 64°, while for Q 

"" Ld the angle (J~' = 63°. The angle scale in the 
vicinity of the angle (J~ has been increased by a fac­
tor of ten. 

FIG. 2. The dependence of the DFR power Po on the radiation fre­
quency v = 1/ A for a fixed transverse dimension a of the induced-polari­
zation region. For a Gaussian transverse distribution of the polarization 
the maximum value is attained at the wave number k = 0/ a sin (Jo· 
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a' {(a'+~')a' } 
IF(a,~) 1'= 16n'(1+2a'/re') exp - 2(1+2a'/re') . 

The bar denotes statistical averaging and rc is the 
correlation length of the multi mode beam at the level 
l/e. 

For the mean DFR power when a> rc we obtain 

_ n re' x'P,P,Q' {1 } 
P o""2'Jt'-- (' ') , Zexp --(kresin8o)' . 

n,n, 2 a, +a, c k. 4 

(21 ) 

(22) 

The ratio of the Cerenkov-DFR powers (22) in the case 
under consideration here and (19) in the case of gener­
ation by Gaussian beams is 

p, re' { 1 0 (re' ,). 0 } -""-cxp --k- --a sm'S . 
Po 2a' 2 2 0 

(23) 

Thus, for the same exciting-beam powers and radii the 
multi mode "filling" of one of the beams leads to a more 
efficient DFR generation at the Cerenkov angle 2) • 

3. THE CERENKOV EMISSION OF ULTRASHORT 
LIGHT PULSES; THE OPTICAL RECTIFICATION OF 
PULSES 

In the present section we analyze DFR excitation by 
ultrashort laser pulses; the difference frequenCies are, 
in essence, the spectral components of the light pulse 
detected in the optically nonlinear crystal. Other pos­
sible cases of Cerenkov DFR generation by temporally 
and spatially modulated radiation can easily be analyzed, 
using the procedure developed in the present article. 

The generation of DFR by an intense light beam of 
finite duration is described by Eq. (1), in which the fol­
lowing substitution should be made: 

E,8,'-+21 (r) f(t-z/u,), (24) 

where I(r) is the transverse distribution of the beam 
intensity, f(t) describes the pulse shape, and Ul is the 
group velocity of the pulse in the crystal. The fre­
quency-angular spectrum of the DFR for a Gaussian 
beam in spherical coordinates has the form 

E( r. 8 ) . xI (O)a'lsin28 {(aQSin8)' 
'" <p l = -! exp ---.-

, , , 2uJtc' (u/u,+cos8) 3u' 

( 1 cos 8) I } ([ 1 cos 8) Ql] -i[i ---- - Q'!(Q)sinc ---- -- . 
u, u 2 u, u 2 

(25) 

Here 1(0) is the maximum value of the intensity, a is 
the radius of the exciting-radiation beam, and f(n) is 
the Fourier spectrum of the pulse f(t). 

The frequency spectrum (25) differs significantly 
from the initial spectrum, which is due to the dependence 
of the nonlinear wave-wave coupling and the additional 
(for 8,,; 80 given by (10)) dependence of the radiation 
yield on the frequency n. Naturally, the shape of the 
excited pulse is also very different from that of f(t). 
The radiation pulse generated at the Cerenkov angle 80 

defined by (10) is determined by the expression 

, d' S {(t-l!U,-,) U'} }(t,80,l)=C- !(,)exp -2 dT, 
dt 3 

_c>;> a2 sin2 80 

(26) 

where the coefficient C >0 (we have neglected the dis­
persion of the crystal in the difference-frequency region). 

Along the z axis, the pulse F( t, 80 , l) propagates with 
the velocity Ul of the exciting wave; the increase of its 
width in comparison with the initial pulse is due to the 
finite spatial dimensions of the latter. The shape of the 
pulse F(t) is illustrated by the curves in Fig. 3. 
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FIG. 3. The shape of the DFR pulses emitted at the Cerenkov angle 
for different widths a: I) To = av-1 sinOo = 1.6 psec and 2) To = 16 psec. 
The curve 3 corresponds to an exciting beam with the Gaussian shape of 
a pulse of wid th T I = 5 psec. 

The energy radiated by the pulse 
+w 

W=8n3~ SIS IA'(Q, o:,~, I) Ido:d~dQ 

is, within a narrow angle range near the direction 00 

(C.Oo « 1), given by the expression 3) 

n (a'Sin'8 )-'1, 
W=2'n'I,--(xW I)' ,; '+---' ~8 tg8 2 5 1 1 2 0 0, 

nl C 1'1 n 

where W1 is the energy of the pulse, 71 is its width 

(27) 

(28) 

at, like a-the dimension of the beam-the level e-2 
(the formula (28) was derived for a Gaussian pulse and 
a Gaussian beam profile). It is worth noting that here, 
in contrast to the generation of DFR by a doublet of 
spectral components (see Sec. 2.1, formula (19)), the 
DFR energy is proportional to l2, and not to the crystal 
length l. 

4. THE CERENKOV CONDITIONS IN OPTICALLY 
ACTIVE MEDIA 

The optical activity of the medium can be taken into 
account by additing to the linear polarization the term 
a curl E, where a is the gyration pseudotensor. We 
shall not write out here the expressions for the angular 
distributions and the power of the DFR: they turn out 
to be similar to the expressions given in the preceding 
sections. Let us point out that in the general case of a 
crystal of arbitrary symmetry and elliptically polarized 
waves (in particular, linearly polarized waves) there 
exist four angles at which the Cerenkov DFR can be 
generated 4): 

cos8,=[k,-k,±(p,±p,)jlk, (29) 

where Pj = wj a( Wj )/2c2 is the specific optical rotation 
at the frequency Wj. 

In many highly nonlinear crystals (e.g., LiNb03 and 
LiI03) , the quantity Pj (-10 cm- 1) in the optical band is 
comparable to the wave number in the far-infrared 
region. Therefore, some of the DFR cones can be ori­
ented in the direction opposite to the direction of prop­
agation of the induced polarization (cf. the formula (9)). 
Of greater importance, however, is the following cir­
cumstance. In the case under conSideration, what is 
realizable on account of the natural optical activity of 
the crystal is the collinear synchronous interaction 
(00 = 0). The compensation by this means of the phase 
detuning during light- harmonics generation-something 
that has earlier been considered a possibility in the 
literature [20,21)-turns out to be difficult to realize be­
cause of the fact that the value of Pj is not large 
enough. 
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5. DISCUSSION 

The analysis carried out in the present paper shows 
that in DFR generation under conditions when the dis­
persion of the nonlinear medium does not allow a syn­
chronous collinear interaction between the waves (i.e., 
k2 - k1 - k = c. '" 0) the radiation indicatrix peaks at the 
Cerenkov angle defined by (9) and (10). Since in non­
linear media the exciting waves can propagate in one 
direction, while the medium polarization induced by them 
propagate in the opposite direction, both forward (the 
angle 00 < 1T/2) and backward (0 0 ) 1T/2) waves can be 
emitted. Both types of scattering obtain in that region 
of the nonlinear crystal where the condition for vector 
synchronism is fulfilled. In this connection, the condi­
tions for the emission of Vavilov-Cerenkov radiation 
during DFR generation admit of two interpretations: as 
an interference effect, or as a synchronous vector in­
teraction. 

Compared with the ordinary anisotropic media, op­
tically active media allow the existence in them of a 
large number of ordinary waves; therefore, the DFR 
indicatrix in the latter media is more complex: here 
four Cerenkov angles are simultaneously possible. The 
existence of a DFR peak in a direction not coinciding 
with the direction of propagation of the induced polari­
zation was discovered in an analysis [22) of this process 
in the quasioptical approximation. However, the use of 
the incomplete wave equation gives only diffraction cor­
rections to the synchronism of the plane waves, whereas 
in the far-infrared region the Cerenkov angles attain 
values of 40-60°. 

Although, as follows from the formula (20), the 
Cerenkov-radiation yield in the submillimeter-wave 
region can be one-two orders of magnitude less than 
the DFR yield due to the synchronous collinear inter­
action, the presence, as a rule, of strong absorption in 
this spectral region can wipe out this difference. The 
point is that under the Cerenkov generation conditions 
the losses are determined not by the length of the non­
linear crystal, but by its transverse dimensions. The 
Cerenkov DFR generation mechanism also has an ad­
vantage over the synchronous vector generation regime: 
the effectiveness of the latter is limited by the finite 
overlap region of the exciting beams. 

Estimates with the aid of the formula (19) show that 
for exciting-beam powers of -1 MW the maximum power 
of the Cerenkov DFR of wavelength A = 0.5 mm in a 
LiNb03 crystal of length 1 cm is -1 kW. 

The results of the present paper are also applicable 
to the case of DFR excitation during a four-photon in­
teraction between the waves (2W1 = W2 + n); for this pur­
pose, the quantity XA2Ai in the above-obtained formulas 
should be replaced by 8A~A~, where e characterizes 
the cubic susceptibility of the medium. 

It has thus far not been possible to detect the Ceren­
kov radiation in experiments on the nonsynchronous 
generation of DFR in the far-infrared region, since in 
the absence of special measures it undergoes total in­
ternal reflection from the exit and lateral faces of the 
crystal; in order to observe this radiation, the exit end 
of the crystal should be ground off at an angle of 1T/2- 00 , 

For the overwhelming majority of nonlinear media 
(solids, liquids), the refractive indices at radio frequen­
cies and in the far-infrared region are larger than the 
refractive indices in the optical region; therefore, ac-
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cording to the results of Sec. 3, the propagation of short 
and ultrashort light pulses in such media will be ac­
companied by the emission of waves in the indicated 
spectral regions. Therefore, the propagating pulse will 
lose energy. Thus, for typical nonlinear crystals and 
pulses of power 0.1 J, width 5x10- 12 sec, and beam 
radius 0.01 cm the losses due to Cerenkov radiation are 
-(0.1-1)XlO- 3 J. Quite appreciable Cerenkov radiation 
should accompany the self-focusing of pulsed laser 
beams in non-centrosymmetric nonlinear media. 

The authors express their gratitude to S. A. Akh­
manov for useful discussions and critical comments, 
and to R. V. Khokhlov for interest in and attention to 
the work. 

'lTo the collinear synchronism k = k2~kl (80 = 0) corresponds the rela­
tion v = u" which, for DFR excitation in the far-infrared region, can 
be fulfilled for isotropic media [16]. 

2lQualitatively, this result is, apparently, also contained in [18]; however, 
the model of unbounded beams used there is too crude. 

3lThe influence of the time statistics of the exciting radiation on the 
DFR generation efficiency is studied in [19]; the results obtained there 
are applicable to the case of the Cerenkov DFR. 

<lThe value of Pj decreases sUbstantially with decreasing frequency; 
therefore, we have neglected the quantity p(n). 
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